
beSTORM
13.2.0
User Guide

Copyright Terms and Conditions

Copyright © Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective
owners.

The content in this document is protected by the Copyright Laws of the United States of America and other countries worldwide.
The unauthorized use and/or duplication of this material without express and written permission from Fortra is strictly prohibited.
Excerpts and links may be used, provided that full and clear credit is given to Fortra with appropriate and specific direction to the
original content.

202403040740

Introduction 1

System Requirements 2

Hardware 2

Software 2

Welcome to beSTORM Screen 3

Getting Started with beSTORM 4

Fuzzing 8

beSTORM Walkthrough 9

Interface Overview 12

Menu options 12

Project Settings 19

Module Browser 20

Preview 20

Test Information 21

Test Progress 22

Exception Information 22

Conclusion Screen 23

Auto Learn 25

Network File Specification Auto Learn 25

Generation (Editing the output into a beSTORM module): 28

Environment Variables 32

User Guide www.fortra.com page: iii

Table of Contents

Module Buffer Types 33

Custom Modules 35

Configuration Elements 36

Words 37

Bits 54

Sentences 55

Internal functionality 60

External functionality 65

Load a custom module 116

beSTORM Monitoring 118

Overview 118

Microsoft Windows monitoring 127

Linux monitoring 129

User Guide www.fortra.com page: iv

Table of Contents

Introduction /

Introduction
beSTORM represents a new approach to security auditing. It's essentially a fuzzing
framework that can be used for securing in-house developed applications and devices, as
well as applications and devices of external vendors. Vendors can use beSTORM to test
their products in a certification test or as part of the development life cycle. It provides the
ability to customize existing modules and add new modules for testing all in an intuitive and
easy to use environment.

Although beSTORM is a generic fuzzing framework, no programming skills are necessary to
use it. It is especially useful for testing standard protocols – HTTP, POP3, SMTP, SIP and
similar protocols with an RFC definition as well as standard file types – BMP, TGA and
similar. Of course, you can always define your own testing modules to test proprietary
protocols.

NOTE: Although most of the examples in this document will refer to network protocols,
beSTORM is certainly not limited to testing network protocols alone. Network protocols
can be seen as “recipes” to building anything from an HTTP protocol description traffic
to a JPEG file description

User Guide www.fortra.com page: 1

System Requirements / Hardware

System Requirements
The following are the hardware and software system requirements for beSTORM:

Hardware
Hardware
component

Minimum requirements Recommended requirements

Processor x86-64 processor Quad-core processor (Intel i5+
or equivalent)

Memory 1 GB RAM (Linux, Docker,
Embedded application)

8 GB RAM (Windows 10)

Hard drive 250 MB available hard drive space 1 GB available hard drive space

Software
Operating system beSTORM version(s)
Windows 10 or later 13.1.0 or later

Kali (rolling) 11.6.27, 10.9.16, 10.7.23

Ubuntu 20.04 11.5.23

Ubuntu 18.04 10.10.19

User Guide www.fortra.com page: 2

Welcome to beSTORM Screen /

Welcome to beSTORM Screen
When you first launch beSTORM, you are presented with a Welcome to beSTORM screen,
from which you can begin working with beSTORM and utilize its different features.

The welcome screen allows you to either open up an existing project, by way of Load
Project, create new projects, by way of New Network/File Project, teach beSTORM about
new standards, by way of Auto Learn a Network Protocol or by way of Auto Learn a File
Specification and finally use beSTORM to test your product's API, by way of Auto Learn a
Web Interface.

In addition, the welcome screen provides shortcuts to previously loaded beSTORM projects.

User Guide www.fortra.com page: 3

Getting Started with beSTORM /

Getting Started with beSTORM
beSTORM utilizes a wizard interface that guides you through the process of configuring
beSTORM's testing session, fuzzing optimizations, and monitoring capabilities.

To begin your fuzzing session:

1. Open beSTORM Client.
2. Select New Project.
3. On the Welcome page, configure the following:

a. Project Name - Enter a name for the project, or use the default name provided.
b. Location - Browse to a location to store the project and its files, or use the

default location provided.
c. Wizard level - Select Simple to use pre-configured settings, or select Advanced

to manually configure those settings yourself.
d. Perform a port scan, and service detection and assist me in choosing the

relevant module - Select or clear this setting, based on your preference.
4. Select Next.
5. On the Basic Configuration page, select a module for your project:

a. beSTORM's predefined modules - Predefined modules such as; BMP, GIF, FTP,
HTTP, POP3, etc.

b. Import a Custom Module from a BSM File - A custom module you can import.
c. Build a Network Module - Create a new Network-based module utilizing

beSTORM's network auto learning capabilities.
d. Build a File Module - Create a new File-based module utilizing beSTORM's file

auto learning capabilities.
e. Build a Web Application Module - Create a new Web Application module

utilizing beSTORM's web testing capabilities.
f. Build a CANBUS Module - Create a new Controller Area Network (CAN bus)

module utilizing beSTORM’s ability to read and process CAN DBC files.
Depending on your selection, the Hostname or IP address (default is
127.0.0.1), Protocol (default is udp), and Local Port (default is 67) parameters
are preset. If you select a predefined module (which do not require network
configuration) or a new File, Web Application, or CANBUS module, the Target
Host Settings section of the wizard will not appear.

6. Select Next.

User Guide www.fortra.com page: 4

Getting Started with beSTORM /

7. If you selected Advanced in step 3c, the Advanced Configuration page will appear
providing optimizations and options based on the module selected in step 5 (if you
selected Simple in step 3c skip to step 11). The available options are:

a. Optimizations - Different modules support different settings; for example HTTP
testing do not run multiple Parallel Attack Threads, while modules such as
SMTP do. This depends on the type of server being tested, the robustness of
the protocol to parallel testing, and other considerations.

b. Run in batch mode - If selected, beSTORM continues running after the first
fault is found.

NOTE: In this case, the product being tested should recover from the
previous fault, either by being restarted or by some other way.

c. Make sure monitor is up before starting - If selected, beSTORM waits for an
agreed signal from the tested environment before beginning the test. This
allows beSTORM to be certain that the tested environment is running properly.

d. Report connectivity issues as exceptions - If selected, beSTORM treats a case
of receiving no network traffic from the tested environment as potential
problems or vulnerabilities. This feature is useful while testing an environment
that is not easily monitored (such as a proprietary hardware device) as it marks
all network problems as a potential vulnerability. By doing so, it allows to easily
reproduce the issue at a later time and discover the cause.

e. Periodically test connection and report vulnerability upon failure - If selected,
this option tests the behavior of the product being tested and expects it to
answer traffic that is not malformed in a normal manner. If the product does
not respond, beSTORM reports an exception.
Certain modules require additional information to performing proper testing.
One such example is in the case of the FTP module, a username and password
are needed for FTP login, if you want to test all the available commands.

NOTE: beSTORM can not log in without a proper username and password.

8. Select Next.
9. On the Module Environment page, some of the fields appearing here are

automatically populated by values that were previously defined (for example, Remote
Hostname, Remote Port, and Remote Protocol Type). Other items to note:

a. To change the username or password value, double-click on the Value field just
right of the Descriptive text Username for FTP login and Password for FTP
login respectively.

User Guide www.fortra.com page: 5

Getting Started with beSTORM /

b. The Required column indicates which parameters must contain an actual
value. If the protocol contains such parameters, beSTORM prompts you to
supply values, otherwise values are assigned by default.

10. Select Next.
11. On the Extra Configuration page, configure these test settings:

a. To adjust the speed of your test to be a fixed number of sessions per seconds,
select a value for Saturation Rate Threshold and leave Fixed Saturation Rate
Threshold selected.

b. To allow your test's speed to be automatically adjusted according to reports
from the beSTORM monitor, select Auto Adjust - Optimize CPU usage.

c. To configure the monitoring communication settings, optionally select from
any of the following monitor options:

i. ARP Echo – Attempts to resolve the IP address of the machine tested
into a MAC address.

NOTE: ARP Echo properly works on LAN in a WAN environment where
the target is not on the same network/subnet class. An ARP response
will be received from the Router that connects the two networks, thus
causing a false status.

ii. ICMP Echo – Attempts to perform an ICMP Echo/ICMP Response test on
the remote IP address.

iii. UDP Echo – Attempts to verify whether the remote UDP port is open.

NOTE: For UDP to be properly detected as non-responsive/closed, the
Windows Firewall has to allow ICMP Destination Unreachable packets
to arrive.By default, Windows Firewall blocks such packets from
arriving.

iv. TCP Echo – Attempts to verify whether the remote TCP port is open.
v. External Monitor- The Fortra's Beyond Security provided monitor, or your

own custom monitoring device/program.
Defined what is the IP address of the machine you would like to perform
ARP, ICMP, UDP, or TCP monitoring, by providing a value to the Monitored
IP address field, and if you are utilizing UDP or TCP, define what port you
would like to monitor by providing a value to the Port field just right from
the Monitored IP address field.

d. Enter a port number for the Incoming Command Port parameter. This
parameter is for receiving commands from the monitor (such as reports on the
tested machine's load and status).

User Guide www.fortra.com page: 6

Getting Started with beSTORM /

e. Enter a port number for the Incoming Exception Port parameter. This
parameter is for Exception Data being sent from the monitor to beSTORM.

f. Enter a port number for the Outgoing Command Port parameter. This
parameter tells beSTORM which port to use to establish that communication.

12. Select Next.
13. To prevent beSTORM from automatically scanning after completing the wizard, clear

the Auto-start beSTORM scan now check box.
14. Select Finish to complete the wizard.

User Guide www.fortra.com page: 7

Fuzzing /

Fuzzing
beSTORM starts its fuzzing as soon as you select Start.

The fuzzing sequences are deterministic and can be replayed by telling beSTORM to start
from the beginning, or from any other particular attack vector (position) you provide to
beSTORM.

You can monitor beSTORM's progress by viewing the Progress Information section by
selecting Preview. This displays the dataset currently being sent by beSTORM to the tested
product, or you can look up the Detailed Log to view the current speed beSTORM is testing
the product.

Even though beSTORM has predefined buffers which it fuzzes, you have complete control
over the types of data it fuzzes and the type of data it generates (for example, long buffers,
overflowing integers, etc.). Changing these predefined buffers, or even adding additional
buffers, can greatly enhance the performance and the usability of beSTORM as it allows it to
find more exceptions quickly, as well as find exceptions that might be specifically relevant
to your product.

User Guide www.fortra.com page: 8

beSTORM Walkthrough /

beSTORM Walkthrough
To demonstrate the initial stages of running beSTORM, the example below has a web
(HTTP) server that has been tainted with numerous vulnerabilities such as: Overflow by way
of Method, Overflow by way of URI, Overflow by way of User-Agent, Off-by-One in Receive,
Overflow in Base64 decoded content, and others.

To use the web server, launch the executable and the program automatically starts to listen
on the desired port.

To monitor the port and its status, use the GUI version of the monitor, shown below:

User Guide www.fortra.com page: 9

beSTORM Walkthrough /

The Simple Web Server process (Simple Web Server.exe) has been selected from the
process list on the left side, and a host to report to on the right top side (127.0.0.1). To
begin monitoring, click Attach. The Simple Web Server automatically begins answering
incoming requests:

You can quickly test whether the program crashes by sending the following request:

User Guide www.fortra.com page: 10

beSTORM Walkthrough /

http://AABBCCDDEEFFAABBCCDDEEFFAABBCCDDEEFFAABB:AABBCCDDEEFFAABBCCD
DEEFFAABBCCDDEEFFAABB@ip_address/

If you inspect the traffic being sent using Google Chrome, you will see that this URL is
sending a long Base64 authorization request:

The web server should crash, and if you inspect the log file of the monitor you should see
something similar to the following:

[INFO] beSTORM Monitoring Agent version: 3.0.1

[INFO] setProgramName: C:\temp\Simple Web Server.exe

[INFO] CreateProcess was successful

[INFO] setProcessID: 1408

[INFO] OpenProcess successful

[INFO] OpenProcessToken successful

[INFO] LookupPrivilegeValue successful

[INFO] AdjustTokenPrivileges successful

[INFO] attachToProcess

[INFO] We created the process no need to re-debug it

[INFO] The process 1408 has been attached successfully

[INFO] EXCEPTION_BREAKPOINT

[INFO] Page fault on read access to 0x6846581d

[INFO] 00000580:000008f4: exception code=c0000005

User Guide www.fortra.com page: 11

Interface Overview / Menu options

Interface Overview
The beSTORM user interface consists of three sections. Initially, the sections shown are;
Project Settings, Module Browser and Preview. When a test is in progress two sections
change. The Project Settings is replaced with Project Information and Module Browser with
Progress Information.

Menu options

Project
l New - Starts a new project by way of beSTORM's wizard.

Under New, you can see the different types of projects that can be created using the
wizard. Choose the one relevant to your test scenario.

NOTE: Learn more about beSTORM's wizard from the Getting Started with
beSTORM on page 4 section.

l Open - Loads an existing beSTORM project.
l Save/Save as - Saves your currently loaded beSTORM project.
l Recent Projects - Loads one of the recently loaded projects.

User Guide www.fortra.com page: 12

Interface Overview / Menu options

l Load Last Saved - Reverts any changes done for the current module to the last saved
settings. The settings include changes done to the module configuration, as well as
changes made to the beSTORM environment.

l Auto Learn - Selecting Network Protocol or File Specification opens the Auto Learn
window.

NOTE: Learn more about beSTORM's Auto Learn feature from the Auto Learn on
page 25 section.

Module
l Load from Attack Vector - Manually instructs beSTORM to begin from a different

starting position than the one beSTORM is currently at. In the case that the attack
vector provided to beSTORM is invalid, an error message will be shown.
Attack vectors can be obtained from the Preview Dialog, beSTORM's running screen,
beSTORM's log files, exported test cases or the Exception Information.

l Find Attack Vector - Clicking on this menu item allows you to browse through
previously ran sessions of beSTORM and locate a specific Attack Vector based on a
certain date value. For example if you have been running beSTORM for the past 3
days, and would like to know which Attack Vector (position) it was running 2 days
ago at midnight, opening this menu will give you a list of all the log files generated by
beSTORM. Simply locate the log file relevant to that time period and select the
Attack Vector of interest.

NOTE: Attack vectors are the textual representation of the state at which the
beSTORM's testing is currently at. An attack vector shared between beSTORM
copies that test the same protocol will bring beSTORM to the same testing
position.

l Browse Full Screen - Clicking on this menu item opens up a new window, similar in
its content to the Module Browser section shown in the main window. The only
difference between this new window and the one found in the main window is the
fact that the new one's size can be altered.

l Show Graphical Representation - Clicking on this menu item instructs beSTORM to
generate a graphical view of the module currently being used. The graphical
representation shows how each of the module's elements are interconnected and in
addition what elements are currently active.

NOTE: beSTORM saves the graphical representation as a Graphviz file (.dot
extension). You will need an appropriate viewer in order to view the graphs, for
example: http://www.webgraphviz.com/.

User Guide www.fortra.com page: 13

http://www.webgraphviz.com/

Interface Overview / Menu options

l Edit Module Environment Variables - Clicking on this menu item allows you to
change the current environment settings of beSTORM.

NOTE: Learn more about beSTORM's Environment Variables feature from the
Environment Variables on page 32 section.

l View Module Buffer Types - Clicking on this menu item allows you to view the
current buffers being used by beSTORM to detect exceptions.

