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1 NETWORK COMPONENT ANALYSIS

In this section, we provide analysis and differentiate between
densely connected residual units and dense connections employed
by other state-of-the-art methods. Similarly, we give an insight
into the performance of channel attention and Laplacian attention.
Furthermore, we compare the data used for training, time taken
for inference, and the influence of the number of parameters.

1.1 Dense Connections Comparison

We provide the comparison between dense connections modules
employed by state-of-the-art methods and our proposed network.

SRDenseNet: SRDenseNet [1] is inspired by dense connections
of DenseNet [2] network where the layers operate on the output
of all the previous layers of the block. Figure 1(a) shows the block
structure of SRDenseNet [1].

RDN: Residual Dense Network [3] (RDN) employs residual
connections (inspired by SRDenseNet [4]) at the local and global
levels. The residual dense block (RDB) takes the input from
the previous layers (or the input image) in the form of dense
connection. The input to the RDB is added to the output of the
RDB. Furthermore, the output of the RDB blocks is concatenated
via convolution operations. The RDB is shown in the Figure 1(b).

ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks (ESRGAN) [5] removes the batch normalization layer
and includes the dense connections in SRResNet [4] modules. The
ESRGAN [5] modules are similar to RDN [3] modules where each
layer connects in input from all the previous layers. Figure 1(b)
shows the block structure for ESRGAN [5].

MemNet: MemNet [6], also known as persistent memory net-
work, connects the blocks densely as opposed to layers, as
mentioned above. The block of the MemNet is composed of the
recursive unit and a gate and has no dense connection between the
recursive unit but to the gate, as shown in Figure 1(c).

DRLN: Our proposed network’s dense residual laplacian module
(DRLM) is different from the competing dense modules. We
outline the fundamental difference between our method module
and other state-of-the-art, which employs dense connections.
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TABLE 1
Accuracy of super-resolution in terms of PSNR, when using Laplacian

Attention and Channel Attention in a simple network with nine
convolutional layers.

Method Set5 [7] Set14 [8] BSD100 [9] Urban100 [10] Manga109 [11]
NetCA 26.34 24.33 24.69 22.83 23.02Channel Att.
NetLA 26.41 24.40 24.71 22.99 23.21Laplacian Att.

• Firstly, the whole module of RDN, SRResNet, and ESR-
GAN are only composed of dense connections, while our
module has many units inside the DRLM module, where
densely connected residual blocks unit is a part of the
module. Our overall module is more complicated than a
simple concatenation of the previous features.

• Secondly, DRLM employs three residual blocks in densely
connected residual blocks unit while the mentioned meth-
ods have basic convolutional layers connected densely,
directly inspired by DenseNet.

• Thirdly, our module concatenates the original features
from each residual block while the methods mentioned
above reduce the features to 64 channels after each con-
catenation.

• Lastly, other than dense connections, DRLM has many
types of connections, which include cascading residual on
residual connections, medium skip connections, residual,
long skip connection, and local connections as opposed to
the competing methods.

Our DRLM is more complicated and has more elements as op-
posed to just concatenation of previous features in the competing
method modules. Our DRLM module is shown in Figure 1(d).

1.2 Laplacian Attention vs. Channel Attention

For a fair comparison with Laplacian Attention (LA) of our DRLN
and Channel Attention (CA) proposed in RCAN, we attempt to
use the same settings for Laplacian Attention (LA) and Channel
Attention (CA). Firstly, we stack nine convolutional layers and
place Channel Attention at the end before upsampling, and we
call this network as NetCA. Next, we use the mentioned network
but replace the attention layer with Laplacian Attention; we call
this network as NetLA. We keep all the settings such as i.e. the
training data, the number of features, the number of channels,
filter size, the number of epochs etc., the same. We report the
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Fig. 1. Type of dense connections utilized by competing methods and our DRLN.

TABLE 2
Comparison of different types of datasets employed by recent state-of-the-art for training the networks.

Method Bicubic SRCNN [12] MemNet [6] EDSR [13] RDN [3] RCAN [14] CARN [15] ESRGAN [5] DRLN
Training Data - 291 291 DIV2K DIV2K DIV2K DIV2K DF2K+OST DF2K

results on the benchmark datasets for this setting in Table 1. It
can be seen that with such a simple network, NetLA outperforms
NetCA, which means Laplacian Attention helps to improve the
performance compared to Channel Attention.

