Top

hypergan.gans.aligned_gan module

import importlib
import json
import numpy as np
import os
import sys
import time
import uuid
import copy

from hypergan.discriminators import *
from hypergan.encoders import *
from hypergan.generators import *
from hypergan.inputs import *
from hypergan.samplers import *
from hypergan.trainers import *

import hyperchamber as hc
from hyperchamber import Config
from hypergan.ops import TensorflowOps
import tensorflow as tf
import hypergan as hg

from hypergan.gan_component import ValidationException, GANComponent
from hypergan.trainers.multi_step_trainer import MultiStepTrainer
from .base_gan import BaseGAN
from .standard_gan import StandardGAN

class AlignedGAN(BaseGAN):
    def required(self):
        return ["generator", "discriminator"]

    def create(self):
        config = self.config
        ops = self.ops

        self.session = self.ops.new_session(self.ops_config)

        encoder_config = dict(config.input_encoder)
        encode_a = self.create_component(encoder_config)
        encode_a.ops.describe("encode_a")
        encode_b = self.create_component(encoder_config)
        encode_b.ops.describe("encode_b")

        g_ab = self.create_component(config.generator)
        g_ab.ops.describe("g_ab")
        g_ba = self.create_component(config.generator)
        g_ba.ops.describe("g_ba")

        #encode_a.ops = g_ab.ops
        #encode_b.ops = g_ba.ops

        encode_a.create(self.inputs.xa)
        encode_b.create(self.inputs.xb)

        g_ab.create(encode_a.sample)
        g_ba.create(encode_b.sample)

        self.xba = g_ba.sample
        self.xab = g_ab.sample

        discriminator_a = self.create_component(config.discriminator)
        discriminator_b = self.create_component(config.discriminator)
        discriminator_a.ops.describe("discriminator_a")
        discriminator_b.ops.describe("discriminator_b")
        discriminator_a.create(x=self.inputs.xa, g=g_ba.sample)
        discriminator_b.create(x=self.inputs.xb, g=g_ab.sample)

        encode_g_ab = encode_b.reuse(g_ab.sample)
        encode_g_ba = encode_a.reuse(g_ba.sample)

        cyca = g_ba.reuse(encode_g_ab)
        cycb = g_ab.reuse(encode_g_ba)

        lossa = self.create_component(config.loss, discriminator=discriminator_a, generator=g_ba)
        lossb = self.create_component(config.loss, discriminator=discriminator_b, generator=g_ab)

        lossa.create()
        lossb.create()

        cycloss = tf.reduce_mean(tf.abs(self.inputs.xa-cyca)) + \
                       tf.reduce_mean(tf.abs(self.inputs.xb-cycb))

        # loss terms

        cycloss_lambda = config.cycloss_lambda
        if cycloss_lambda is None:
            cycloss_lambda = 10
        cycloss *= cycloss_lambda
        loss1=('generator', cycloss + lossb.g_loss)
        loss2=('discriminator', lossb.d_loss)
        loss3=('generator', cycloss + lossa.g_loss)
        loss4=('discriminator', lossa.d_loss)

        var_lists = []
        var_lists.append(encode_a.variables() + g_ab.variables())
        var_lists.append(discriminator_b.variables())
        var_lists.append(encode_b.variables() + g_ba.variables())
        var_lists.append(discriminator_a.variables())

        metrics = []
        metrics.append(lossa.metrics)
        metrics.append(None)
        metrics.append(lossb.metrics)
        metrics.append(None)

        self.trainer = MultiStepTrainer(self, self.config.trainer, [loss1,loss2,loss3,loss4], var_lists=var_lists, metrics=metrics)
        self.trainer.create()

        self.cyca = cyca
        self.cycb = cycb
        self.cycloss = cycloss
        self.encoder = encode_a
        self.generator = g_ab

        self.session.run(tf.global_variables_initializer())

    def step(self, feed_dict={}):
        return self.trainer.step(feed_dict)

Classes

class AlignedGAN

GANComponents are pluggable pieces within a GAN.

