Top

hypergan.encoders.category_encoder module

#This encoder is random multinomial noise

import tensorflow as tf

import hyperchamber as hc

from hypergan.encoders.base_encoder import BaseEncoder

TINY = 1e-12

class CategoryEncoder(BaseEncoder):
    def required(self):
        return "categories".split()

    def create(self):
        gan = self.gan
        ops = self.ops
        config = self.config

        categories = [self.random_category(gan.batch_size(), size, ops.dtype) for size in config.categories]
        self.categories = categories
        categories = tf.concat(axis=1, values=categories)
        self.sample = categories
        return categories

    def random_category(self, batch_size, size, dtype):
        prior = tf.ones([batch_size, size])*1./size
        dist = tf.log(prior + TINY)
        sample=tf.multinomial(dist, num_samples=1)[:, 0]
        return tf.one_hot(sample, size, dtype=dtype)

Module variables

var TINY

Classes

class CategoryEncoder

GANComponents are pluggable pieces within a GAN.

GAN objects are also GANComponents.

class CategoryEncoder(BaseEncoder):
    def required(self):
        return "categories".split()

    def create(self):
        gan = self.gan
        ops = self.ops
        config = self.config

        categories = [self.random_category(gan.batch_size(), size, ops.dtype) for size in config.categories]
        self.categories = categories
        categories = tf.concat(axis=1, values=categories)
        self.sample = categories
        return categories

    def random_category(self, batch_size, size, dtype):
        prior = tf.ones([batch_size, size])*1./size
        dist = tf.log(prior + TINY)
        sample=tf.multinomial(dist, num_samples=1)[:, 0]
        return tf.one_hot(sample, size, dtype=dtype)

Ancestors (in MRO)

  • CategoryEncoder
  • hypergan.encoders.base_encoder.BaseEncoder
  • hypergan.gan_component.GANComponent
  • builtins.object

Static methods

def __init__(

self, gan, config)

Initializes a gan component based on a gan and a config dictionary.

Different components require different config variables.

A ValidationException is raised if the GAN component configuration fails to validate.

def __init__(self, gan, config):
    """
    Initializes a gan component based on a `gan` and a `config` dictionary.
    Different components require different config variables.  
    A `ValidationException` is raised if the GAN component configuration fails to validate.
    """
    self.gan = gan
    self.config = hc.Config(config)
    errors = self.validate()
    if errors != []:
        raise ValidationException(self.__class__.__name__+": " +"\n".join(errors))
    self.create_ops(config)

def biases(

self)

Biases of the GAN component.

def biases(self):
    """
        Biases of the GAN component.
    """
    return self.ops.biases

def create(

self)

def create(self):
    gan = self.gan
    ops = self.ops
    config = self.config
    categories = [self.random_category(gan.batch_size(), size, ops.dtype) for size in config.categories]
    self.categories = categories
    categories = tf.concat(axis=1, values=categories)
    self.sample = categories
    return categories

def create_ops(

self, config)

Create the ops object as self.ops. Also looks up config

def create_ops(self, config):
    """
    Create the ops object as `self.ops`.  Also looks up config
    """
    if self.gan is None:
        return
    if self.gan.ops_backend is None:
        return
    self.ops = self.gan.ops_backend(config=self.config, device=self.gan.device)
    self.config = self.gan.ops.lookup(config)

def fully_connected_from_list(

self, nets)

def fully_connected_from_list(self, nets):
    results = []
    ops = self.ops
    for net, net2 in nets:
        net = ops.concat([net, net2], axis=3)
        shape = ops.shape(net)
        bs = shape[0]
        net = ops.reshape(net, [bs, -1])
        features = ops.shape(net)[1]
        net = ops.linear(net, features)
        #net = self.layer_regularizer(net)
        net = ops.lookup('lrelu')(net)
        #net = ops.linear(net, features)
        net = ops.reshape(net, shape)
        results.append(net)
    return results

def layer_regularizer(

self, net)

def layer_regularizer(self, net):
    symbol = self.config.layer_regularizer
    op = self.gan.ops.lookup(symbol)
    if op:
        net = op(self, net)
    return net

def permute(

self, nets, k)

def permute(self, nets, k):
    return list(itertools.permutations(nets, k))

def random_category(

self, batch_size, size, dtype)

def random_category(self, batch_size, size, dtype):
    prior = tf.ones([batch_size, size])*1./size
    dist = tf.log(prior + TINY)
    sample=tf.multinomial(dist, num_samples=1)[:, 0]
    return tf.one_hot(sample, size, dtype=dtype)

def relation_layer(

self, net)

def relation_layer(self, net):
    ops = self.ops
    #hack
    shape = ops.shape(net)
    input_size = shape[1]*shape[2]*shape[3]
    netlist = self.split_by_width_height(net)
    permutations = self.permute(netlist, 2)
    permutations = self.fully_connected_from_list(permutations)
    net = ops.concat(permutations, axis=3)
    #hack
    bs = ops.shape(net)[0]
    net = ops.reshape(net, [bs, -1])
    net = ops.linear(net, input_size)
    net = ops.reshape(net, shape)
    return net

def required(

self)

Return a list of required config strings and a ValidationException will be thrown if any are missing.

Example: python class MyComponent(GANComponent): def required(self): "learn rate is required" ["learn_rate"]

def required(self):
    return "categories".split()

def reuse(

self, net)

def reuse(self, net):
    self.ops.reuse()
    net = self.build(net)
    self.ops.stop_reuse()
    return net

def split_batch(

self, net, count=2)

Discriminators return stacked results (on axis 0).

This splits the results. Returns [d_real, d_fake]

def split_batch(self, net, count=2):
    """ 
    Discriminators return stacked results (on axis 0).  
    
    This splits the results.  Returns [d_real, d_fake]
    """
    ops = self.ops or self.gan.ops
    s = ops.shape(net)
    bs = s[0]
    nets = []
    net = ops.reshape(net, [bs, -1])
    start = [0 for x in ops.shape(net)]
    for i in range(count):
        size = [bs//count] + [x for x in ops.shape(net)[1:]]
        nets.append(ops.slice(net, start, size))
        start[0] += bs//count
    return nets

def split_by_width_height(

self, net)

def split_by_width_height(self, net):
    elems = []
    ops = self.gan.ops
    shape = ops.shape(net)
    bs = shape[0]
    height = shape[1]
    width = shape[2]
    for i in range(width):
        for j in range(height):
            elems.append(ops.slice(net, [0, i, j, 0], [bs, 1, 1, -1]))
    return elems

def validate(

self)

Validates a GANComponent. Return an array of error messages. Empty array [] means success.

def validate(self):
    """
    Validates a GANComponent.  Return an array of error messages. Empty array `[]` means success.
    """
    errors = []
    required = self.required()
    for argument in required:
        if(self.config.__getattr__(argument) == None):
            errors.append("`"+argument+"` required")
    if(self.gan is None):
        errors.append("GANComponent constructed without GAN")
    return errors

def variables(

self)

All variables associated with this component.

def variables(self):
    """
        All variables associated with this component.
    """
    return self.ops.variables()

def weights(

self)

The weights of the GAN component.

def weights(self):
    """
        The weights of the GAN component.
    """
    return self.ops.weights