NOTE: Learn more about beSTORM's Module Buffer Types feature from the
Module Buffer Types on page 33 section.

l Increment Module's Position - Clicking this menu opens it’s sub items, allows you to
cause the module currently being set in beSTORM to move forward by a set number
of positions. This can be used both for testing purposes as well as skip on undesired
attack vectors.

l Simulate - Clicking on this menu item tell beSTORM to perform one test, according
the current position of the module. For example, in Network Protocol based project,
beSTORM would send one packet, representing the current position of the beSTORM
module.

Bookmarks
This menu allows you to tell beSTORM to set the module to a previous, recent configuration.
This allows you to tell beSTORM to go back an amount of time and replay an entire attack
sequence to assist you in reproducing issues discovered by beSTORM.

Settings
This menu provides access to beSTORM's settings.

Configure beSTORM

l Project Name - Specifies the name of the current project. The project name is
editable.

l Number of Parallel Attack Threads - Specifies the number of threads to use during a
test. Running a test with multiple threads increases its speed, especially when
beSTORM modules wait for a response.

l Environment Settings - Dynamically displays environment settings for the current
module. Settings can vary, depending on the module.

Configure Advanced Settings

User Guide www.fortra.com page: 14

Interface Overview / Menu options

l Starting Saturation Rate Threshold - Specifies the starting saturation rate threshold,
which determines the number of tests sent per second. Slide the control to increase
the value. The default value is 100.

l Scale Type - Optimizes testing by specifying the number of combinations sent per
Module Buffer Type. Each Scale Type alters the Estimated combination count per
Buffer number. The available options are:

l Base2+/-2 - Sends buffer combinations by +/-2: 2, 4, 6, 8, 10, 12, 14, 16, etc.
l Base2+/-1 - Sends buffer combinations by +/-1: 0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17,

etc.
l Base2 - Sends buffer combinations by 2, 4, 8, 16, 32, etc.
l Base10+/-2 - Sends buffer combinations by +/-2: 10, 100, 1000, 10000, etc.
l Base10+/-1 - Sends buffer combinations by +/-1: 10, 100, 1000, 10000, etc.
l Base10 - Sends buffer combinations by 10, 100, 1000, 10000, etc.
l Serial - Sends buffer combinations by 1, 2, 3, 4, etc.

NOTE: The Serial type is extremely time consuming. Only use this type if
your test has no time constraints.

l Timed - Select this type if you have time constraints for your test to run (that is,
you can only run beSTORM for 1 hour, 10 hours, 1 day, etc.), but want to test all
fields regardless. The Timed type spends one second on each field in the first
loop (changing the buffer types as usual, but stopping after one second)
covering the entire protocol quickly. Then, on the second loop, it spends two
seconds on each field, then four seconds, eight seconds, etc., until the allotted
time expires. beSTORM will incrementally test more and more of each field
until you stop the test manually.

l Serial/Base2 - Combines the Serial and Base2 types, providing an intermediate
option that generates more combinations than Base2, but less than Serial.
Sends buffer combinations by 1, 2,...4095, 4096, 8192, etc.

l Increment Order - Determines the order the module will use to test buffer sizes. The
order does not affect the combination count or speed of the test.

l Normal - Starts with small buffer sizes (for example, 2, 4, 8, 16, etc.) and
increases in size as the test runs. This order can possibly find vulnerabilities
more precisely as the smallest attack will trigger an issue.

l Reverse - Starts with larger buffer sizes (for example, 2,000,000) and
decreases in size as the test runs. This order can possibly find vulnerabilities
earlier in the test.

User Guide www.fortra.com page: 15

Interface Overview / Menu options

l Distributed Testing - Combines the Number of beSTORM copies available and
beSTORM copy number settings to allow multiple copies of beSTORM to be in use
and testing against the device under test (DUT). While working together, each copy
can do 1/n of the tests.
For example, if you run two copies of beSTORM in parallel, one copy will do half of
the test, and the other copy will do the other half. The two values in this case would
show Number of beSTORM copies available as 2 and beSTORM copy number as 1
in one copy of beSTORM, and beSTORM copies available as 2 and beSTORM copy
number as 2 in the other copy of beSTORM.

l Overflow buffers only once - Prevents testing a field in more than one combination.
Selecting this setting can reduce testing time. This setting is disabled by default.

l Allow Fuzzing of conditioned values - Fuzzes conditioned values (for example,
length) as regular fields. Disabling this option only tests these values for logical
issues (that is, too large length, too small length, negative length, and zero length)
and reduces testing time. This setting is selected by default.

l Debug function in/out to log files - Selecting this setting instructs beSTORM to log
additional debug information into a file (for example, received and sent data,
function calls (that process the data), etc.), but doing so will severely impact its
performance. This setting is disabled by default.

Configure Behavior Settings

l Interface refresh rate (seconds) - Specifies the user interface refresh rate. The
default value is 1 as this is sometimes a labor intensive process, but increasing the
value slows down the refresh rate of user interface, which is ideal when beSTORM is
run in batch mode and user interaction is expected.

l Saturation Rate Threshold Optimization - Specifies how your testing speed is
determined.

l Auto Adjust - Optimize CPU usage - Runs your test as quickly as possible,
utilizing up to 75% of available CPU bandwidth on the local machine, based on
reports from the beSTORM monitor.

l Fixed Saturation Rate Threshold - Sends a fixed number of tests per second,
based on the Starting Saturation Rate Threshold setting under Configure
Advanced Settings on page 14.

NOTE: beSTORM will attempt to reach and stay at this speed during the test,
but the speed may fluctuate at times.

l Send SMTP (Email) Notifications - To send email notifications to contacts when an
event in beSTORM occurs during a fuzzing session, enter the following email
information:

User Guide www.fortra.com page: 16

Interface Overview / Menu options

l From - The sender's email address to use with email notifications.
l To - The email address(es) to send email notifications to (use a comma to

separate multiple email addresses).
l SMTP Server - The IP address of the SMTP server.
l SMTP Port - The port number of the SMTP server boxes.
l Notification Types - After entering email addresses and SMTP information,

select which types of notifications to send when the corresponding event
occurs:

l Test Started - When fuzzing starts.
l Test Paused - When fuzzing is paused.
l Tested Ended - When fuzzing ends.
l Test Error - When fuzzing experiences an error.
l Test Failure - When fuzzing fails.
l Exception Found - When an exception is found during fuzzing.

Configure Monitor Settings

l Enable Batch Mode - Instructs beSTORM to run in non-interactive mode. In this
mode, beSTORM will automatically start, run a test, if an exception is found the test
will automatically resume as soon as the device under test responds, and then
automatically closes beSTORM once testing is done. This setting is selected by
default.

l Monitor Port Assignment - The beSTORM counterpart for testing is a monitor that
either resides on the same computer as the beSTORM Client, or on a different server.
Change the default port numbers, if necessary.

l Hostname or IP address - The hostname or IP address of the monitor.
l Incoming Command Port - Receives responses from the monitor to the

beSTORM Client. The default port number is 6970.
l Outgoing Command Port - Sends information from the beSTORM Client to the

device under test. The default port number is 6971.
l Incoming Exception Port - Sends exceptions received by the monitor to the

beSTORM Client. The default port number is 6969.
l Enable Monitor Enforcement - Instructs beSTORM to not start or conduct any test

until the monitor counterpart reports that it can monitor the device under test.
l Monitor Type(s) - Specifies the provided monitor type(s)/external monitor to use to

verify the remote device under test is functioning by communicating with it using the
respective protocol (ARP, ICMP, UDP, and TCP). The available options are:

User Guide www.fortra.com page: 17

Interface Overview / Menu options

l ARP Echo – Attempts to resolve the IP address of the machine tested into a
MAC address.

NOTE: ARP Echo works on LAN in a WAN environment where the target is
not on the same network/subnet class. An ARP response is received from
the Router that connects the two networks, thus causing a false status.

l ICMP Echo – Attempts to perform an ICMP Echo/ICMP Response test on the
remote IP address.

l UDP Echo – Attempts to verify whether the remote UDP port is open.
l

NOTE: To properly detect UDP as non-responsive/closed, the Windows
Firewall must allow ICMP Destination Unreachable packets to arrive. By
default, Windows Firewall blocks such packets.

l TCP Echo – Attempts to verify whether the remote TCP port is open.
l External Monitor- The Fortra's Beyond Security provided monitor, or your own

custom monitoring device/program.
l Monitored IP address - The IP address of the machine to perform monitoring

on.
l Port - The port number of the external monitor (UDP Echo and TCP Echo only).

The default value is 1.
l Interval - The interval to verify the remote device in milliseconds. The default

value is 5000.
l When exception is detected, stop the test for <#> seconds - Specifies the

number of seconds to stop the test when an exception is detected. allowing
you to take note of it. The default value is 10.

l Report Connectivity Issues as Exceptions - Select this setting to report connectivity
issues with the remote device as an exception. This setting is disabled by default.

l Number of connectivity failures before reporting back - Specifies the number
of failures that need to occur before connectivity issues are reported while
Report Connectivity Issues as Exceptions is selected. The default value is 10.

l Test Fuzzed files by calling beSTORM's Minion - Select this setting to use the
beSTORM Minion to test files (for example, DLLs). Refer to
https://www.beyondsecurity.com/testing-dll-api-fuzzing-with-bestorm for more
information. This setting is disabled by default.
The Minion requires the following:

l beSTORM Minion IP address - The IP address of the Minion.
l Port - The port number to use with the Minion.
l beSTORM Minion Password - The password to use with the Minion.

User Guide www.fortra.com page: 18

https://www.beyondsecurity.com/testing-dll-api-fuzzing-with-bestorm

Interface Overview / Project Settings

l Process to Launch (Full Path) - The full path of the process to launch (for
example, when testing files are part of an application).

Monitor
l Check Monitor Status - Tells beSTORM to actively connect to the monitor and check

its status. This can be used to determine whether the tested environment is running
properly.

l Configure Monitor Settings - Configures the beSTORM monitor settings. See
separate section on beSTORM settings for more details.

Report
l Generate Report - Generates a report in HTML, PDF, or CSV format on the currently

loaded beSTORM project, including test and result information.

Help
l User Guide - Opens the beSTORM User Guide.
l beSTORM Architecture - Displays the current beSTORM project's testing

architecture.
l About - Displays the current beSTORM version number and benchmark information.
l License - Displays information regarding your beSTORM license.

Project Settings
The Project Settings displays the current project's settings; project name, number of parallel
processes used when running the test, and when the project is network related, the
Hostname or IP address, Port and transport Protocol being used for testing:

User Guide www.fortra.com page: 19

Interface Overview / Module Browser

Module Browser
The Module Browser allows you to view the current module configuration, as well as control
the testing behavior. By locking and setting the position of the module, you can direct
beSTORM to test certain sections, while ignoring others.

Preview

User Guide www.fortra.com page: 20

Interface Overview / Test Information

The Preview screen allows you to see the current position of the module. You can also
export the current content of the Preview screen into a file for further manual testing:

Clicking the Export button generates a platform-independent Perl script that imitates the
behavior of beSTORM, and provide the same sequence of events that have caused the
shown data to be sent to the remote server.

Test Information
After starting beSTORM by clicking Start, the Test Information section is shown which
allows you to monitor the progress of the current test, identify what is being tested, and
what is currently being fuzzed. In addition, as soon as a vulnerability is detected, the counter
increases and clicking on it displays the attack vector that has triggered the problem, as
well as the outcome of the problem:

User Guide www.fortra.com page: 21

Interface Overview / Test Progress

Test Progress
After starting beSTORM by clicking Start, a Test Progress section is shown which allows
you to monitor the progress of the current test, see the momentary and average speed of
the test (measured as "saturation rate threshold" meaning number of tests per second):

Exception Information

User Guide www.fortra.com page: 22

Interface Overview / Conclusion Screen

beSTORM is able to detect a variety of issues in products, the issues or exceptions, are
referred to as such as they are unexpected behavior being manifested by the product being
tested. Whenever beSTORM tests a network protocol, file specification or API calls, the
exceptions beSTORM looks for are any behavior that caused the software being tested to
crash, overflow an internal buffer, access information that it would otherwise not be able to
access, manipulate or change items it shouldn't have access to, etc.

For other types of testing, such as in the case of Web Applications, exceptions are not
limited to those just mentioned, but also include problems which manifest as cross site
scripting, SQL injection, code injection and command execution vulnerabilities. The
following example of the Exception Information screen displays information relevant to the
exception related to a network protocol.

The Exception Information screen displays information relevant to the exception that was
detected. Whenever possible, a stack dump as well as the trigger for the exception is
displayed at the Exception data section of the dialog box, and in any case an attack vector is
displayed at the bottom of the screen. Once the product being tested recovers, beSTORM
will continue its testing until it has exhausted all possible attack vectors, if the product does
not recover beSTORM will halt and await further instructions.

Conclusion Screen
Selecting Report causes beSTORM to pause the test and show a temporary conclusion of
the test up to this point.

User Guide www.fortra.com page: 23

Interface Overview / Conclusion Screen

This screen includes general information about the test, including: reason for pause (error,
user request, etc.), connectivity status, number of vulnerabilities detected and the number of
combinations ran in the last session. On the right side of the screen, a list of the test cases
included in the tested module, which were exhausted, not in process, and not started yet is
displayed.

Select Export to generate a fully detailed HTML report that includes all data collected
throughout the test process.

Select Finish to close the project and load the last saved status. You can resume the scan
by selecting Resume.

User Guide www.fortra.com page: 24

Auto Learn / Network File Specification Auto Learn

Auto Learn
One of beSTORM's main strengths is the ability of the user to construct a complex protocol
and have beSTORM fuzz all of its variations. Therefore, it is imperative that beSTORM
provides the ability to create a module, or at least a basic module structure.

While it remains true that creating/extending a beSTORM module may be done using any
XML editor and following the beSTORM grammar which is described later on in this manual
(Custom Module section), this may become difficult if, for example, if the complete protocol
specifications are missing, or if the module contains unknown/uninteresting sections).

beSTORM provides functionality that tries to resolve this difficulty. This by providing a
simple to use graphic interface that allows the user to create beSTORM modules from
provided data blocks.

This interface allows the user to load different types of data that describes the data sets we
are interested in analyzing with beSTORM. beSTORM uses these data sets to determine
how the protocol or file is built.

These input types can be network traffic that beSTORM captured, or a file sample
containing the network traffic, which was captured using other means or a syntax
describing an API you want to fuzz.

Once the input data is being loaded into beSTORM, you can analyze it in the relevant screen,
depending on the type of data being used (Binary / Textual / API syntax).

Network File Specification Auto Learn
Upon choosing Network/File Auto Learn from the beSTORM menu, or by choosing Learn in
the wizard, you arrive to a screen with three action options:

Capture network traffic using the Man-in-the-Middle option

User Guide www.fortra.com page: 25

Auto Learn / Network File Specification Auto Learn

1. To set up this option, specify the incoming port that beSTORM will listen to and act
as a server on, the protocol type (TCP or UDP), the IP address beSTORM and the
destination port to relay to. Configure your 'Client'/Script to transfer network to the
beSTORM machine's IP address and incoming port, as specified.

2. After selecting Listen, beSTORM starts to capture network traffic. Once data is being
sent, beSTORM captures both incoming network traffic (from client/script) and the
server response (referred to as outgoing traffic).