GAN objects are also GANComponents.

class AlignedGAN(BaseGAN):
    def required(self):
        return ["generator", "discriminator"]

    def create(self):
        config = self.config
        ops = self.ops

        self.session = self.ops.new_session(self.ops_config)

        encoder_config = dict(config.input_encoder)
        encode_a = self.create_component(encoder_config)
        encode_a.ops.describe("encode_a")
        encode_b = self.create_component(encoder_config)
        encode_b.ops.describe("encode_b")

        g_ab = self.create_component(config.generator)
        g_ab.ops.describe("g_ab")
        g_ba = self.create_component(config.generator)
        g_ba.ops.describe("g_ba")

        #encode_a.ops = g_ab.ops
        #encode_b.ops = g_ba.ops

        encode_a.create(self.inputs.xa)
        encode_b.create(self.inputs.xb)

        g_ab.create(encode_a.sample)
        g_ba.create(encode_b.sample)

        self.xba = g_ba.sample
        self.xab = g_ab.sample

        discriminator_a = self.create_component(config.discriminator)
        discriminator_b = self.create_component(config.discriminator)
        discriminator_a.ops.describe("discriminator_a")
        discriminator_b.ops.describe("discriminator_b")
        discriminator_a.create(x=self.inputs.xa, g=g_ba.sample)
        discriminator_b.create(x=self.inputs.xb, g=g_ab.sample)

        encode_g_ab = encode_b.reuse(g_ab.sample)
        encode_g_ba = encode_a.reuse(g_ba.sample)

        cyca = g_ba.reuse(encode_g_ab)
        cycb = g_ab.reuse(encode_g_ba)

        lossa = self.create_component(config.loss, discriminator=discriminator_a, generator=g_ba)
        lossb = self.create_component(config.loss, discriminator=discriminator_b, generator=g_ab)

        lossa.create()
        lossb.create()

        cycloss = tf.reduce_mean(tf.abs(self.inputs.xa-cyca)) + \
                       tf.reduce_mean(tf.abs(self.inputs.xb-cycb))

        # loss terms

        cycloss_lambda = config.cycloss_lambda
        if cycloss_lambda is None:
            cycloss_lambda = 10
        cycloss *= cycloss_lambda
        loss1=('generator', cycloss + lossb.g_loss)
        loss2=('discriminator', lossb.d_loss)
        loss3=('generator', cycloss + lossa.g_loss)
        loss4=('discriminator', lossa.d_loss)

        var_lists = []
        var_lists.append(encode_a.variables() + g_ab.variables())
        var_lists.append(discriminator_b.variables())
        var_lists.append(encode_b.variables() + g_ba.variables())
        var_lists.append(discriminator_a.variables())

        metrics = []
        metrics.append(lossa.metrics)
        metrics.append(None)
        metrics.append(lossb.metrics)
        metrics.append(None)

        self.trainer = MultiStepTrainer(self, self.config.trainer, [loss1,loss2,loss3,loss4], var_lists=var_lists, metrics=metrics)
        self.trainer.create()

        self.cyca = cyca
        self.cycb = cycb
        self.cycloss = cycloss
        self.encoder = encode_a
        self.generator = g_ab

        self.session.run(tf.global_variables_initializer())

    def step(self, feed_dict={}):
        return self.trainer.step(feed_dict)

Ancestors (in MRO)

  • AlignedGAN
  • hypergan.gans.base_gan.BaseGAN
  • hypergan.gan_component.GANComponent
  • builtins.object

Static methods

def __init__(

self, config=None, inputs=None, device='/gpu:0', ops_config=None, ops_backend=<class 'hypergan.ops.tensorflow.ops.TensorflowOps'>, batch_size=None, width=None, height=None, channels=None)

Initialized a new GAN.

def __init__(self, config=None, inputs=None, device='/gpu:0', ops_config=None, ops_backend=TensorflowOps,
        batch_size=None, width=None, height=None, channels=None):
    """ Initialized a new GAN."""
    self.inputs = inputs
    self.device = device
    self.ops_backend = ops_backend
    self.ops_config = ops_config
    self.created = False
    self.components = []
    self._batch_size = batch_size
    self._width = width
    self._height = height
    self._channels = channels
    if config == None:
        config = hg.Configuration.default()
    # A GAN as a component has a parent of itself
    # gan.gan.gan.gan.gan.gan
    GANComponent.__init__(self, self, config)

def batch_size(

self)

def batch_size(self):
    if self._batch_size:
        return self._batch_size
    if self.inputs == None:
        raise ValidationException("gan.batch_size() requested but no inputs provided")
    return self.ops.shape(self.inputs.x)[0]

def biases(

self)

Biases of the GAN component.