2 TRAINING DATA COMPARISON

There are many options available for training the super-resolution
network. Initially, only 91 images [16] are used to train the
network. However, with the advent of the convolutional neural
network, more data is desired for training. For this purpose,
SRCNN [12] used 200 more images with the mentioned 91
images [16] to train the network. Similarly, EDSR [13] showed
performance improvement using DIV2K [17], and this trend is
followed by many state-of-the-art algorithms such as CARN [15],
RCAN [14]. Recently, ESRGAN [5] used two more datasets
(Flicker [17], OutdoorSceneTraining (OST) [18]) to enhance the
performance of their proposed model. Following the footsteps of
state-of-the-art algorithms, we take a middle ground and employ
the same datasets as ESRGAN (although we do not use the
OST [18] dataset). A comparison of training datasets between
state-of-the-art algorithm is shown in Table 2.

Further, the aim of training our network on the Flicker2K, in
addition to DIV2K, is to make it robust and efficient to perform
better on any future datasets.

3 RUNTIME COMPARISON

We have reported the testing time of the methods in Figure 5 of
the main paper. Our method is faster as compared to RCAN [14].
Similarly, our method also trains faster than RCAN [14] as we
have removed expensive addition operation and replaced it with
concatenation. Keeping all the experimental settings such as batch

TABLE 3
Runtime comparison between RCAN and DRLN for one epoch.

Computational time
Batch RCAN [14] DRLN
800/7200 137.5+2.5s 71.2+0.7s
1600/7200 104.1+0.2s 38.3+0.2s
2400/7200 104.2+0.2s 37.4+0.2s
3200/7200 102.2+0.2s 37.8+0.2s
4000/7200 101.4+0.2s 37.4+0.2s
4800/7200 101.6+0.2s 38.3+0.2s
5600/7200 101.4+0.2s 37.3+0.2s
6400/7200 102.6+0.2s 38.1+0.2s
7200/7200 102.5+0.2s 37.8+0.2s
Total time 957.5+4.1s 373.6+2.3s

size, learning rate etc. as constant, one epoch for RCAN takes
around 373.6 seconds while our DRLN takes 957.5 seconds, which
is much faster training time. In the following table, we present the
actual training time for RCAN [14] and DRLN on four Tesla V100
GPUs, keeping all other settings the same.

Our DRLN is computationally less expensive not only in
training, but it is also efficient during testing. For example, for the
BSD100 [9] dataset, our method takes only 43.39s, while RCAN
requires 80.47s.

4 NUMBER OF PARAMETERS

The number of parameters is higher in our case than RCAN [14];
however, only the number of parameters doesn’t guarantee the
performance as EDSR [13] have around 9 million more parameters
than our DRLN, but it lacks in the performance when compared
with our method. It should be noted that merely a high number of
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parameters do not guarantee good performance but a better design
plays a vital role in achieving high accuracy (e.g. VGG [19] has
138M vs. ResNet50 [20] with 25.6M)

Our architecture is novel as compared to RCAN [14]. Our
method performance is not merely due to the number of parame-
ters, as pointed out that EDSR [13] has nine million more param-
eters than ours but has less performance than ours. Furthermore,
Our method is efficient as shown earlier in Table 3 but we provide
the following two strategies to decrease the number of parameters
and achieve the same performance.

• Firstly, we suggest the group convolution of four, which
decreases the number of parameters to six million while
giving a negligible decrease in performance, keeping the
length of the network the same. Similarly, if we change the
network size to double with four group convolution mak-
ing the parameters almost 12 million yields the equivalent
performance.

• Secondly, by changing the concatenation to addition, the
number of parameters becomes much lower than RCAN.
Although this strategy also gives a slight decrease in
performance, it also increases the computational cost. To
achieve the same performance, the size of the network is
increased to double (still having fewer parameters than
RCAN); however, this technique requires more computa-
tions, hence takes more time during training and testing
time because of additional operations instead of concate-
nation.
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