3. Once the collecting process is done, select Stop. At this point you can go over the
captured data (divided into sessions) and choose which part of the traffic (incoming
or outgoing) interests you.

4. Even though beSTORM attempts to determine whether the data it collected is binary
or textual, make sure the correct option is selected and then click Generate to
proceed to the editing stage.

Capture network traffic using beSTORM as an HTTP proxy of
your web browser

User Guide www.fortra.com page: 26

Auto Learn / Network File Specification Auto Learn

1. To set up beSTORM as an HTTP proxy you need to specify the listening port, and
then select Listen.

2. After configuring your web browser to connect by way of HTTP proxy with
beSTORM's IP address and listening port (as specified earlier), start navigating the
web. beSTORM will capture both requests and responses, which are divided into
sessions.

3. Once you are satisfied with the captured session, select Stop and then select the
relevant data.

4. Even though beSTORM attempts to determine whether the data it collected is binary
or textual, make sure the correct option is selected and then select Generate to
proceed to the editing stage.

Capture Network data using a Network Sniffer

User Guide www.fortra.com page: 27

Auto Learn / Generation (Editing the output into a beSTORM module):

1. To set up beSTORM as a Network Sniffer, specify the desired hostname/IP and port
number to capture data from/to, and then select Listen. beSTORM captures both
requests and responses, which are divided into sessions.

2. Once you are satisfied with the captured session, select Stop and then select the
relevant data.

3. Even though beSTORM attempts to determine whether the data it collected is binary
or textual, make sure the correct option is selected and select Generate to proceed
to the editing stage.

Import a file (PCAP Capture, packet dump, or file sample)
1. Choose the file you wish to edit. After loading the file you can view it in the hex editor

on the right side of the screen.
2. Even though beSTORM attempts to determine whether the data it collected is binary

or textual, make sure the correct option is selected and press the Generate button to
go on to the editing stage

Generation (Editing the output into a beSTORM
module):
Once you select Generate, beSTORM checks whether you treat the data as binary or textual.
For binary data, beSTORM begins an automatic analysis process in attempt to determine
the module's structure. In the end of this report, beSTORM suggests a list of relevant
options. For textual data, beSTORM launches the Textual editor process which allows you to
easily break down a sample into fuzzing parts, according to the text's structure.

User Guide www.fortra.com page: 28

Auto Learn / Generation (Editing the output into a beSTORM module):

Binary data

You may select any of the options, or all of them and proceed by clicking Use.

beSTORM gives some statistical information about each analysis output to aid you in
selecting the most relevant options. The information consists of the total coverage of the
packet beSTORM was able to match, the number of different elements found and the
number of blocks that strictly differ from the tested pattern.

If you choose to select more than one option, beSTORM would perform all relevant options,
in a prioritized order. This allows you to have beSTORM begin working on a protocol, even if
you have no hint on its structure.

If you own some knowledge on the protocol structure, and it seems that beSTORM is unable
to cover its specific unique form, it is possible to manually assist beSTORM in building the
module. To do so, select Custom from the Detection Type list.

User Guide www.fortra.com page: 29

Auto Learn / Generation (Editing the output into a beSTORM module):

1. At the binary data editor, you can see a list of sessions on the top right of the screen
(in case you wish to edit a different session), a hex and textual representation of the
data in the top right side of the screen and the editing options/results on the bottom
part of the screen.

2. Notice the Module Tree on the bottom left side of the screen. This part consists of
your new module. Pressing on any of the branches would show its specific data on
the Hex/Textual representation at the top right of the screen. Clicking the root would
show the basic packet (no fuzzing of the data is shown) the module represents.

3. To mark a part of the packet to be Fuzzed, you need to select the relevant part in the
Hex/Textual view (top right side of the screen), and then select Add Buffer. You can
assign an indicative name for this part and configure the maximum/minimum size in
bytes of this part and padding information (if needed).

4. Often, parts of the protocol are influenced by other parts, such as length of a buffer,
number of appearances or actual content. This interface allows you to create
element types that are affected by length. To do so, choose the location of the length
part inside the module, and then select Add Length. A new dialog appears with the
list of Buffers already added. Choose the buffer you want to bind the length to, and
then select OK. Notice that the Buffer must be created before the Length.

5. You can also add constant data outside of the packet if necessary by selecting Add
Constant.

6. After you finish building your module, select Use to use this module with beSTORM.

Textual data

User Guide www.fortra.com page: 30

Auto Learn / Generation (Editing the output into a beSTORM module):

The textual editor can be used by selecting the data as Textual in the Auto Learn screen (the
one where the data input was selected) and then select Generate.

1. In the textual data editor you can see the list of sessions on the top right of the
screen (in case you wish to edit a different session) and a list of delimiters. choose
the relevant delimiters or choose 'HTTP Request' if this is the case and use our
predefined delimiters for HTTP.

2. Select Build to automatically create your module.
3. After your module finishes building, se;ect Use to use this module with beSTORM.

User Guide www.fortra.com page: 31

Environment Variables /

Environment Variables
Certain modules require additional information to perform proper testing. One such
example is in the case of FTP, a Username and Password are needed for FTP log in, if you
want to test all the available commands. This additional information can be changed by
accessing the Environment Variables window:

By double-clicking on the Value column, you can modify the values written in the field. If you
input a value that starts with the “0x” characters and is followed by hexadecimal
representation (if it is multiple bytes it needs to be comma separated) the value written is
considered as binary.

For example the value, “anonymous”, without the quotes will regarded as ASCII while,
“0x61,0x6e,0x6f,0x6e,0x79,0x6d,0x6f,0x75,0x73”, without the quotes will be
regarded as Binary, even though their value is the same, in both cases “anonymous” without
the quotes.

User Guide www.fortra.com page: 32

Module Buffer Types /

Module Buffer Types
beSTORM's different predefined modules have their own built-in Buffer Types. These Buffer
Types are used by beSTORM whenever it tests the buffers found inside the module. Each of
the Buffer Types checks for different types of vulnerabilities.

For example, the Repeated A buffer type attempts to trigger an exception that is usually
associated with Buffer Overflows or Heap Overflows, while the Bigger Smaller buffer type
attempts to trigger exceptions related to email address (SMTP) or hostname designators
(SIP).

The settings of each buffer type is configurable, and you can add additional types to the
existing set of buffer types. Buffer Types have several behavioral aspects, they can be either
be buffer generating (that is, they generate a buffer that increases in length), or number
generating (that is, their value increases).

User Guide www.fortra.com page: 33

Module Buffer Types /

In addition, each Buffer Type can have other behavioral aspects such as decimal (that is, the
value is represented as a number between 1 and 4,294,967,296), as a binary value (that is,
the value is represented by the byte value between 0x00000000 and 0xFFFFFFFF), or a
hexadecimal value (that is, the value is represented by the string representation between 0
and FFFFFFFF). Further, a buffer type's behavior is extendable by limiting its range or even
adding additional encoding to it, such as in the case of Base64, in accordance with the
BASE64 encoding standard, and URL encoding, where we convert such characters as % to
%25.

User Guide www.fortra.com page: 34

Custom Modules /

Custom Modules
Before we can start building custom modules, we need to understand how the language
with which the modules are defined is structured. beSTORM modules are constructed using
an XML syntax. The beSTORM's XML syntax allows both extensibility as well as a structured
session to be built.

Like most XML-based syntax, refer to the Element Type as the string without any spaces
within it that follows just after the lower than character (<).

l Element Attribute as the string without any spaces within it that provides additional
parameters to the Element Type.

l Element Value as the string encompassed within double quotes that provide a value
to the Element Attribute.

By definition, no Element Attribute can appear without its Element Value. The Element Type
is either closed with a forward slash character and greater-than charcter combination (/>),
meaning that no closer tag follows, or only with a greater-than character (>), meaning that
the element contains additional elements which are defined as its children (also referred to
as nodes). For example:

<ElementType ElementAttribute=”ElementValue”
ElementAttribute=”ElementValue” ... />

NOTE: All of the Element Values are contained within double quotes.

A beSTORM module's XML syntax is read from top to bottom, with some exceptions where
elements that can be introduced into the module change this behavior. Start off by providing
the most basic element; Words. Words define elements whose smallest size is 8 bits (1
byte) for one word (for smaller elements refer to Bits).

All of beSTORM's elements have an Element Attribute called Name, whose value must be
unique within the same module.

User Guide www.fortra.com page: 35

Configuration Elements /

Configuration Elements
The XML file defines both the way the module looks like, acts and what types of data it
sends as well as how it should generate the fuzzed data. Fuzz data can either be generated
from a predefined list of buffer types, Textual and Binary, or from a list the builder of the
module provides. The method to define what type of buffer types beSTORM will generate is
done by placing a GeneratorOptSettings element under the top beSTORM element.

For example, the following defines to beSTORM that you would like to utilize the factory
defined buffer types of Binary form.

<beSTORM Version="1.2" ><GeneratorOptSettings FactoryDefined="1"
FactoryType=”Binary” />
<ModuleSettings>
<M Name="ASN1 Samples" >
<P Name="ASN1 Samples" >
<S Name="ASN1 Sentence" >
<C Name="Identifier Octet (Bit stream)" Value="0x04" />
<L Name="Length of Element" Split="128" ConditionedName="Buffer of
Element" />
<B Name="Buffer of Element" ASCIIDefault="Data of Element" />
</S>
</P>
</M>
</ModuleSettings>
</beSTORM>

If you want to define your own buffer types you could place BT elements under the
GeneratorOptSettings element, for example:

<GeneratorOptSettings>
<BT>
<BT Name="Repeated A" Max="65536" ASCIIValue="A" />
<BT Name="Repeated %n" Max="512" ASCIIValue="%n" />
<BT Name="Repeated %25n" Max="256" ASCIIValue="%25n" />
<BT Name="Repeated Base64A" Max="16384" Type="Base64" ASCIIValue="A"
/>
<BT Name="BiggerSmaller" Max="32768" ASCIIValue="<>" />
<BT Name="Repeated %00" Max="21846" ASCIIValue="%00" />
<BT Name="Number Generating DEC" Max="4294967295"
Type="DecimalPositive" />
<BT Name="Negative Number Generating DEC" Max="2147483648"
Type="DecimalNegative" />
<BT Name="Number Generating HEX" Max="4294967295"

User Guide www.fortra.com page: 36

Configuration Elements / Words

Type="DecimalPositive" />
<BT Name="Repeated Space" Max="65536" ASCIIValue=" " />
</BT>
</GeneratorOptSettings>

Each BT element has a child T element which defines the type of data that is generated.

l The Name attribute is a user provided description of what this attack would
generate.

l The Max attribute defines how many times will this data be either repeated or
incremented (depending on the attributes ASCIIValue or Type appearing).

l The ASCIIValue (or Value for binary data) attribute tell beSTORM it should generate
data that is repeated from 0 up to and including Max.

l The Type attribute defines what sort of incrementing should be performed on the
data, default value of Repeat is set to the attribute if no value is provided.

l If Base64 is provided the data will be encoded (after it is generated) with the Base64
encoding scheme.

l If DecimalPositive value is provided the number will be incremented and it is
assumed that no negative number will ever be generated (due to overflowing of the
number when incremented above the maximum allowed value).

l If DecimalNegative value is provided the number will act as the DecimalPositive
behaves, the only difference is that when an overflow occurs negative numbers will
be used.

l If Hex value is provided the DecimalPositive type will be used but the returned value
would be presented in 0000000-FFFFFF form (textual).

l If Binary value is provided the DecimalPositive type will be used but the returned
value would be presented in 0-4294967296 form (textual).

Words
Words are elements that contain data, but in most cases cannot contain other words or
elements – the exception is the Enumerate element. In most cases Words are defined by a
single character when they are written in the XML file, for example to place a Buffer, you
write the element like so: <B ... />

There are two types of Words, conditioned and non-conditioned.

l Words that are conditioned are words whose value depends on other word's or
sentence's value for their own value, while Words that are non-conditioned are words
whose value does not depend on other word's or sentence's value for their own
value.

User Guide www.fortra.com page: 37

Configuration Elements / Words

l Non conditioned Words have either a Default element attribute if beSTORM fuzzes
them, such as in the case of Buffers and Variable Buffers, or a Value element
attribute if beSTORM does not fuzz them, such as in the case of Constant and
Environment Variables.

Each of these have an equivalent ASCIIDefault and ASCIIValue respectively which unlike
Default and Value receives the data in ASCII form, whereas the other receives it in
hexadecimal form (for example, “0x40, 0x00,0x00,0x00,0x00” (without the quotes).

Conditioned Words have a ConditionedName attribute which instructs beSTORM from
where the Word's value is dependent upon. Most conditioned elements have also a Size
attribute which instructs beSTORM how big, in bytes, the return value should be, such as in
the case of Length Conditioned and Count Conditioned. The conditioned element called
Procedure Conditioned has an additional attribute, named Parameter, which instructs
beSTORM which value should this element take.

Buffer
l Type - B
l Usage - Defines a value that is manipulated by beSTORM's fuzzing mechanism.

<B Name=”A Buffer” ASCIIDefault=”The ASCII Default” />

Attribute name Attribute function
Value The system default value of the buffer, which is used when the

user requests that the module be reverted to its factory default.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIValue Same as Value but the provided data is in ASCII form

Prefix The prefix that will be attached to the beginning of the buffer.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIPrefix Same as Prefix but the provided data is in ASCII form.

PrefixOnlyIfNonEmpty Sets whether to place the Prefix even if the buffer value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place prefix only if non empty or '0' (the number zero)
for always place prefix. By default we place the Prefix even if
the buffer is empty.

Suffix The suffix that will be attached to the end of the buffer. The
value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIISuffix Same as Suffix but the provided data is in ASCII form.

User Guide www.fortra.com page: 38

Configuration Elements / Words

Attribute name Attribute function
SuffixOnlyIfNonEmpty Sets whether to place the Suffix even if the buffer value is

empty, due to fuzzing, valid values are either '1' (the number
one) for place suffix only if non empty or '0' (the number zero)
for always place suffix. By default we place the Suffix even if
the buffer is empty.

MaxBytes Sets the maximum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default the value
is not set, no restriction.

MinBytes Sets the minimum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default thevalue
isunset, no restriction.

Blocked Sets whether this buffer is currently being fuzzed, as one buffer
or buffers depending on the settings blocks other buffers from
fuzzing until they are finished. By default one buffer blocks
others from fuzzing, that buffer will be marked as blocked while
the rest will not be marked as blocked. Valid values are either
'1' (the number one) for blocked or '0' (the number zero) for not
blocked.

Default The current value being used by the Buffer, unlike Value, Default
sets the current value of the Buffer, which is lost if the buffer is
reset to factory default.

ASCIIDefault Same as Default but the provided data is in ASCII form.

NoDefaultTypes This sets whether we wish or not to fuzz this buffer with our set
of Buffer Types. Valid values are either '1' (the number one) for
no default buffer types (that is, do not fuzz) or '0' (the number
zero) for set default buffer types (that is, fuzz). By default the
buffer is fuzzed using the default buffer types.

PaddingChar The character used to pad this element. Valid values are
between 0x00 and 0xFF, the NULL character and EOF character
respectively

PaddingSize The size of the padding to do for the given element. Valid
values are between 0 (do not pad) and 65536 (pad up to a
length of 65536 bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or
“Prefix” for prefix padding. By default the element is Suffix
padded.