def biases(self):
    """
        Biases of the GAN component.
    """
    return self.ops.biases

def channels(

self)

def channels(self):
    if self._channels:
        return self._channels
    if self.inputs == None:
        raise ValidationException("gan.channels() requested but no inputs provided")
    return self.ops.shape(self.inputs.x)[-1]

def create(

self)

def create(self):
    config = self.config
    ops = self.ops
    self.session = self.ops.new_session(self.ops_config)
    encoder_config = dict(config.input_encoder)
    encode_a = self.create_component(encoder_config)
    encode_a.ops.describe("encode_a")
    encode_b = self.create_component(encoder_config)
    encode_b.ops.describe("encode_b")
    g_ab = self.create_component(config.generator)
    g_ab.ops.describe("g_ab")
    g_ba = self.create_component(config.generator)
    g_ba.ops.describe("g_ba")
    #encode_a.ops = g_ab.ops
    #encode_b.ops = g_ba.ops
    encode_a.create(self.inputs.xa)
    encode_b.create(self.inputs.xb)
    g_ab.create(encode_a.sample)
    g_ba.create(encode_b.sample)
    self.xba = g_ba.sample
    self.xab = g_ab.sample
    discriminator_a = self.create_component(config.discriminator)
    discriminator_b = self.create_component(config.discriminator)
    discriminator_a.ops.describe("discriminator_a")
    discriminator_b.ops.describe("discriminator_b")
    discriminator_a.create(x=self.inputs.xa, g=g_ba.sample)
    discriminator_b.create(x=self.inputs.xb, g=g_ab.sample)
    encode_g_ab = encode_b.reuse(g_ab.sample)
    encode_g_ba = encode_a.reuse(g_ba.sample)
    cyca = g_ba.reuse(encode_g_ab)
    cycb = g_ab.reuse(encode_g_ba)
    lossa = self.create_component(config.loss, discriminator=discriminator_a, generator=g_ba)
    lossb = self.create_component(config.loss, discriminator=discriminator_b, generator=g_ab)
    lossa.create()
    lossb.create()
    cycloss = tf.reduce_mean(tf.abs(self.inputs.xa-cyca)) + \
                   tf.reduce_mean(tf.abs(self.inputs.xb-cycb))
    # loss terms
    cycloss_lambda = config.cycloss_lambda
    if cycloss_lambda is None:
        cycloss_lambda = 10
    cycloss *= cycloss_lambda
    loss1=('generator', cycloss + lossb.g_loss)
    loss2=('discriminator', lossb.d_loss)
    loss3=('generator', cycloss + lossa.g_loss)
    loss4=('discriminator', lossa.d_loss)
    var_lists = []
    var_lists.append(encode_a.variables() + g_ab.variables())
    var_lists.append(discriminator_b.variables())
    var_lists.append(encode_b.variables() + g_ba.variables())
    var_lists.append(discriminator_a.variables())
    metrics = []
    metrics.append(lossa.metrics)
    metrics.append(None)
    metrics.append(lossb.metrics)
    metrics.append(None)
    self.trainer = MultiStepTrainer(self, self.config.trainer, [loss1,loss2,loss3,loss4], var_lists=var_lists, metrics=metrics)
    self.trainer.create()
    self.cyca = cyca
    self.cycb = cycb
    self.cycloss = cycloss
    self.encoder = encode_a
    self.generator = g_ab
    self.session.run(tf.global_variables_initializer())

def create_component(

self, defn, *args, **kw_args)

def create_component(self, defn, *args, **kw_args):
    if defn == None:
        return None
    if defn['class'] == None:
        raise ValidationException("Component definition is missing '" + name + "'")
    gan_component = defn['class'](self, defn, *args, **kw_args)
    self.components.append(gan_component)
    return gan_component

def create_ops(

self, config)

Create the ops object as self.ops. Also looks up config

def create_ops(self, config):
    """
    Create the ops object as `self.ops`.  Also looks up config
    """
    if self.gan is None:
        return
    if self.gan.ops_backend is None:
        return
    self.ops = self.gan.ops_backend(config=self.config, device=self.gan.device)
    self.config = self.gan.ops.lookup(config)

def fully_connected_from_list(

self, nets)

def fully_connected_from_list(self, nets):
    results = []
    ops = self.ops
    for net, net2 in nets:
        net = ops.concat([net, net2], axis=3)
        shape = ops.shape(net)
        bs = shape[0]
        net = ops.reshape(net, [bs, -1])
        features = ops.shape(net)[1]
        net = ops.linear(net, features)
        #net = self.layer_regularizer(net)
        net = ops.lookup('lrelu')(net)
        #net = ops.linear(net, features)
        net = ops.reshape(net, shape)
        results.append(net)
    return results

def get_config_value(

self, symbol)

def get_config_value(self, symbol):
    if symbol in self.config:
        config = hc.Config(hc.lookup_functions(self.config[symbol]))
        return config
    return None

