Performance Analysis of Cloud Computing Centers Using $M/G/m/m + r$ Queueing Systems: Supplementary Materials

Hamzeh Khazaei, Student Member, IEEE, Jelena Mišić, Senior Member, IEEE, and Vojislav B. Mišić, Senior Member, IEEE

APPENDIX A
ON THE STRUCTURE OF EC2 SERVICES

The Amazon Elastic Compute Cloud (EC2) offers three types of services [1]: Reserved services are reserved and paid for in advance, so they are guaranteed by the provider and thus experience virtually no queueing; Spot services are also allocated in advance, but they go to the customer who offer a higher bid than Spot price set by Amazon; Spot Prices fluctuate periodically depending on the supply of and demand for Spot Instance capacity. Finally, On-Demand services provide no advance reservations and no long term commitment, which is why the clients’ tasks may experience non-negligible queueing delays and, possibly, blocking. Within the on-demand category, a request may target a specific infrastructure instance, a platform, or a software application, with probability of α, β, and θ, respectively (see Fig. 7); the same story is held within each tuple. Because we assumed separate arrivals of individual task requests, all the probabilities, α, β, and θ, as well as branching probabilities within each tuple are independent of each other. Assuming that the service time for each type of request (tuple) follows a simple exponential or Erlang distribution, the aggregate service time of the cloud center would follow a hyper-exponential or hyper-Erlang distribution – one in which the coefficient of variation, CoV, defined as the ratio of standard deviation and mean value, exceeds one [2]. Consequently, even in the above-mentioned scenario, which is a rather simple one, only a general assumption of distribution can substantiate the actual task service time; in practical calculations, we will have to choose a specific probability distribution that allows widely varying values for the coefficient of variation CoV.

APPENDIX B
PROOF OF ERGODICITY OF THE AMGM CHAIN

Let $S = \{E_0, E_1, E_2, \ldots, E_{m+r}\}$ be the set of all states in the Markov chain, and let $p_{ij}(n)$ indicate the probability of transition from state i to j in exactly n steps. Also, let $f_i(n)$ denote the probability that first return to state i occurs in exactly n steps after leaving state i. Then, the probability of ever returning to state i is

$$f_i = \sum_{n=1}^{\infty} f_i(n) \quad (19)$$

Using this notation, we can classify states in the Markov chain as follows.

A state i is called recurrent or persistent if $f_i = 1$, and transient otherwise. Considering states for which $f_i = 1$, we may then define the mean recurrence time of i as

$$M_i \triangleq \sum_{n=1}^{\infty} nf_i(n) \quad (20)$$

which is merely the average time to return to i, then, recurrent states may be classified on the basis of their mean recurrence time:

Recurrent state i is called null if and only if $p_{ii}(n) \to 0$ as $n \to 0$; if this holds, then $p_{ji}(n) \to 0$ for all j.

Theorem B.1: (Nullity) Recurrent state i is null if and only if $p_{ii}(n) \to 0$ as $n \to 0$; if this holds, then $p_{ji}(n) \to 0$ for all j.

Proof: See [3].

Let us now define the period $d(i)$ of a state i as the greatest common divisor of the epochs at which return is possible: $d(i) = \gcd\{n : p_{ii}(n) > 0\}$. Then,
State i is called periodic if $d(i) > 1$, and aperiodic otherwise, i.e., if $d(i) = 1$.

Finally, we define communicability as follows.

State i communicates with j, written $i \rightarrow j$, if the chain may ever visit state j with positive probability, starting from i. That is, $i \rightarrow j$ if $p_{ij}(n) > 0$ for some $n \geq 0$. We say i and j intercommunicate if $i \rightarrow j$ and $j \rightarrow i$, in which case we write $i \leftrightarrow j$.

It can be seen that \leftrightarrow is an equivalence relation, hence the state space S can be partitioned into the equivalence classes of \leftrightarrow; within each equivalence class all states are of the same type.

A set C of states is called

(a) closed, if $p_{ij} = 0$ for all $i \in C$, $j \notin C$.
(b) irreducible, if $i \leftrightarrow j$ for all i, $j \in C$.

Finally, we can define ergodicity of a Markov chain as follows:

A Markov chain is called ergodic if it is irreducible, recurrent non-null, and aperiodic.

We will now show that aMGM chain satisfies these properties.

Lemma B.2: aMGM chain is irreducible.

