hypergan.samplers.alphagan_random_walk_sampler module
from hypergan.samplers.base_sampler import BaseSampler
import tensorflow as tf
import numpy as np
class AlphaganRandomWalkSampler(BaseSampler):
def __init__(self, gan, samples_per_row=8):
BaseSampler.__init__(self, gan, samples_per_row)
self.z = None
self.y = None
self.x = None
self.step = 0
self.steps = 8
self.target = None
def _sample(self):
gan = self.gan
z_t = gan.uniform_encoder.sample
inputs_t = gan.inputs.x
if self.z is None:
self.z = gan.uniform_encoder.sample.eval()/2
direct = gan.uniform_encoder.sample.eval()[0]/2
direct = np.reshape(direct, [1, direct.shape[0]])
self.direction = np.tile(direct, [self.z.shape[0], 1])
self.input = gan.session.run(gan.inputs.x)
if self.step > self.steps:
self.z = np.minimum(self.z+self.direction, 1)
self.z = np.maximum(self.z, -1)
self.direction = gan.uniform_encoder.sample.eval()
self.step = 0
percent = float(self.step)/self.steps
z_interp = self.z + self.direction*percent
z_interp = np.minimum(z_interp, 1)
z_interp = np.maximum(z_interp, -1)
self.step+=1
g=tf.get_default_graph()
with g.as_default():
tf.set_random_seed(1)
return {
'generator': gan.session.run(gan.uniform_sample, feed_dict={z_t: z_interp, inputs_t: self.input})
}
Classes
class AlphaganRandomWalkSampler
class AlphaganRandomWalkSampler(BaseSampler):
def __init__(self, gan, samples_per_row=8):
BaseSampler.__init__(self, gan, samples_per_row)
self.z = None
self.y = None
self.x = None
self.step = 0
self.steps = 8
self.target = None
def _sample(self):
gan = self.gan
z_t = gan.uniform_encoder.sample
inputs_t = gan.inputs.x
if self.z is None:
self.z = gan.uniform_encoder.sample.eval()/2
direct = gan.uniform_encoder.sample.eval()[0]/2
direct = np.reshape(direct, [1, direct.shape[0]])
self.direction = np.tile(direct, [self.z.shape[0], 1])
self.input = gan.session.run(gan.inputs.x)
if self.step > self.steps:
self.z = np.minimum(self.z+self.direction, 1)
self.z = np.maximum(self.z, -1)
self.direction = gan.uniform_encoder.sample.eval()
self.step = 0
percent = float(self.step)/self.steps
z_interp = self.z + self.direction*percent
z_interp = np.minimum(z_interp, 1)
z_interp = np.maximum(z_interp, -1)
self.step+=1
g=tf.get_default_graph()
with g.as_default():
tf.set_random_seed(1)
return {
'generator': gan.session.run(gan.uniform_sample, feed_dict={z_t: z_interp, inputs_t: self.input})
}
Ancestors (in MRO)
- AlphaganRandomWalkSampler
- hypergan.samplers.base_sampler.BaseSampler
- builtins.object
Static methods
def __init__(
self, gan, samples_per_row=8)
Initialize self. See help(type(self)) for accurate signature.
def __init__(self, gan, samples_per_row=8):
BaseSampler.__init__(self, gan, samples_per_row)
self.z = None
self.y = None
self.x = None
self.step = 0
self.steps = 8
self.target = None
def plot(
self, image, filename, save_sample)
Plot an image.
def plot(self, image, filename, save_sample):
""" Plot an image."""
image = np.minimum(image, 1)
image = np.maximum(image, -1)
image = np.squeeze(image)
# Scale to 0..255.
imin, imax = image.min(), image.max()
image = (image - imin) * 255. / (imax - imin) + .5
image = image.astype(np.uint8)
if save_sample:
try:
Image.fromarray(image).save(filename)
except Exception as e:
print("Warning: could not sample to ", filename, ". Please check permissions and make sure the path exists")
print(e)
GlobalViewer.update(image)
def sample(
self, path, save_samples)
def sample(self, path, save_samples):
gan = self.gan
with gan.session.as_default():
sample = self._sample()
data = sample['generator']
width = min(gan.batch_size(), self.samples_per_row)
stacks = [np.hstack(data[i*width:i*width+width]) for i in range(gan.batch_size()//width)]
sample_data = np.vstack(stacks)
self.plot(sample_data, path, save_samples)
sample_name = 'generator'
samples = [[sample_data, sample_name]]
return [{'image':path, 'label':'sample'} for sample_data, sample_filename in samples]
Instance variables
var step
var steps
var target
var x
var y
var z