User Guide www.fortra.com page: 39

Configuration Elements / Words

Attribute name Attribute function
Locked This sets whether the element is changed or not, a locked

element's value is never changed, while an unlocked one will be
modified. Valid values are either '1' (element locked) and '0'
(element is unlocked). By default the element is not locked.

Comment The element's comment, this is a free text tha tcan be used by
the module build to provide meaning and context to the
element.

Position The position at which the current Element is at, this is used by
beSTORM to allow restoring the state of beSTORM to how it
was when the module settings were saved.

Max The maximum position of the current Element, for Buffer it is
the number of Buffer Types for this element. It is recommended
to not modify this value unless you are removing Buffer Types
from this Buffers.

NoDefaultTypes This sets whether we wish or not to fuzz this buffer with our set
of Buffer Types, valid values are either '1' (the number one) for
no default buffer types– i.e. do not fuzz – or '0'(the number
zero) for set default buffer types – i.e. fuzz. By default the
buffer IS fuzzed using the default buffer types.

CalculateScenarios An attribute that saves the number of scenarios this element
has, allows beSTORM to load the element more quickly.

Priority An attribute that defines when will this element get fuzzed, the
default value of 5 means neither higher nor lower priority. A
higher number means this will be tested first, while a lower
priority means this will be tested last. For priority to work
properly the path leading to this element has to have a priority
higher or equal to this element's priority.

IterateOnce An attribute that defines that this Buffer will be tested ONLY
once, after it is tested, it will be tested it will start sending its
default value.

Disabled An attribute that defined that this Buffer will become inactive
and will not be fuzzed, moreover, it will NOT return any data
when beSTORM will attempt to generate this element. This
attribute should not be used to prevent beSTORM from fuzzing
this element.

User Guide www.fortra.com page: 40

Configuration Elements / Words

Attribute name Attribute function
Type An attribute that defines Buffer Types for this Buffer, the

following Types are currently supported:
l Unicode
l Timestamp (textual)
l Integer (textual)
l Integer (binary)
l MAC Address
l Hostname (textual)
l IP Address (binary)
l IP Address (textual)
l IP Address v6 (binary)

Format An attribute that defines a Buffer Type that will try to overflow a
scan function, by looking into creating a complex buffer that
support %s and %d field types.

Buffer type
l Type - BT
l Usage - Defines a value that is manipulated by beSTORM's fuzzing mechanism.

<BT Name=”A Buffer” Max=”65535” ASCIIValue=”A” />

Attribute name Attribute function
Value The value that is repeated by the buffer. The value provided is

in hexadecimal form and separated by comma (0xXX, 0xXX...)

ASCIIValue Same as Value but the provided data is in ASCII form

Prefix The prefix that will be attached to the beginning of the buffer
type. The value provided is in hexadecimal form and separated
by comma (0xXX, 0xXX...)

ASCIIPrefix Same as Prefix but the provided data is in ASCII form

PrefixOnlyIfNonEmpty Sets whether to place the Prefix even if the buffer type value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place prefix only if non empty or '0' (the number zero)
for always place prefix. By default we place the Prefix even if
the buffer type is empty

User Guide www.fortra.com page: 41

Configuration Elements / Words

Attribute name Attribute function
Suffix The suffix that will be attached to the end of the buffer type.

The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...)

ASCIISuffix Same as Suffix but the provided data is in ASCII form

SuffixOnlyIfNonEmpty Sets whether to place the Suffix even if the buffer type value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place suffix only if non empty or '0' (the number zero)
for always place suffix. By default we place the Suffix even if
the buffer type is empty

Appender Sets whether this buffer type is an appender (that is, adds to
the existing value of the Buffer under which the Buffer Type sits
under) or whether it replaces it. For example, an appender adds
to 'Data' a set of 'A' resulting in 'DataA', 'DataAA', 'DataAAA', etc.,
while a replacer replaces 'Data' with 'A', 'AA', 'AAA' etc. Valid
values are either '0' (not an appender) and '1' (an appender). By
default the buffer type is a replacer not an appender.

AppenderType Sets what type of appender is being used to append to the
beginning of the data or to its end. Valid values are either
'Prefix' (at the beginning) and 'Suffix' (at the end). By default the
buffer type appends at the beginning.

Type Sets what type of manipulation is performed on this Buffer
Type. Valid values are:

l Base64 – Repeat the data then base64 encode it.
l Repeat – Repeat the data.
l DecimalPositive – Increment the value from the number

0 up to the maximum set for this buffer type.
l DecimalNegative – Increment the value from the number

0 up to the maximum set for this buffer type divided by 2
and from there start providing negative values.

l Hex – Like DecimalPositive, but in hex form.
l Binary - Like DecimalPositive, but in binary form.

Enable Sets whether this Buffer Type is used or not, setting a value of
'1' will enable the buffer type, while setting a value of '0' will
disabled it. By default buffer types are enabled.

PaddingChar The character used to pad this element. Valid values are
between 0x00 and 0xFF, the NULL character and EOF character
respectively.

User Guide www.fortra.com page: 42

Configuration Elements / Words

Attribute name Attribute function
PaddingSize The size of the padding to do for the given element. Valid

values are between 0 (do not pad) and 65536 (pad up to a
length of 65536 bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or
“Prefix” for prefix padding. By default the element is Suffix
padded.

Locked This sets whether the element is changed or not, a locked
element's value is never changed, while an unlocked one will be
modified. Valid values are either '1' (element locked) and '0'
(element is unlocked). By default the element is not locked.

Comment The element's comment, this is a free text that can be used by
the module build to provide meaning and context to the
element.

Max The maximum position of the Buffer Type, for generating data
Buffer Type, this is the number of times the value is replicated.
For example, 1024, of “AA” replicated data, will generate 2048
bytes of data at its Maximum position. While a Max value of
1024 for a Number generating will mean it will generate the
number 1024 at its Maximum position.

MinPos An attribute that defines what will be the minimal position for
this Buffer Type. For a replicating Buffer Type, a value of 10 will
mean that this data will be generated at its minimum value 10
times.

FactoryDefined An attribute that defines whether or not the Buffer Type will be
using beSTORM shipped buffer types, or a custom one. valid
values for this field is either '0' or '1' (ASCII value zero or one).

FactoryType An attributes that defined what type of Buffer Type is being
used, valid values are:

l Text
l Binary
l WSSA (for Windows only)

CalculateScenarios An attribute that saves the number of scenarios this element
has, allows beSTORM to load the element more quickly.

User Guide www.fortra.com page: 43

Configuration Elements / Words

Attribute name Attribute function
Priority An attribute that defines when will this element get fuzzed, the

default value of 5 means neither higher nor lower priority. A
higher number means this will be tested first, while a lower
priority means this will be tested last. For priority to work
properly the path leading to this element has to have a priority
higher or equal to this element's priority.

IterateOnce An attribute that defines that this Buffer will be tested ONLY
once, after it is tested, it will be tested it will start sending its
default value.

Disabled An attribute that defined that this Buffer will become inactive
and will not be fuzzed, moreover, it will NOT return any data
when beSTORM will attempt to generate this element. This
attribute should not be used to prevent beSTORM from fuzzing
this element.

MaxBytesToGenerate An attribute that allows you to define how many bytes this
Buffer Type will send, unlike Max which you cannot directly
know how many bytes will be generated as it is based on a
formula of “Position” * “Number of Bytes Replicated”, with this
you can directly define a value of 1024,so that no more than
1024 bytes are ever sent.

Position The position at which the current Element is at, this is used by
beSTORM to allow restoring the state of beSTORM to how it
was when the module settings were saved.

ReturnDefault An attribute that defines whether this Buffer Type will return the
default value at position 0, the default behavior is that at
position 0 is that nothing is being sent (empty buffer). Valid
values for this field is either '0' or '1' (ASCII value zero or one).

Constant
l Type - C
l Usage - Defines a value that is not manipulated by beSTORM's fuzzing mechanism.

<C Name=”A Const” ASCIIValue=”The ASCII Value” />

Attribute
name

Attribute function

Value The system default value of the constant. The value provided isin
hexadecimal form and separated by comma (0xXX, 0xXX...).

ASCIIValue Same as Value, but the provided data is in ASCII form.

User Guide www.fortra.com page: 44

Configuration Elements / Words

Attribute
name

Attribute function

PaddingChar The character used to pad this element. Valid values are between 0x00
and 0xFF, the NULL character and EOF character respectively.

PaddingSize The size of the padding to do for the given element. Valid values are
between 0 (do not pad) and 65536 (pad up to a length of 65536 bytes).
By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or Suffix.
Valid values are either “Suffix” for suffix padding or “Prefix” for prefix
padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element.

Enumerate
l Type - E
l Usage - Defines a group of Constant elements that will be used in sequence – one

after the other – similar in behavior to an OR between element, either one is used or
the other.

<E Name=”Aset ofconstants”>
<C Name=”Const#1”ASCIIValue=”First constant sent”/>
<C Name=”Const #2” ASCIIValue=”Second constant sent"/>
<C Name=”Const#3”ASCIIValue=”Thirdconstant sent”/>
</E>

Attribute
name

Attribute function

PaddingChar The character used to pad this element. Valid values are between 0x00
and 0xFF, the NULL characterand EOF character respectively.

PaddingSize The size of the padding to do for the given element. Valid values are
between 0 (do not pad) and 65536 (pad up to a length of 65536 bytes).
By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or Suffix.
Valid values are either “Suffix” for suffix padding or “Prefix” for prefix
padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element.

Length conditioned

User Guide www.fortra.com page: 45

Configuration Elements / Words

l Type - L
l Usage - Defines an element whose value is based on the length –size – of the

element it is bound/conditioned to.

<L Name=”Length of the Buffer” ConditionedName=”A Buffer />
<B Name=”ABuffer”ASCIIDefault=”The ASCIIDefault”/>

The B element's value will be the length of “The ASCIIDefault” without the quotes
(that is, 17).

Attribute name Attribute function
Size Length conditioned elements can either return ASCII form values,

the string representation of the value of 10221 or binary form
values, the binary representation of the value of 10221 –
0x10221. If this attribute is set, the binary form is used. Valid
values are between 0 (don't use binary form) and 4 (4 bytes of data
will be used to represent the number).

Split This sets at what value should we split the binary form of the length
into more than one byte, this is relevant only to ASN.1 protocols
where the length values greater than 0x7F are split into two bytes
or more. Valid values are between 0x00 and 0xFF, for ASN.1 use the
value of 0x7F.

ForceSplitSize In some cases we want to force the split to occur even if the length
is smaller than the provided split size. This is useful when protocols
are strict to how many bytes are used in each of the length
fields. Valid values are between 0x01 and 0x04, which in turn will
force the size to be 1 up to 4 bytes even if more or less is
necessary. If a size smaller than required is provided the length is
trimmed and will be invalid.

NetworkOrder This value is only relevant for binary length values, this sets
whether a Network order (big endian) is used or Host order (small
endian) is used. Valid values are either '1' (for network order) or '0'
(for host order). By default the length is set to Host order.

Base For decimal representation of the length, you can decide whether
you want the value to be generated in decimal form or hexadecimal
form. Valid values are either 'Hex' (for hexadecimal) or 'Decimal'
(for decimal form). By default the representation is done in decimal
form.

User Guide www.fortra.com page: 46

Configuration Elements / Words

Attribute name Attribute function
ConditionedName The value of the Length Conditioned element depends not on its

own value, but rather on the value on which it is depended on. In the
case of Length Conditioned elements, the size of the elements its
conditioned to is calculated and returned as the results of this
element. Valid values are either short name form – the name of the
element it is bound to without the full path to the element, or full
name form – the name of all the elements up to the element we are
bound to, separated by a pipe (“|”) character.

PaddingChar The character used to pad this element. Valid values are between
0x00 and 0xFF, the NULL character and EOF character respectively.

PaddingSize The size of the padding to do for the given element. Valid values
are between 0 (do not pad) and 65536 (pad up to a length of 65536
bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or “Prefix”
for prefix padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element.

Count conditioned
l Type - CC
l Usage - Defines an element whose value is based on the number of elements the

element it is bound/conditioned to has.

<CC Name=”Count of Elements ”Conditioned Name=”Contains a
Number of Elements”/>
<S Name=”Contains a Number of Elements”>
<B Name=”1 Buffer”ASCIIDefault=”TheASCIIDefault” />
<B Name=”2 Buffer ”ASCIIDefault=”TheASCIIDefault” />
</S>

The CC element will return 2.

Attribute name Attribute function
Size Count conditioned elements can either return ASCII form values,

the string representation of the value of 10221 or binary form
values, the binary representation of the value of 10221 – 0x10221.
If this attribute is set, the binary form is used. Valid values are
between 0 (don't use binary form) and 4 (4 bytes of data will be
used to represent the number).

User Guide www.fortra.com page: 47

Configuration Elements / Words

Attribute name Attribute function
NetworkOrder This value is only relevant for binary counting values, this sets

whether a Network order (big endian) is used or Host order (small
endian) is used. Valid values are either '1' (for network order) or '0'
(for host order). By default the counting is set to Host order.

Base For decimal representation of the counting, you can decide whether
you want the value to be generated in decimal form or hexadecimal
form. Valid values are either 'Hex' (for hexadecimal) or 'Decimal'
(for decimal form). By default the representation is done in decimal
form.

ConditionedName The value of the Count Conditioned element depends not on its
own value, but rather on the value on which it is depended on. In the
case of Count Conditioned elements, the number of the repeated
elements (of the repeater) its conditioned to is calculated and
returned as the results of this element. Valid values are either short
name form – the name of the element it is bound to without the full
path to the element, or full name form – the name of all the
elements up to the element we are bound to, separated by a pipe
(“|”) character.

PaddingChar The character used to pad this element. Valid values are between
0x00 and 0xFF, the NULL character and EOF character respectively.

PaddingSize The size of the padding to do for the given element. Valid values
are between 0 (do not pad) and 65536 (pad up to a length of 65536
bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or “Prefix”
for prefix padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element.

Duplicate conditioned
l Type - DC
l Usage - Defines an element whose value is based on the copy of the value of the

element it is bound/conditioned to.

<DC Name=”Duplicate of Element” ConditionedName=”A Buffer”>
<B Name=”A Buffer ”ASCIIDefault=”The ASCIIDefault”/>

The DC element will return “The ASCII Default” without the quotes.

User Guide www.fortra.com page: 48

Configuration Elements / Words

Attribute name Attribute function
ConditionedName The value of the Duplicate Conditioned element depends not on its

own value, but rather on the value on which it is depended on. In the
case of Duplicate Conditioned elements, the value of the element it
is depended on is returned as the results of this element. Valid
values are either short name form – the name of the element it is
bound to without the full path to the element, or full name form –
the name of all the elements up to the element we are bound to,
separated by a pipe (“|”) character.

PaddingChar The character used to pad this element. Valid values are between
0x00 and 0xFF, the NULL character and EOF character respectively.

PaddingSize The size of the padding to do for the given element. Valid values
are between 0 (do not pad) and 65536 (pad up to a length of 65536
bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or “Prefix”
for prefix padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element

Procedure conditioned
l Type - PC
l Usage - Defines and element whose value is based on the returnvalue of a Sentence

Procedure of the element it is bound/conditioned to.