Proof: aMGM is a finite Markov chain with state space of S. All we need to show is that S is closed and does not include any proper close subset. Without loss of generality we examine the state $m + r$ in aMGM chain in order to establish the communicability class of the $m + r$. Since there is direct communication between state $m + r$ and all other states with a non-zero probability, we have:

$$\forall k \in S \Rightarrow m + r \rightarrow k$$

Now we consider $m + r - 1$; this state can communicate with $m + r$ with the probability of $p_{m+r-1,m+r}>0$; so we can write $m + r - 1 \rightarrow m + r$. Therefore $m + r - 1 \leftrightarrow m + r$ is held. Consequently with the same reasoning we have:

$$\{m + r - 2 \leftrightarrow m + r - 1\}, \{m + r - 3 \leftrightarrow m + r - 2\}, \{m + r - 4 \leftrightarrow m + r - 3\}, \ldots ; \{0 \leftrightarrow 1\}$$

Thus

$$\forall k \in S \Rightarrow m + r \leftrightarrow k$$

As a result, we just showed that S is closed and does not include any proper closed subset. So aMGM chain is irreducible. □

Lemma B.3: aMGM chain is recurrent non-null.

Proof: First, we show that aMGM chain is recurrent. Based on recurrence definition we need to show

$$\forall k \in S, f_k = 1$$

Fig. 7. Amazon EC2 Structure, adapted from [1].
By induction on system capacity, we prove above statement. For the basis of induction, \(k = 1 \), aMGM chain, Fig. 8, has the minimum capacity and the following holds:

\[
P_{00} + p_{01} = 1 \quad \text{and} \quad p_{11} + p_{10} = 1
\]

Fig. 8. aMGM chain for Minimal Capacity (\(k=1 \)).

Now we examine \(f_1 \):

\[
f_1 = p_{11} + p_{10} \sum_{i=0}^{\infty} i! 0^i p_{00}^i = p_{11} + p_{10} \sum_{i=0}^{\infty} i! (1 - p_{00})
\]

\[
= p_{11} + p_{10} \sum_{i=0}^{\infty} i! - p_{00}^{i+1} = p_{11} + p_{10} \Rightarrow f_1 = 1
\]

With similar reasoning we can show that \(f_0 = 1 \) as well.

Now we assume that for \(k = z \) we have

\[
f_0 = f_1 = \ldots = f_z = 1
\]

Then we need to show that for \(k = z + 1 \) following is held:

\[
f_0 = f_1 = \ldots = f_z = f_{z+1} = 1
\]

For this configuration the aMGM chain would be exactly the same with Fig. 2 (in the main text) but here the last state is \(z + 1 \). We can merge all the states \{0, 1, \ldots, z\} to one state named \(z^* \); then accordingly aMGM chain would be composed of two states, Fig. 9, in which:

\[
\begin{align*}
p_{z+1, z^*} &= \sum_{i=0}^{z} p_{z+1, i} \\
p_{z^*, z^*} &= \sum_{i=0}^{z} p_{ii}
\end{align*}
\]

And

\[
\begin{align*}
p_{z+1, z^*+1} + p_{z+1, z^*} &= 1 \\
p_{z^*, z^*+1} + p_{z^*, z^*} &= 1
\end{align*}
\]

Fig. 9. Merged aMGM chain in Two States.

Like the basis of induction, \(k = 1 \), we can show that:

\(f_{z+1} = 1 \) \quad \text{and} \quad \(f_{z^*} = 1 \).

So far, we have shown that aMGM chain is recurrent. In order to show that it is non-null we need to have:

\[
\mathbb{M}_i = \sum_{n=1}^{\infty} n f_i^{(n)} < \infty
\]

In other words, the mean return time for any states should be a finite quantity.

Lemma B.4: (Ratio Test) Series \(\sum_{n=0}^{\infty} a_n \) is absolutely convergent if \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \) [4].

Having lemma B.4 in mind, we can proceed:

\[
\begin{align*}
\lim_{n \to \infty} \left| \frac{(n + 1) f_i^{(n+1)}}{n f_i^{(n)}} \right| &= \lim_{n \to \infty} \left| \frac{n+1}{n} \cdot \lim_{n \to \infty} \frac{f_i^{(n+1)}}{f_i^{(n)}} \right| \\
&= 1 \cdot \lim_{n \to \infty} \left| \frac{f_i^{(n+1)}}{f_i^{(n)}} \right| < 1
\end{align*}
\]

The last step is straight forward since

\[
p_{ii}(n+1) < p_{ii}(n)
\]

Therefore for each state, \(i \), \(\mathbb{M}_i < \infty \). As a result aMGM chain is both recurrent and non-null.

Lemma B.5: aMGM chain is aperiodic.

Proof: All states in aMGM chain have a self loop with a non-zero probability; that is

\[
\forall k \in S, \ p_{kk} > 0 \Rightarrow d(k) = 1
\]

This means all the states are aperiodic. Consequently aMGM chain is aperiodic.

Theorem B.6: aMGM chain is ergodic.

Proof: Based on Lemmas B.2, B.3, B.5 and ergodicity definition.

REFERENCES

