hypergan.discriminators.common module
import tensorflow as tf
import hyperchamber as hc
def repeating_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
layer_regularizer = config.layer_regularizer
filter_size_w = filter
filter_size_h = filter
filter = [1,filter_size_w,filter_size_h,1]
stride = [1,filter_size_w,filter_size_h,1]
for i in range(config.block_repeat_count-1):
net = config.activation(net)
if layer_regularizer is not None:
net = component.layer_regularizer(net)
net = ops.conv2d(net, 3, 3, 1, 1, depth)
print("[discriminator] hidden layer", net)
net = tf.nn.avg_pool(net, ksize=filter, strides=stride, padding='SAME')
print('[discriminator] layer', net)
return net
def standard_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
stride_w = filter-1
stride_h = filter-1
flter = [1,filter,filter,1]
stride = [1,stride_w,stride_h,1]
net = ops.conv2d(net, filter, filter, 1, 1, depth)
net = tf.nn.avg_pool(net, ksize=flter, strides=stride, padding='SAME')
print('[discriminator] layer', net)
return net
def strided_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
net = ops.conv2d(net, filter, filter, 2, 2, depth)
print('[discriminator] layer', net)
return net
Functions
def repeating_block(
component, net, depth, filter=3)
def repeating_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
layer_regularizer = config.layer_regularizer
filter_size_w = filter
filter_size_h = filter
filter = [1,filter_size_w,filter_size_h,1]
stride = [1,filter_size_w,filter_size_h,1]
for i in range(config.block_repeat_count-1):
net = config.activation(net)
if layer_regularizer is not None:
net = component.layer_regularizer(net)
net = ops.conv2d(net, 3, 3, 1, 1, depth)
print("[discriminator] hidden layer", net)
net = tf.nn.avg_pool(net, ksize=filter, strides=stride, padding='SAME')
print('[discriminator] layer', net)
return net
def standard_block(
component, net, depth, filter=3)
def standard_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
stride_w = filter-1
stride_h = filter-1
flter = [1,filter,filter,1]
stride = [1,stride_w,stride_h,1]
net = ops.conv2d(net, filter, filter, 1, 1, depth)
net = tf.nn.avg_pool(net, ksize=flter, strides=stride, padding='SAME')
print('[discriminator] layer', net)
return net
def strided_block(
component, net, depth, filter=3)
def strided_block(component, net, depth, filter=3):
ops = component.ops
config = component.config
net = ops.conv2d(net, filter, filter, 2, 2, depth)
print('[discriminator] layer', net)
return net