<PC Name=”SOCKET” ConditionedName=”Connector”
Parameter=”SOCKET”/>

See below for Sentence Procedure for further details on how to use the Procedure
Conditioned element.

Attribute name Attribute function
Parameter The name of the parameter we query the dependent element for,

most elements support a 'Output' parameter by default.

User Guide www.fortra.com page: 49

Configuration Elements / Words

Attribute name Attribute function
ConditionedName The value of the Procedure Conditioned element depends not on its

own value, but rather on the value on which it is depended on. In the
case of Procedure Conditioned elements, the element it is
depended on is queried for a specific parameter, the value of this
parameter is returned as the value for this element. Valid values are
either short name form – the name of the element it is bound to
without the full path to the element, or full name form – the name
of all the elements up to the element we are bound to, separated by
a pipe (“|”) character.

PaddingChar The character used to pad this element. Valid values are between
0x00 and 0xFF, the NULL character and EOF character respectively

PaddingSize The size of the padding to do for the given element. Valid values
are between 0 (do not pad) and 65536 (pad up to a length of 65536
bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or “Prefix”
for prefix padding. By default the element is Suffix padded.

Comment The element's comment, this is a free text that can be used by the
module build to provide meaning and context to the element.

Variable buffer
l Type - VB
l Usage - Defines an element whose value can be easily changedby the user by way

ofthe GUI's Environment Variables but beSTORM regards them like Buffers (that is,
beSTORM will fuzz its value).

<VB Name=”Variable Buffer” ASCIIDefault=”This is the default
value of the variable buffer” Description=”Place here the value
you want for the Variable Buffer”/>

The ”Place here the value you want for the Variable Buffer” string will be displayed to
the user under the Environment Variables screen.

Attribute name Attribute function
Description This sets the string that is displayed to the user under the “ Edit

Module Environment Variables” of the project he has loaded the
module into. Using the same description will bound the values
of all the elements together, modifying one in the “Edit Module
Environment Variables” screen will modify all of them.

User Guide www.fortra.com page: 50

Configuration Elements / Words

Attribute name Attribute function
Value The system default value of the buffer, which is used when the

user requests that the module be reverted to its factory default.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIValue Same as Value, but the provided data is in ASCII form.

Prefix The prefix that will be attached to the beginning of the buffer.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIPrefix Same as Prefix, but the provided data is in ASCII form.

PrefixOnlyIfNonEmpty Sets whether to place the Prefix even if the buffer value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place prefix only if non empty or '0' (the number zero)
foralways place prefix. By default we place the Prefix even if
the buffer is empty.

Suffix The suffix that will be attached to the end of the buffer. The
value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIISuffix Same as Suffix but the provided data is in ASCII form.

SuffixOnlyIfNonEmpty Sets whether to place the Suffix even if the buffer value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place suffix only if non empty or '0' (the number zero)
for always place suffix. By default we place the Suffix even if
the buffer is empty.

MaxBytes Sets the maximum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default the value
is unset, no restriction.

MinBytes Sets the minimum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default the value
is unset, no restriction.

Blocked Sets whether this buffer is currently being fuzzed, as one buffer
or buffers depending on the settings blocks other buffers from
fuzzing until they are finished. By default one buffer blocks
others from fuzzing, that buffer will be marked as blocked while
the rest will not be marked as blocked. Valid values are either
'1' (the number one) for blocked or '0' (the number zero) for not
blocked.

Default The current value being used by the Buffer, unlike Value, Default
sets the current value of the Buffer, which is lost if the buffer is
reset to factory default.

User Guide www.fortra.com page: 51

Configuration Elements / Words

Attribute name Attribute function
ASCIIDefault Same as Default but the provided data is in ASCII form.

NoDefaultTypes This sets whether we wish or not to fuzz this buffer with our set
of BufferTypes, valid values are either '1' (the number one) for
no default buffer types (that is, do not fuzz) – or '0' (the number
zero) for set default buffer types (that is, fuzz). By default the
buffer is fuzzed using the default buffer types.

PaddingChar The character used to pad this element. Valid values are
between 0x00 and 0xFF, the NULL character and EOF character
respectively.

PaddingSize The size of the padding to do for the given element. Valid
values are between 0 (do not pad) and 65536 (pad up to a
length of 65536 bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or
“Prefix” for prefix padding. By default the element is Suffix
padded.

Comment The element's comment, this is a free text that can be used by
the module build to provide meaning and context to the
element.

Required Whether the element must contain a default value.

Environment variables
l Type - EV
l Usage - Defines an element whose value can be easily changed by the user by way of

the GUI's Environment Variables, but beSTORM regards them like Constants (that is,
beSTORM will not fuzz its value).

<EV Name=”Environment Buffer” ASCIIDefault=”This is the default
value of the environment buffer” Description=”Place here the
value you want for the Environment Buffer” />

The ”Place here the value you want for the Environment Buffer ” string will be
displayed to the user under the Environment Variables screen.

User Guide www.fortra.com page: 52

Configuration Elements / Words

Attribute name Attribute function
Description This sets the string that is displayed to the user under the “ Edit

Module Environment Variables” of the project he has loaded the
module into. Using the same description will bound the values
of all the elements together, modifying one in the “Edit Module
Environment Variables” screen will modify all of them.

Value The system default value of the buffer, which is used when the
user requests that the module be reverted to its factory default.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIValue Same as Value but the provided data is in ASCII form.

Prefix The prefix that will be attached to the beginning of the buffer.
The value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIIPrefix Same as Prefix but the provided data is in ASCII form.

PrefixOnlyIfNonEmpty Sets whether to place the Prefix even if the buffer value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place prefix only if non empty or '0' (the number zero)
for always place prefix. By default we place the Prefix even if
the buffer is empty.

Suffix The suffix that will be attached to the end of the buffer. The
value provided is in hexadecimal form and separated by
comma (0xXX, 0xXX...).

ASCIISuffix Same as Suffix but the provided data is in ASCII form.

SuffixOnlyIfNonEmpty Sets whether to place the Suffix even if the buffer value is
empty, due to fuzzing, valid values are either '1' (the number
one) for place suffix only if non empty or '0' (the number zero)
for always place suffix. By default we place the Suffix even if
the buffer is empty.

MaxBytes Sets the maximum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default the value
is unset, no restriction.

MinBytes Sets the minimum number of allowed bytes that this buffer can
fuzz to – usually used for binary protocols. By default the value
is unset, no restriction.

User Guide www.fortra.com page: 53

Configuration Elements / Bits

Attribute name Attribute function
Blocked Sets whether this buffer is currently being fuzzed, as one buffer

or buffers depending on the settings blocks other buffers from
fuzzing until they are finished. By default one buffer blocks
others from fuzzing, that buffer will be marked as blocked while
the rest will not be marked as blocked. Valid values are either
'1' (the number one) for blocked or '0' (the number zero) for not
blocked.

Default The current value being used by the Buffer, unlike Value, Default
sets the current value of the Buffer, which is lost if the buffer is
reset to factory default.

ASCIIDefault Same as Default but the provided data is in ASCII form.

NoDefaultTypes This sets whether we wish or not to fuzz this buffer with our set
of BufferTypes, valid values are either '1' (the number one) for
no default buffer types (that is, do not fuzz) – or '0' (the number
zero) for set default buffer types (that is, fuzz). By default the
buffer IS NOT fuzzed using the default buffer types.

PaddingChar The character used to pad this element. Valid values are
between 0x00 and 0xFF, the NULL character and EOF character
respectively.

PaddingSize The size of the padding to do for the given element. Valid
values are between 0 (do not pad) and 65536 (pad up to a
length of 65536 bytes). By default the element is not padded.

PaddingType The type of padding to conduct on the element, either Prefix or
Suffix. Valid values are either “Suffix” for suffix padding or
“Prefix” for prefix padding. By default the element is Suffix
padded.

Comment The element's comment, this is a free text that can be used by
the module build to provide meaning and context to the
element.

Required Whether the element must contain a default value.

Bits
In some cases the modules' builder needs elements that are smaller than 8 bits – 1 byte – 1
word, in such cases Bit elements come into play. However, as all data on the computer is
stored in bytes, 1 or more, we need to place the Bit elements inside an element whose
smallest size is 8 bits – 1 byte – 1 word.

User Guide www.fortra.com page: 54

Configuration Elements / Sentences

Name Type Usage
Bit BB Defines an element whose value is 0 (zero) and 1 (one), and can

grow up to a size of 8 bits – 1 byte – 1 word. The Bit element
behaves like a Constant (that is, beSTORM will not fuzz its value).
As mentioned all elements need to be at least of the size of a
round byte, 1, 2, 3, etc bytes, thus a Bit element is always
surrounded by a BitsContainer element which makes sure the
internal bits found inside it sums up to a whole byte/word.

<BB Name=”A list of Bits” Size=”2”
MultiBits=”0,1” />

BitsEnum BE Defines a group of Bit elements that will be used in sequence –
one after the other – similar in behavior to an OR between
elements, either one is used or the other.

<BE Name=”A set of bits”>
<BB Name=”Bits #1” Size=”3” MultiBits=”0,0,0”/>
<BB Name=”Bits #2” Size=”3” MultiBits=”1,0,0”/>
<BB Name=”Bits #3” Size=”3” MultiBits=”1,0,0”/>
</BE>

The MultiBits attribute is written with the MSB as the leftmost
digit, and the LSB as the rightmost digit.

BC BC Defines a group of Bit elements that will be used in concatenation
– all at the same time – similar in behavior to an AND between
elements, use all of them together.

<BC Name=”All at once”>
<BB Name=”Bits #1 ”Size=”2” MultiBits=”0,0” />
<BB Name=”Bits #2” Size=”2” MultiBits=”1,0” />
<BB Name=”Bits #3” Size=”4” MultiBits=”0,1,0,0”/>
</BC>

The bits value returned will be (MSB first) 0,0 followed by 1,0
followed by 0,1,0,0.

Sentences
Sentences bind things together in the simplest form they bind together Words and Bits, in
more complex forms they allow the module to express decision taking behavior – such as in
the case of Session based modules (that is, the FTP module).

User Guide www.fortra.com page: 55

Configuration Elements / Sentences

Name Type Usage
Simple
Sentence

S Defines a simple sentence that can encompasses under it one or
more Words and BitsContainer. The elements under this the
Simple Sentence will be used in concatenation – all at the same
time –similar in behavior to an AND between elements, use them
all together.

<S Name=”A very simple sentence”>
<B Name=”First buffer in the block”
ASCIIDefault=” This is my default” />
<C Name=”Second constant in the block
”ASCIIValue=”This is my value” />
</S>

 The value of the S element will be “This is my default This is my
value ” without the quotes.

Sentence
Enumerate

SE Defines a group of Sentence elements that will be used in
sequence – one after the other – similar in behavior to an OR
between elements, either one is used or the other.

<SE Name=”A set of sentences”>
<S Name=”Sentence #1”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
</S>
<S Name=”Sentence #2”>
<C Name=”Second constant in the block”
ASCIIValue=”This is my value” />
</S>
</SE>

The value of the SE element will be first “ This is my default”
without the quotes, followed by “This is my value” without the
quotes.

User Guide www.fortra.com page: 56

Configuration Elements / Sentences

Name Type Usage
Sentence
Container

SC Defines a group of Sentence elements that will be used in
concatenation – all at the same time –similar in behavior to an
AND between elements, use all of them together.

<SC Name=”All at once”>
<S Name=”Sentence #1”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
</S>
<S Name=”Sentence #2”>
<C Name=”Second constant in the block”
ASCIIValue=”This is my value” />
</S>
</SC>

The value of the SC element will be “This is my default This is my
value”without the quotes.

Sentence
Repeater

R Defines that the element under this element will be repeated by
default from 0 (zero) times up to 8 (eight) times. The maximum
number of repeated sentences can be controlled by setting of the
Max attribute. Any repeated element will be created from the
original provided element. The elements will interact with their
siblings – other repeated elements under the same elements –
as if they were placed under a Sentence Container.

<R Name=”All at once” Max=”3”>
<S Name=”Sentence #1”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
</S>
</R>

At first the R element will contain no Sentence #1 element, then
there will be 1 such element, 2 such elements, up to 3 such
elements as defined by the Max attribute. In each case they will
be used in concatenation, similar to how a Sentence Container
having multiple elements would behave.

User Guide www.fortra.com page: 57

Configuration Elements / Sentences

Name Type Usage
Sentence
Procedure

SP Defines an element which calls some functionality that is
provided outside beSTORM's main programming code. This
allows beSTORM to use the capabilities of external libraries such
as OpenSSL, Mathematical Algorithm,etc., as well as provide the
builders of custom modules the ability to introduce into
beSTORM additional proprietary functionality. The value of a
Sentence Procedure can be retrieved by using a Procedure
Conditioned element and querying the value returned by the
Sentence Procedure's execution. See more details on external
functionality provided by beSTORM at the External Functionality
section.

<SP Name=”Add Function”Library=”.dll”
Procedure=”Add”>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”Fixed Header Size” Value=”0x10”/>
</S>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”Fixed Body Size” Value=”0x40”/>
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”Return Size” ASCIIValue=”4” />
</S>
</SP>
<S Name=”Use return value”>
<PC Name=”Value of Add” ConditionedName=”Add
Function” Parameter=”Output”/>
</S>

The value returned by the SP element in this case, as we are
using the mathematical function of Add will be in hexadecimal
form 0x0050, the size of 4 indicts that we are interested in
receiving 4 bytes in the result.

User Guide www.fortra.com page: 58

Configuration Elements / Sentences

Name Type Usage
Protocol P The element just under the Module sentence, protocols define

one or more state at which the module can work at. In similar
fashion to the Sentence Enumerate the Protocol element defines
a group of Sentence elements that will be used in sequence –
one after the other – similar in behavior to an or between
elements, either one is used or the other.

<P Name=”Simple Protocol”><S Name=”A very simple
sentence”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
<C Name=”Second constant in the block”
ASCIIValue=”This is my value” />
</S>
<S Name=”A more complex sentence”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
<B Name=”Second buffer in the
block”ASCIIDefault=”This is my default #2” />
</S>
</P>

Module M The root element under which the module is built, only one
occurrence can appear in any one module, in addition only
Protocol elements can appear under it. In similar fashion to the
Sentence Enumerate the Module element defines a group of
Protocol elements that will be used in sequence – one after the
other – similar in behavior to an or between elements, either one
is used or the other.

<M Name=”BasicModule”>
<P Name=”SimpleProtocol”>
<S Name=”Avery simplesentence”>
<B Name=”Firstbuffer intheblock”
ASCIIDefault=”This is my default” />
<C Name=”Secondconstant inthe block”
ASCIIValue=”This is my value”/>
</S>
<S Name=”Amore complexsentence”>
<B Name=”First buffer in the block”
ASCIIDefault=”This is my default” />
<B Name=”Second buffer in the block”
ASCIIDefault=”This is my default #2” />
</S>
</P>
</M>

User Guide www.fortra.com page: 59

Configuration Elements / Internal functionality

Internal functionality
The Sentence Procedure can be used to call functions that are provided by beSTORM's
internal mechanisms. Currently, these mechanisms include support for SOCKET operations,
including Connect, Receive, Send, Listen and Accept.

Accept – Allows accepting an incoming connection.

Parameter Description
SOCKET [required] The previously created SOCKET parameter (should be created by a

Listen call).