def height(

self)

def height(self):
    if self._height:
        return self._height
    if self.inputs == None:
        raise ValidationException("gan.height() requested but no inputs provided")
    return self.ops.shape(self.inputs.x)[1]

def layer_regularizer(

self, net)

def layer_regularizer(self, net):
    symbol = self.config.layer_regularizer
    op = self.gan.ops.lookup(symbol)
    if op:
        net = op(self, net)
    return net

def load(

self, save_file)

def load(self, save_file):
    save_file = os.path.expanduser(save_file)
    if os.path.isfile(save_file) or os.path.isfile(save_file + ".index" ):
        print("[hypergan] |= Loading network from "+ save_file)
        dir = os.path.dirname(save_file)
        print("[hypergan] |= Loading checkpoint from "+ dir)
        ckpt = tf.train.get_checkpoint_state(os.path.expanduser(dir))
        if ckpt and ckpt.model_checkpoint_path:
            saver = tf.train.Saver()
            saver.restore(self.session, save_file)
            loadedFromSave = True
            return True
        else:
            return False
    else:
        return False

def permute(

self, nets, k)

def permute(self, nets, k):
    return list(itertools.permutations(nets, k))

def relation_layer(

self, net)

def relation_layer(self, net):
    ops = self.ops
    #hack
    shape = ops.shape(net)
    input_size = shape[1]*shape[2]*shape[3]
    netlist = self.split_by_width_height(net)
    permutations = self.permute(netlist, 2)
    permutations = self.fully_connected_from_list(permutations)
    net = ops.concat(permutations, axis=3)
    #hack
    bs = ops.shape(net)[0]
    net = ops.reshape(net, [bs, -1])
    net = ops.linear(net, input_size)
    net = ops.reshape(net, shape)
    return net

def required(

self)

Return a list of required config strings and a ValidationException will be thrown if any are missing.

Example: python class MyComponent(GANComponent): def required(self): "learn rate is required" ["learn_rate"]

def required(self):
    return ["generator", "discriminator"]

def reuse(

self, net)

def reuse(self, net):
    self.ops.reuse()
    net = self.build(net)
    self.ops.stop_reuse()
    return net

def save(

self, save_file)

def save(self, save_file):
    print("[hypergan] Saving network to ", save_file)
    os.makedirs(os.path.expanduser(os.path.dirname(save_file)), exist_ok=True)
    saver = tf.train.Saver()
    saver.save(self.session, save_file)

def split_batch(

self, net, count=2)

Discriminators return stacked results (on axis 0).

This splits the results. Returns [d_real, d_fake]

def split_batch(self, net, count=2):
    """ 
    Discriminators return stacked results (on axis 0).  
    
    This splits the results.  Returns [d_real, d_fake]
    """
    ops = self.ops or self.gan.ops
    s = ops.shape(net)
    bs = s[0]
    nets = []
    net = ops.reshape(net, [bs, -1])
    start = [0 for x in ops.shape(net)]
    for i in range(count):
        size = [bs//count] + [x for x in ops.shape(net)[1:]]
        nets.append(ops.slice(net, start, size))
        start[0] += bs//count
    return nets

def split_by_width_height(

self, net)

def split_by_width_height(self, net):
    elems = []
    ops = self.gan.ops
    shape = ops.shape(net)
    bs = shape[0]
    height = shape[1]
    width = shape[2]
    for i in range(width):
        for j in range(height):
            elems.append(ops.slice(net, [0, i, j, 0], [bs, 1, 1, -1]))
    return elems

def step(

self, feed_dict={})

def step(self, feed_dict={}):
    return self.trainer.step(feed_dict)

def validate(

self)

Validates a GANComponent. Return an array of error messages. Empty array [] means success.

def validate(self):
    """
    Validates a GANComponent.  Return an array of error messages. Empty array `[]` means success.
    """
    errors = []
    required = self.required()
    for argument in required:
        if(self.config.__getattr__(argument) == None):
            errors.append("`"+argument+"` required")
    if(self.gan is None):
        errors.append("GANComponent constructed without GAN")
    return errors

def variables(

self)

All variables associated with this component.

def variables(self):
    """
        All variables associated with this component.
    """
    return self.ops.variables()

def weights(

self)

The weights of the GAN component.

def weights(self):
    """
        The weights of the GAN component.
    """
    return self.ops.weights

def width(

self)

def width(self):
    if self._width:
        return self._width
    if self.inputs == None:
        raise ValidationException("gan.width() requested but no inputs provided")
    return self.ops.shape(self.inputs.x)[2]