<S Name=”SOCKET”>
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>

Timeout The timeout period between an Accept call and the time beSTORM
will report a timeout. By default the value is 5 seconds (values are
given in whole seconds), a value of “-1” defines an infinite timeout
value (never times out).

<S Name=”Timeout”>
<C Name=”Timeout value ”ASCIIValue=”3” />
</S>

ReceiveOnAccept Tells beSTORM whether to issue a receive as soon as the
connection is accepted or not, valid values are '0' or '1'. By default
the value is set to '1'.

<S Name=”My ReceiveOnAccept”
ParamName=”ReceiveOnAccept”>
<C Name=”ReceiveOnAccept” ASCIIValue=”0”/>
</S>

User Guide www.fortra.com page: 60

Configuration Elements / Internal functionality

Parameter Description
[Return Value] Five return values are sent back, “ASOCKET” which is passed to any

follow up SOCKET operation, “Received” which returns the amount
of data returned if the ReceiveOnAccept has been enabled, “Data”
which returns the data returned if the ReceviedOnAccept has been
enabled, “RETRY” which returns whether an accept operation has
timed out and “CounterDown” which reports how many non-open
Accept sockets we currently have.

<SP Name="Listener" Library="INTERNAL"
Procedure="Listen">
<S Name="Protocol Type">
<EV Name="Local Protocol Type" Description="Local
Protocol Type" ASCIIValue="udp" />
</S>
<S Name="Local Port">

Connect – Connect to a remote host.

Parameter Description
Hostname
[required]

The hostname, IPv4 address, or IPv6 address to connect to.

<S Name=”Hostname”>
<C Name=”Hostname
value”ASCIIValue=”www.beyondsecurity.com”/>
</S>

Port
[required]

The port with which the Hostname parameter will be accessed, a
numerical value should be provided.

<S Name=”Port”>
<C Name=”Port value” ASCIIValue=”80” />
</S>

Source Port Some protocols require the source port to be defined (SIP is an example),
for those scenarios you can define the Source Port, the ability to define
which Source Port will be used only works in a UDP connection, numerical
value should be provided.

<S Name=”My Source Port” ParamName=”Source Port”>
<C Name=”Source Port” ASCIIValue=”5060”/>
</S>

User Guide www.fortra.com page: 61

http://www.beyondsecurity.com/

Configuration Elements / Internal functionality

Parameter Description
Protocol
Type
[required]

The protocol type to which beSTORM will listen to, supported types are
TCP and UDP.

<S Name=”My Protocol Type” ParamName=”Protocol Type”>
<C Name=”Protocol Type” ASCIIValue=”udp”/>
</S>

[Return
Value]

Four return values are sent back, “SOCKET” which is passed to any
followup SOCKET operation, “RETRY” which returns whether a connection
operation has timed out, “Status” which returns whether we failed or were
successful in connecting, “Source Port” what source port was used for the
connection, and “CounterUp” which reports how many open Connect
sockets we currently have.

<SP Name="Parameters for Connect"
Library="INTERNAL"Procedure="Connect">
<S Name="Protocol Type">
<EV Name="Protocol Type" ASCIIValue="tcp"
Description="Remote Protocol Type" Required="1"/>
</S>
<S Name="Port">
<EV Name="Port" ASCIIValue="179" Description="Remote
Port" Required="1"/>
</S>
<S Name="Hostname">
<EV Name="Hostname" ASCIIValue="192.168.1.1"
Description="Remote Hostname" Required="1"/>
</S>
</SP>

Send/SendEx – Send content to the server (with a 65,535 size limit or 16,777,216 size limit).

Parameter Description
SOCKET
[required]

The pre-created SOCKET parameter (should be created by an Listen call or
Connect call).

<S Name=”SOCKET”>
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>

User Guide www.fortra.com page: 62

Configuration Elements / Internal functionality

Parameter Description
Data
[required]

The data that will be sent by way of the pre-created socket.

<S Name=”Data”>
<C Name=”Data value”ASCIIValue=”Our data”/>
</S>

[Return
Value]

One return value is sent back, “Sent” which contains how much data was
successfully sent.

<SP Name="BGP First Packet" Library="INTERNAL"
Procedure="SendEx">
<S Name="SOCKET">
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>
<S Name="Data"/>
</SP>

Receive/ReceiveEx – Receive content from the server (with a 65,535 size limit or
16,777,216 size limit).

Parameter Description
SOCKET
[required]

The pre-created SOCKET parameter (should be created by an Listen
call or Connect call).

<S Name=”SOCKET”>
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>

Timeout This defines how long will beSTORM wait for data to come in, value is
provided in milliseconds. By default beSTORM will wait for a period of
100 milliseconds.

<S Name=”Timeout”>
<C Name=”Timeout value” ASCIIValue=”1500”/>
</S>

ReceiveDoneOn This defines for beSTORM whether to continue receiving until this
characters are found in the response or a timeout has occurred, or
just do a single cycle of receive / wait for a timeout.

<S Name="ReceiveDoneOn">
<C Name="220 Marker" ASCIIValue="220"/>
</S>

User Guide www.fortra.com page: 63

Configuration Elements / Internal functionality

Parameter Description
ForceReceive This defines for beSTORM whether a failure to receive will be

considered an error and force beSTORM to stop, or whether it will be
ignored. Value should be either '0' or '1'. By default beSTORM will
ignore failed receives.

<S Name="ForceReceive">
<EV Name="ForceReceive" Description="Force
receiving data from remote host" ASCIIValue="0" />
</S>

[Return Value] Three return values are sent back, “RETRY” which returns whether a
receive operation has timed out, “CounterDown” which reports how
many sockets we currently have open, “Received” which contains the
data received from the socket.

<SP Name="Parameters for Receive"
Library="INTERNAL" Procedure="Receive">
<S Name="SOCKET">
<PC Name="Socket Value" ConditionedName="Parameters
for Connect" Parameter="SOCKET" />
</S>
<S Name="Timeout">
<EV Name="Timeout Value" ASCIIValue="500"
Description="Remote Receive Timeout" />
</S>
</SP>

Disconnect – Close an open socket.

Parameter Description
SOCKET
(required)

The pre-created SOCKET parameter (should be created by a Listen call).

<S Name=”SOCKET”>
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>

[Return
Value]

One return value is sent back, “CounterDown” which reports how many
non-open Accept sockets we currently have.

<S Name="SOCKET">
<PC Name="Socket" ConditionedName="Parameters for
Connect" Parameter="SOCKET"/>
</S>
</SP>

User Guide www.fortra.com page: 64

Configuration Elements / External functionality

External functionality
As mentioned, the Sentence Procedure can be used to call functions that are provided by
code provided outside beSTORM's main source code. Some functionality is shipped with
beSTORM's setup file, while others can be provided by the builder of the modules or 3rd
parties.

The following external functionality is provided by beSTORM and can be incorporated into
custom modules you build:

FILE UTILS.DLL
Using the File Utils.dll's Write and WriteEx procedure you can instruct beSTORM to write the
content fuzzed by it to a file. As beSTORM can generate hundreds of thousands of files and
more, one of beSTORM's file writer functionalities allows it to create sub-directories under
which it will place the files, this to prevent any one directory from containing too many files
which might put a burden on the operating system. In addition, beSTORM generates the file
names of the files it writes based on the SHA Digest value of the data written, this provides
an added performance gain as no duplicate data sets are saved.

Write – Allows writing of fuzzed content into a file (files up to 65530 bytes long).

Parameter Description
Data
[required]

The data that is written by beSTORM's file writer.

<S Name=”My Data” ParamName=”Data”>
<C Name=”Identify the bitmap file” ASCIIValue=”BM” />
<L Name=”Size of the bitmap” ConditionedName=”Image
Data” Size=”4” />
<B Name=”Reserved” Default=”0x00,0x00,0x00,0x00”
MaxBytes=”4” MinBytes=”4”/>
</S>

User Guide www.fortra.com page: 65

Configuration Elements / External functionality

Parameter Description
Directory
Splitter

Defines how many characters will be used to create a sub directory
hierarchy.

<S Name=”Directory Splitter” ParamName=”Directory
Splitter” >
<EV Name=”Directory Splitter” Description=”Directory
Splitter size” ASCIIValue=”2” />
</S>

NOTE: The sub directory structure is automatically generated by
beSTORM.

Path Defines under which root directory will beSTORM place the files it is
about to write.

<S Name=”Pathto save files to” ParamName=”Path” >
<EV Name=”Path” Description=”Path to store files”
ASCIIValue=”C:\Temp\” />
</S>

NOTE: The files are not overwritten if they are already present, nor is
the root directory created if it does not exist.

Extension Defines what file extension will be given to the files beSTORM creates.

<S Name=”File Extension” ParamName=”Extension”>
<EV Name=”Extension” Description=”Extension”
ASCIIValue=”bmp”/>
</S>

[Limitations] This function can only write up to 65,330 bytes of data, use WriteEx for
larger files.

User Guide www.fortra.com page: 66

Configuration Elements / External functionality

Parameter Description
[Return Value] No return value.

<SP Name=”Writer” Library=”File Utils.dll”
Procedure=”Write”>
<S Name=”Path to save files to ”ParamName=”Path” >
<EV Name=”Path” Description=”Path to store files”
ASCIIValue=”C:\Temp\”/>
</S>
<S Name=”Directory Splitter” ParamName=”Directory
Splitter”>
<EV Name=”Directory Splitter” Description=”Directory
Splitter size" ASCIIValue=”2” />
</S>\
<S Name=”File Extension” ParamName=”Extension” >
<EV Name=”Extension” Description=”Extension”
ASCIIValue=”bmp”/>
</S>
<SC Name=”My Data” ParamName=”Data” >
<S Name=”Color-mapped images” >
<C Name=”Identify the bitmap file” ASCIIValue=”BM” />
<C Name=”Size of the bitmap”
Value=”0x00,0x00,0x00,0x01” />
<B Name=”Reserved” Default=”0x00,0x00,0x00,0x00”
MaxBytes=”4” MinBytes=”4”/>
</S>
</SC>
</SP>

WriteEx – Allows writing of fuzzed content into a file (files up to 16,777,210 bytes long).

Parameter Description
Data
[required]

The data that is written by beSTORM's file writer.

<S Name=”My Data” ParamName=”Data”>
<C Name=”Identify the bitmap file” ASCIIValue=”BM” />
<L Name=”Size of the bitmap” ConditionedName=”Image
Data” Size=”4” />
<B Name=”Reserved” Default=”0x00,0x00,0x00,0x00”
MaxBytes=”4” MinBytes=”4”/>
</S>

User Guide www.fortra.com page: 67

Configuration Elements / External functionality

Parameter Description
Directory
Splitter

Defines how many characters will be used to create a sub-directory
hierarchy.

<S Name=”Directory Splitter” ParamName=”Directory
Splitter”>
<EV Name=”Directory Splitter” Description=”Directory
Splitter size” ASCIIValue=”2” />
</S>

NOTE: The sub directory structure is automatically generated by
beSTORM.

Path Defines under which root directory will beSTORM place the files it is
about to write.

<S Name=”Path” ParamName=”Path” >
<EV Name=”Path” Description=”Path to store files”
ASCIIValue=”C:\Temp\” />
</S>

NOTE: The files are not overwritten if they are already present, nor is
the root directory created if it does not exist.

Extension Defines what file extension will be given to the files beSTORM creates.

<S Name=”File Extension” ParamName=”Extension” >
<EV Name=”Extension” Description=”Extension”
ASCIIValue=”bmp”/>
</S>

[Limitations] This function can only write up to 16,777,210 bytes of data.

User Guide www.fortra.com page: 68

Configuration Elements / External functionality

Parameter Description
[Return Value] No return value.

<SP Name=”Writer” Library=”File Utils.dll”
Procedure=”WriteEx”>
<S Name=”Path” ParamName=”Path”>
<EV Name=”Path” Description=”Path to store
files”ASCIIValue=”C:\Temp\” />
</S>
<S Name=”Directory Splitter” ParamName=”Directory
Splitter”>
<EV Name=”Directory Splitter” Description=”Directory
Splitter size” ASCIIValue=”2” />
</S>\
<S Name=”Extension” ParamName=”Extension”>
<EV Name=”Extension” Description=”Extension”
ASCIIValue=”bmp”/>
</S>
<SC Name=”My Data” ParamName=”Data”>
<S Name=”Color-mapped images” >
<C Name=”Identify the bitmap file” ASCIIValue=”BM” />
<C Name=”Size of the bitmap”
Value=”0x00,0x00,0x00,0x01” />
<B Name=”Reserved” Default=”0x00,0x00,0x00,0x00”
MaxBytes=”4” MinBytes=”4”/>
</S>
</SC>
</SP>

Using File Utils.dll's Read function you can read external content, such as an RSA public key
file and use it for beSTORM's internal workings.

Read – Read a file as input for beSTORM.

Parameter Description
Filename
[required]

The name of the file to open, the filename should be provided in ASCII
with a full path leading to the file.

<S Name=”Filename” ParamName=”Filename”>
<C Name=”Filename to open” ASCIIValue=”C:\boot.ini” />
</S>

[Limitations] This function can only read up to 65530 bytes of data.

User Guide www.fortra.com page: 69

Configuration Elements / External functionality

Parameter Description
[Return Value] The content of the file that was read.

<SP Name=”Reader” Library=”File Utils.dll”
Procedure=”Read”>
<S Name=”Filename” ParamName=”Filename”>
<EV Name=”File to read” Description=”Path to read the
file from” ASCIIValue=”C:\boot.ini” />
</S>
</SP>

File Utils.dll provides you access to Device Drivers by way of the functions Win32CreateFile,
CloseHandle, CtlCode, and DeviceIoControl.

Win32CreateFile – Open a device driver for access (this allows access to Win32CreateFile
function).

Parameter Description
Filename [required] The name of the file to open, the filename should be provided in

ASCII with a full path leading to the file.

<S Name=”Filename” ParamName=”Filename”>
<EV Name="Filename value" ASCIIValue="\\.\DVWD"
Description="CreateFile Filename" />
</S>

DesiredAccess
[required]

This provides the CreateFile function with the argument of
dwDesiredAccess. See Win32 documentation for valid values, the
expected size of this value is exactly 4 bytes.

<S Name="DesiredAccess">
<C Name="DesiredAccess value" Value="C0 00 00
00" />
</S>

Example values:

l GENERIC_READ 80 00 00 00

l GENERIC_WRITE 40 00 00 00

l GENERIC_EXECUTE 20 00 00 00

l GENERIC_ALL 10 00 00 00

User Guide www.fortra.com page: 70

Configuration Elements / External functionality

Parameter Description
ShareMode [required] This provides the CreateFile function with the argument of

dwShareMode. See Win32 documentation for valid values, the
expected size of this value is exactly 4 bytes.

<SName="ShareMode">
<C Name="ShareModevalue" Value="0000 0007" />
</S>

Example values:

l FILE_SHARE_READ00000001

l FILE_SHARE_WRITE 0000 0002

l FILE_SHARE_DELETE 0000 0004

CreationDisposition
[required]

This provides the CreateFile function with the argument
ofdwShareMode. See Win32 documentation for valid values, the
expected size of this value is exactly 4 bytes.

<SName="CreationDisposition">
<C Name="CreationDispositionvalue" Value="000000
03"/>
</S>

Example values:

l CREATE_NEW00000001

l CREATE_ALWAYS 0000 0002

l OPEN_EXISTING 00 0000 03

l OPEN_ALWAYS 00 0000 04

l TRUNCATE_EXISTING 0000 0005

User Guide www.fortra.com page: 71

Configuration Elements / External functionality

Parameter Description
[Return Value] A handle to the file that was created.

<SP Name="Win32CreateFile"
Procedure="Win32CreateFile" Library="File
Utils.dll">
<S Name="Filename">
<EV Name="Filename value" ASCIIValue="\\.\DVWD"
Description="CreateFile Filename" />
</S>
<S Name="DesiredAccess">
<C Name="DesiredAccess value" Value="C0 00 00
00" />
</S>
<S Name="ShareMode">
<C Name="ShareMode value" Value="00 00 00 07" />
</S>
<S Name="CreationDisposition">
<C Name="CreationDisposition value" Value="00 00
00 03" />
</S>
</SP>

Win32DeviceIoControl – Send a control IO to a device driver (this allows access to Win32
DeviceIoControl function).

Parameter Description
HANDLE
[required]

The handle of the previously called Win32CreateFile function.

<S Name="HANDLE">
<PC Name="HANDLE" ConditionedName="Win32CreateFile"
Parameter="HANDLE"/>
</S>

User Guide www.fortra.com page: 72

Configuration Elements / External functionality

Parameter Description
IoControlCode
[required]

This provides the DeviceIoControl function with the argument of
dwIoControlCode See Win32 documentation for valid values, the
expected size of this value is exactly 4 bytes.

NOTE: The best way to return this generate this value is to use the
CtlCode function

<SP Name="IoControlCode" Procedure="Win32CtlCode"
Library="File Utils.dll">
<S Name="DeviceType">
<C Name="DeviceType value" Value="00000022"
Comment="FILE_DEVICE_UNKNOWN" />
</S>
<S Name="Function">
<C Name="Function value" Value="00 00 08 01" />
</S>
<S Name="Method">
<C Name="Method value" Value="00 00 00 03"
Comment="METHOD_NEITHER" />
</S>
<S Name="Access">
<C Name="Access value" Value="00 00 00 03"
Comment="FILE_READ_DATA | FILE_WRITE_DATA" />
</S>
</SP>

InBuffer
[required]

The data you would like to send the device driver,

Win32CtlCode – Send a control IO to a device driver (this allows access to Win32CTL_CODE
macro).

Parameter Description
DeviceType
[required]

This provides the CTL_CODE macro with the argument of dwDeviceType.
See Win32 documentation for valid values, the expected size of this value
is exactly 4 bytes.

<S Name="DeviceType">
<C Name="DeviceType value" Value="00000022"
Comment="FILE_DEVICE_UNKNOWN" />
</S>

User Guide www.fortra.com page: 73

Configuration Elements / External functionality

Parameter Description
Function
[required]

This provides the CTL_CODE macro with the argument of dwFunction. See
Win32 documentation for valid values, the expected size of this value is
exactly 4 bytes.

<S Name="Function">
<C Name="Function value" Value="00 00 08 01" />
</S>

Method
[required]

This provides the CTL_CODE macro with the argument of dwMethod. See
Win32 documentation for valid values, the expected size of this value is
exactly 4 bytes.

<S Name="Method">
<C Name="Method value" Value="00 00 00 03"
Comment="METHOD_NEITHER" />
</S>

Access
[required]

This provides the CTL_CODE macro with the argument of dwAccess. See
Win32 documentation for valid values, the expected size of this value is
exactly 4 bytes.

<S Name="Access">
<C Name="Access value" Value="00 00 00 03"
Comment="FILE_READ_DATA | FILE_WRITE_DATA" />
</S>

User Guide www.fortra.com page: 74

Configuration Elements / External functionality

Parameter Description
[Return
Value]

Returns the ControlCode that should be supplied to the
Win32DeviceIoControl function.

<SP Name="Win32DeviceIoControl"
Procedure="Win32DeviceIoControl" Library="File
Utils.dll">
<S Name="HANDLE">
<PC Name="HANDLE" ConditionedName="Win32CreateFile"
Parameter="HANDLE"/>
</S>
<S Name="InBuffer">
<B Name="InBuffer value" />
</S>
<SP Name="IoControlCode" Procedure="Win32CtlCode"
Library="File Utils.dll">
<S Name="DeviceType">
<C Name="DeviceType value" Value="00000022"
Comment="FILE_DEVICE_UNKNOWN" />
</S>
<S Name="Function">
<C Name="Function value" Value="00 00 08 01" />
</S>
<S Name="Method">
<C Name="Method value" Value="00 00 00 03"
Comment="METHOD_NEITHER" />
</S>
<S Name="Access">
<C Name="Access value" Value="00 00 00 03"
Comment="FILE_READ_DATA | FILE_WRITE_DATA" />
</S>
</SP>
</SP>

Win32CloseHandle – Closes a previously opened device driver (this allows access toWin32
CloseHandle function).

Parameter Description
HANDLE
[required]

The handle of the device driver that you would like to close.

<S Name="HANDLE">
<PC Name="HANDLE" ConditionedName="Win32CreateFile"
Parameter="HANDLE"/>
</S>

User Guide www.fortra.com page: 75

Configuration Elements / External functionality

MATH UTILS.DLL
The Math Utils.dll provides several functions that can be incorporated into beSTORM's
modules, this includes:

l Binary2Dec – converts a binary number into its decimal form, i.e. from 0x1020 to
4128

l Dec2Binary – converts a decimal form number to its binary equivalent, i.e. from 4128
to 0x1020

l Random – returns a random number Add – adds two or more numbers Sub –
subtracts two numbers

l Multi – multiples two or more numbers Divide – divides two numbers
l ReverseBytes – reverses the order of the bytes it is provided with, i.e. from 0x1021 to

0x1201
l Adler32 – calculates the Adler checksum algorithm of a provided data set
l CRC32 – calculates the cyclic redundancy check algorithm value of a provided data

set
l CRC16 – calculates the cyclic redundancy check algorithm value of a provided data

set in two forms IBM and CCITT
l ChecksumFletcher – calculates the checksum of a provided data using Fletcher's

algorithm
l OR, AND, XOR and NOT – calculates the result of two values of 4 bytes with the

logical operator OR, AND, XOR and NOT respectively

Binary2Dec – Allows conversion of a binary value into its decimal form.

Parameter Description
Data
[required]

The data that is converted by beSTORM's binary to decimal function, the
largest binary value that can be converted is 0xFFFFFFFF (2 32 -1).

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01,0x21” />
</S>

User Guide www.fortra.com page: 76

Configuration Elements / External functionality

Parameter Description
Size
[required]

The length of the string to return by the function, valid values are based on
the decimal conversion that return anything from 1 to 10 characters (for
values 2 32 -1) long, the function treats the Size parameter it receives as
decimal data.

<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Calculate Binary2Dec” Procedure=”Binary2Dec”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01,0x21”/>
</S>
<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>
</SP>

Execution of the above sample will return “8449” without the quotes.

Dec2Binary – Allows conversion of a decimal value into its binary form.

Parameter Description
Data
[required]

The data that is converted by beSTORM's decimal to binary function, the
largest number that can be converted is 2 32 -1 (4,294,967,295).

<S Name=”Data” ParamName=”Data”>
<C Name=”decimal value” ASCIIValue=”289” />
</S>

Size
[required]

The length of the binary data to return by the function, valid values are
based on the binary conversion that return anything from 1 to 4 bytes (for
values 2 32 -1) long, the function treats the Size parameter it receives as
decimal data.

<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

User Guide www.fortra.com page: 77

Configuration Elements / External functionality

Parameter Description
[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Calculate Dec2Binary” Procedure=”Dec2Binary”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”decimal value” ASCIIValue=”289” />
</S>
<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>
</SP>

Execution of the above sample will return “0x21,0x1,0x00,x00” without the
quotes in binary form – the DWORD value of 0x00000121.

Random – Returns a random number.

Parameter Description
Size
[required]

The length of the binary data to be returned by the function, valid values
are from 1 to 4 bytes long, the function treats the Size parameter it
receives as decimal data.

<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

NOTE: You cannot control the seed value of the random function.

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Return Random” Procedure=”Random”
Library=”Math Utils.dll”>
<S Name=”Size” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”3” />
</S>
</SP>

Execution of the above sample will return (in our case) “ 0x33,0x12,0x01 ”
without the quotes in binary form – the DWORD value of 0x011233.

Add – Adds two or more numbers together (equivalent to A+B+C...).

User Guide www.fortra.com page: 78

Configuration Elements / External functionality

Parameter Description
A [required] The data that is added by beSTORM's add function, the function treats the

A parameter it receives as binary data, only up to 4 bytes can be added.

<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x12,0x03” />
</S>

B [required] The data that is added by beSTORM's add function, the function treats the
B parameter it receives as binary data, only up to 4 bytes can be added.

<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x30,0x21” />
</S>

Size
[required]

The length of the binary data to return by the function, valid values are
based on the binary conversion that return anything from 1 to 4 bytes (for
values 2 32 -1) long, the function treats the Size parameter it receives as
decimal data.

<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

C The data that is added by beSTORM's add function, the function treats the
C parameter it receives as binary data, only up to 4 bytes can be added.

<S Name=”Third Parameter” ParamName=”C”>
<C Name=”C's value” Value=”0x11,0x12” />
</S>

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Add Numbers” Procedure=”Add” Library=”Math
Utils.dll”>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x12,0x03” />
</S>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x30,0x21” />
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”3” />
</S>
</SP>

Execution of the above sample will return “ 0x42,0x24,0x00 ” without the
quotes in binary form – the 3 BYTES value of 0x002442.

User Guide www.fortra.com page: 79

Configuration Elements / External functionality

Sub – Subtracts two numbers (equivalent to A-B).

Parameter Description
A [required] The data that is subtracted by beSTORM's sub function, the function

treats the A parameter it receives as binary data, only up to 4 bytes can be
subtracted.

<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x01,0x23” />
</S>

B [required] The data that is subtracted by beSTORM's sub function, the function
treats the B parameter it receives as binary data, only up to 4 bytes can be
subtracted.

<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x03,0x21” />
</S>

Size
[required]

The length of the binary data to return by the function, valid values are
based on the binary conversion that return anything from 1 to 4 bytes (for
values 2 32 -1) long, the function treats the Size parameter it receives as
decimal data.

<S Name=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Subtracts Numbers” Procedure=”Sub”
Library=”Math Utils.dll”>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x12,0x03” />
</S>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x30,0x21” />
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”3” />
</S>
</SP>

Execution of the above sample will return “0xE2,0xE1,0xFF” without the
quotes in binary form – the 3 BYTES value of 0xFFE1E2, note that we have
underflowed causing the number to appear with a 0xFF at the rightmost
byte.

User Guide www.fortra.com page: 80

Configuration Elements / External functionality

Multi – Multiplies two or more numbers (equivalent to A*B*C..).

Parameter Description
A [required] The data that is multiplied by beSTORM's multiplier function, the function

treats the A parameter it receives as binary data, only up to 4 bytes can be
multiplied.

<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x01,0x23” />
</S>

B [required] The data that is multiplied by beSTORM's multiplier function, the function
treats the B parameter it receives as binary data, only up to 4 bytes can be
multiplied.

<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x03,0x21” />
</S>

Size
[required]

The length of the multiplied data to return by the function, valid values are
based on the binary conversion that return anything from 1 to 4 bytes
(forvalues 2 32 -1) long, the function treats the Size parameter it receives
as decimal data.

<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

C The data that is multiplied by beSTORM's multiplier function, the function
treats the C parameter it receives as binary data, only up to 4 bytes can be
multiplied.

<S Name=”Third Parameter” ParamName=”C”>
<C Name=”C's value” Value=”0x03,0x21” />
</S>

User Guide www.fortra.com page: 81

Configuration Elements / External functionality

Parameter Description
[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Multiple Numbers” Procedure=”Multi”
Library=”Math Utils.dll”>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x12,0x03” />
</S>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x30,0x21” />
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”3” />
</S>
</SP>

Execution of the above sample will return “0x60,0xE5,0x65” without the
quotes in binary form – the 3 BYTES value of 0x65E560.

Divide – Divides two numbers (equivalent to A/B).

Parameter Description
A [required] The data that is divided by beSTORM's divider function, the function treats

the A parameter it receives as binary data, only up to 4 bytes can be
divided.

<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x01,0x23” />
</S>

B [required] The data that is divided by beSTORM's divider function, the function treats
the B parameter it receives as binary data, only up to 4 bytes can be
divided.

<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x03,0x21” />
</S>

Size
[required]

The length of the binary data to return by the function, valid values are
based on the binary conversion that return anything from 1 to 4 bytes (for
values 2 32 -1) long, the function treats the Size parameter it receives as
decimal data.

<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”4” />
</S>

User Guide www.fortra.com page: 82

Configuration Elements / External functionality

Parameter Description
Zero The data that is returned by beSTORM's divider function whenever a divide

by zero has happened, the function treats the Zero parameter it receives
as binary data, only up to 4 bytes can be placed in it. By default the Zero
value is returned as -1 (that is, all the returned bits are marked with the bit
1 (one)).

<S Name=”Zero” ParamName=”Zero”>
<C Name=”Zero's value” Value=”0xFF,0xFF” />
</S>

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Divide Numbers” Procedure=”Divide”
Library=”Math Utils.dll”>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x12,0x03” />
</S>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x30,0x21” />
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value”ASCIIValue=”3” />
</S>
</SP>

Execution of this sample will return “ 0x00,0x00,0x00 ” without the quotes
in binary form – the 3 BYTES value of 0x000000.

<SP Name=”Divide Numbers #2” Procedure=”Divide”
Library=”Math Utils.dll”>
<S Name=”Second Parameter” ParamName=”B”>
<C Name=”B's value” Value=”0x12,0x03” />
</S>
<S Name=”First Parameter” ParamName=”A”>
<C Name=”A's value” Value=”0x30,0x21” />
</S>
<S Name=”Size Parameter” ParamName=”Size”>
<C Name=”size value” ASCIIValue=”3” />
</S>
</SP>

Execution of the above sample will return “ 0x0A,0x00,0x00 ” without the
quotes in binary form – the 3 BYTES value of 0x00000A.

User Guide www.fortra.com page: 83

Configuration Elements / External functionality

ReverseBytes – Reverse the bytes of one or more bytes (equivalent to little endian to big
endian conversion and visa versa).

Parameter Description
Data
[required]

The data that is reversed by beSTORM's reverse bytes function, the
function treats the Data parameter it receives as binary data, up to 4 bytes
can be reversed.

<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” Value=”0x01,0x02,0x03” />
</S>

[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Reverse the Bytes” Procedure=”ReverseBytes”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” Value=”0x01,0x02,0x03” />
</S>
</SP>

Execution of the above sample will return “ 0x03,0x02,0x01 ” without the
quotes in binary form – the 3 BYTES value of 0x010203.

Adler32 – Calculates the Adler32 value of a provided data set (Based on
http://en.wikipedia.org/wiki/Adler-32).

Parameter Description
Data
[required]

The data that is provided to the Adler32 algorithm, the function treats the
Data parameter it receives as binary data, there is no limit to the incoming
data set size.

<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the Adler32 value (4 bytes)” />
</S>

User Guide www.fortra.com page: 84

http://en.wikipedia.org/wiki/Adler-32

Configuration Elements / External functionality

Parameter Description
[Return
value]

The ' Output ' value contains the content returned by the function.

<SP Name=”Adler32 Calculation” Procedure=”Adler32”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the Adler32 value (4 bytes)” />
</S>
</SP>

Execution of the above sample will return “ 0xE8,0x10,0x36,0xB6 ” without
the quotes in binary form – the DWORD value of 0xB63610E8.

CRC32 – Calculates the CRC32 value of a provided data set (Based on
http://en.wikipedia.org/wiki/CRC-32).

Parameter Description
Data
[required]

The data that is provided to the CRC32 algorithm, the function treats the
Data parameter it receives as binary data, there is no limit to the incoming
data set size.

<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the CRC32 value (4 bytes)” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”CRC32 Calculation” Procedure=”CRC32”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the CRC32 value (4 bytes)” />
</S>
</SP>

Execution of the above sample will return “0x4F,0xDA,0xA8,0xE8” without
the quotes in binary form – the DWORD value of 0xE8A8DA4F.

CRC16CCITT – CRC16 CCITT calculates the value of CRC16 using the following calculation:
x16 + x12 + x5 + 1.

User Guide www.fortra.com page: 85

http://en.wikipedia.org/wiki/CRC-32

Configuration Elements / External functionality

Parameter Description
Data
[required]

The data that is provided to the CRC16 CCITT algorithm, the function
treats the Data parameter it receives as binary data, there is no limit to the
incoming data set size.

<SName=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the CRC16 value (2 bytes)” />
</S>

Initial CRC16 supports a variety of initializing values, by default CRC16 CCITT
sets the initializing value to 0x0000 (zero). There are several commonly
used initializing values, 0x0000, 0x1D0F and 0xFFFF.

<S Name=”Initial” ParamName=”Initial”>
<C Name=”Initial's value” Value=”0x1D, 0x0F” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”CRC16 CCITT Calculation”
Procedure=”CRC16CCITT” Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”123456789” />
</S>
</SP>

Execution of the above sample will return “0x31,0xC3” without the quotes
in binary form – the WORD value of 0xC331.

CRC16IBM – CRC16 IBM calculates the value of CRC16 using the following calculation: x16
+ x15 + x2 + 1.

Parameter Description
Data
[required]

The data that is provided to the CRC16 IBM algorithm, the function treats
the Data parameter it receives as binary data, there is no limit to the
incoming data set size.

<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the CRC16 value (2 bytes)” />
</S>

User Guide www.fortra.com page: 86

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”CRC16 IBM Calculation” Procedure=”CRC16IBM”
Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”123456789” />
</S>
</SP>

Execution of the above sample will return “0xBB,0x3D” without the quotes
in binary form – the WORD value of 0x3DBB.

ChecksumFletcher – Fletcher checksum calculates the checksum value of the data using
the Fletcher algorithm.

Parameter Description
Data
[required]

The data that is provided to the Fletcher checksum algorithm, the function
treats the Data parameter it receives as binary data, there is no limit to the
incoming data set size.

<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”Return in binary
form the Checksum result using the Fletcher algorithm
(2 bytes)” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”Fletcher Calculation”
Procedure=”ChecksumFletcher” Library=”Math Utils.dll”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Data's value” ASCIIValue=”123456789” />
</S>
</SP>

Execution of the above sample will return “ 0xDD,0x01 ” without the
quotes in binary form – the WORD value of 0x01DD.

OPENSSL UTILS.DLL
The OpenSSL Utils.dll provides several functions that can be incorporated into beSTORM's
modules, this includes:

User Guide www.fortra.com page: 87

Configuration Elements / External functionality

l MD2Hash – Calculate the MD2 value of a data set
l MD4Hash – Calculate the MD4 value of a data set
l MD5Hash – Calculate the MD5 value of a data set
l SHA1Hash – Calculate the SHA1 value of a data set
l SHA224Hash – Calculate the SHA224 value of a data set
l SHA256hash – Calculate the SHA256 value of a data set
l SHA384Hash – Calculate the SHA384 value of a data set
l SHA512Hash – Calculate the SHA384 value of a data set
l Base64Encode – Return the base64 encoded form of a data set
l Base64Decode – Return the plain text form from a base64 encoded data set
l HexConvert – Convert a given data set's binary form to hexadecimal string form
l AESECBEncrypt – Encrypts the data provided to it using the AES (Advanced

Encryption Standard) ECB mode (Electronic Cookbook)
l AESECBDecrypt – Decrypts the data provided to it using the AES (Advanced

Encryption Standard) ECB mode (Electronic Cookbook)
l AESCBCEncrypt – Encrypts the data provided to it using the AES (Advanced

Encryption Standard) CBC mode (Cipher-block chaining)
l AESCBCDecrypt – Decrypts the data provided to it using the AES (Advanced

Encryption Standard) CBC mode (Cipher-block chaining)
l AESCFBEncrypt – Encrypts the data provided to it using the AES (Advanced

Encryption Standard) CFB mode (Cipher feedback)
l AESCFBDecrypt – Decrypts the data provided to it using the AES (Advanced

Encryption Standard) CFB mode (Cipher feedback)
l AESOFBEncrypt – Encrypts the data provided to it using the AES (Advanced

Encryption Standard) OFB mode (Output feedback)
l AESOFBDecrypt – Decrypts the data provided to it using the AES (Advanced

Encryption Standard) OFB mode (Output feedback)
l RSAPublicEncrypt – Encrypts the data provided to it using the standard RSA (Ron

Rivest, Adi Shamir and Leonard Adleman) proposed algorithm
l RSAPrivateDecrypt – Decrypts the data provided to it using the standard RSA

(RonRivest, Adi Shamir and Leonard Adleman) proposed algorithm
l HMAC_MD5 – Hashes the provided data with the HMAC MD5 algorithm
l HMAC_SHA1 – Hashes the provided data with the HMAC SHA1 algorithm

MD2Hash, MD4Hash, and MD5 –Calculate the MD2, MD4, and, MD5 value of a dataset.

User Guide www.fortra.com page: 88

Configuration Elements / External functionality

Parameter Description
Data
[required]

The data that is calculated for its MD2, MD4 and MD5 value by
beSTORM's MD2, MD4, and MD5 hashing function.

<SName=”Data”ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”There is no limit
to the incoming data, outgoing data is always 16 bytes
long” />
<S>

[Return
value]

The 'Output' value contains the content returned by the function.

SHA1Hash, SHA224Hash, SHA256Hash, SHA384Hash, and SHA512Hash – Calculate the
SHA1, SHA224, SHA256, SHA384, and SHA512 value of a data set.

Parameter Description
Data
[required]

The data that is calculated for its SHA1, SHA224, SHA256, SHA384, and
SHA512 value by beSTORM's SHA1, SHA224, SHA256, SHA384, and
SHA512 hashing function, the return value is receptively 20, 28,32, 48, and
64 bytes long.

<SName=”Data”ParamName=”Data”>
<C Name=”binary value”ASCIIValue=”There is no limit to
the incoming data, outgoing data is depended on the
hashing function called” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

Base64Encode – Encode a given dataset into its base64 encoded form.

Parameter Description
Data
[required]

The data that is encoded with the Base64 algorithm.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”There is no limit
to the incoming data, outgoing data is dependent on
the type of data that comes in” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

User Guide www.fortra.com page: 89

Configuration Elements / External functionality

HexConvert – Converts a binary stream into its hexadecimal equivalent.

Parameter Description
Data
[required]

The data that is converted into its hexadecimal form, binary data in the
form of “0x02,0x30,0x10,0x20” (as it is provided to beSTORM) will return
as 02301020.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”1234” />
</S>

Will return as 31323334.

[Return
value]

The 'Output' value contains the content returned by the function.

AESECBEncrypt and AESECBDecrypt – Encrypts and decrypts the provided data using the
key respectively. Key length can be either 16 (128), 24 (192) or 32 (256) bytes (bits) long.

Parameter Description
Data
[required]

The provided data is either encrypted or decrypted using the key value
given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the AES ECB algorithm on”
ASCIIValue=”Protect me” />
</S>

Key
[required]

The provided key used for both encrypting and decrypting. The Key value
needs to be either 16, 24 or 32 bytes long depending on the value of
KeySize given to the function. If the provided Key value shorter than
required, the Key is padded with NULL (0x00) characters.

<S Name=”Key” ParamName=”Key”>
<C Name=”The Key that is used by the AES EBC algorithm
(16 bytes in this case)” ASCIIValue=”1234567890123456”
/>
</S>

User Guide www.fortra.com page: 90

Configuration Elements / External functionality

Parameter Description
KeySize
[required]

The key size that is to be used with the AES ECB algorithm. Valid values
are 16, 24 or 32 in their ASCII form. If the value of KeySize does not match
16, 24 or 32 the value of 16 is used.

<S Name=”Key Size”> ParamName=”KeySize”>
<C Name=”The key size we desire” ASCIIValue=”16” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="AESECB Round" Procedure="AESECBDecrypt"
Library="OpenSSL Interface.dll">
<SP Name="Data" Procedure="AESECBEncrypt"
Library="OpenSSL Interface.dll">
<S Name="Data" ParamName=”Data”>
<C Name="ascii value" ASCIIValue="Encrypt Me" />
</S>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>

AESCBCEncrypt and AESCBCDecrypt – Encryptsand decrypts the provided data using the
key respectively. Key length can be either 16 (128), 24 (192) or 32 (256) bytes (bits) long.

Parameter Description
Data
[required]

The provided data is either encrypted or decrypted using the key value
given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the AES CBC algorithm on”
ASCIIValue=”Protect me” />
</S>

Key
[required]

The provided key used for both encrypting and decrypting. The Key value
needs to be either 16, 24 or 32 bytes long depending on the value of
KeySize given to the function. If the provided Key value shorter than
required, the Key is padded with NULL (0x00) characters.

<S Name=”Key” ParamName=”Key”>
<C Name=”The Key that is used by the AES CBC algorithm
(16 bytes in this case)” ASCIIValue=”1234567890123456”
/>
</S>

User Guide www.fortra.com page: 91

Configuration Elements / External functionality

Parameter Description
KeySize
[required]

The key size that is to be used with the AES CBC algorithm. Valid values
are 16, 24 or 32 in their ASCII form. If the value of KeySize does not match
16, 24 or 32 the value of 16 is used.

<S Name=”Key Size” ParamName=”KeySize”>
<C Name=”The key size we desire” ASCIIValue=”16” />
</S>

IV The initial vector used for encryption. The length of the initial vector can
be up to 16 bytes long, if no value is provided for it the initial vector of 0
(zero) is used. If the IV value provided is shorter than 16 bytes, the IV is
padded with NULL (0x00) characters.

<S Name=”IV” ParamName=”IV”>
<C Name=”The IV value we want to use”
ASCIIValue=”1234567890123456” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="AESCBC Round" Procedure="AESCBCDecrypt"
Library="OpenSSL Interface.dll">
<SP Name="Data" Procedure="AESCBCEncrypt"
Library="OpenSSL Interface.dll">
<S Name="Data" ParamName=”Data”>
<C Name="ascii value" ASCIIValue="Encrypt Me" />
</S>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>

AESCFBEncrypt and AESCFBDecrypt – Encrypts and decrypts the provided data using the
key respectively. Key length can be either 16 (128), 24 (192) or 32(256) bytes (bits) long.

User Guide www.fortra.com page: 92

Configuration Elements / External functionality

Parameter Description
Data
[required]

The provided data is either encrypted or decrypted using the key value
given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the AES CFB algorithm on”
ASCIIValue=”Protect me” />
</S>

Key
[required]

The provided key used for both encrypting and decrypting. The Key value
needs to be either 16, 24 or 32 bytes long depending on the value of
KeySize given to the function. If the provided Key value shorter than
required, the Key is padded with NULL (0x00) characters.

<S Name=”Key” ParamName=”Key”>
<C Name=”The Key that is used by the AES CFB algorithm
(16 bytes in this case)” ASCIIValue=”1234567890123456”
/>
</S>

KeySize
[required]

The key size that is to be used with the AES CFB algorithm. Valid values
are 16, 24 or 32 in their ASCII form. If the value of KeySize does not match
16, 24 or 32 the value of 16 is used.

<S Name=”Key Size” ParamName=”KeySize”>
<C Name=”The key size we desire” ASCIIValue=”16” />
</S>

IV The initial vector used for encryption. The length of the initial vector can
be up to 16 bytes long, if no value is provided for it the initial vector of 0
(zero) is used. If the IV value provided is shorter than 16 bytes, the IV is
padded with NULL (0x00) characters.

<S Name=”IV” ParamName=”IV”>
<C Name=”The IV value we want to use”
ASCIIValue=”1234567890123456” />
</S>

User Guide www.fortra.com page: 93

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="AESCFB Round" Procedure="AESCFBDecrypt"
Library="OpenSSL Interface.dll">
<SP Name="Data" Procedure="AESCFBEncrypt"
Library="OpenSSL Interface.dll">
<S Name="Data" ParamName=”Data”>
<C Name="ascii value" ASCIIValue="Encrypt Me" />
</S>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>

AESCBCEncrypt and AESCBCDecrypt – Encrypts and decrypts the provided data using the
key respectively. Key length can be either 16 (128), 24 (192) or 32 (256) bytes (bits) long.

Parameter Description
Data
[required]

The provided data is either encrypted or decrypted using the key value
given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the AES CBC algorithm on”
ASCIIValue=”Protect me” />
</S>

User Guide www.fortra.com page: 94

Configuration Elements / External functionality

Parameter Description
Key
[required]

The provided key used for both encrypting and decrypting. The Key value
needs to be either 16, 24 or 32 bytes long depending on the value of
KeySize given to the function. If the provided Key value shorter than
required, the Key is padded with NULL (0x00) characters.

<S Name=”Key” ParamName=”Key”>
<C Name=”The Key that is used by the AES CBC
algorithm (16 bytes in this case)”
ASCIIValue=”1234567890123456” />
</S>

KeySize
[required]

The key size that is to be used with the AES CBC algorithm. Valid values
are 16, 24 or 32 in their ASCII form. If the value of KeySize does not match
16, 24 or 32 the value of 16 is used.

<S Name=”Key Size” ParamName=”KeySize”>
<C Name=”The key size we desire” ASCIIValue=”16” />
</S>

IV The initial vector used for encryption. The length of the initial vector can
be up to 16 bytes long, if no value is provided for it the initial vector of 0
(zero) is used. If the IV value provided is shorter than 16 bytes, the IV is
padded with NULL (0x00) characters.

<S Name=”IV” ParamName=”IV”>
<C Name=”The IV value we want to use”
ASCIIValue=”1234567890123456” />
</S>

User Guide www.fortra.com page: 95

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="AESCFB Round" Procedure="AESCBCDecrypt"
Library="OpenSSL Interface.dll">
<SP Name="Data" Procedure="AESCBCEncrypt"
Library="OpenSSL Interface.dll">
<S Name="Data" ParamName=”Data”>
<C Name="ascii value" ASCIIValue="Encrypt Me" />
</S>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>

AESOFBEncrypt and AESOFBDecrypt – Encrypts and decrypts the provided data using the
key respectively. Key length can be either 16 (128), 24 (192) or 32 (256) bytes (bits) long.

Parameter Description
Data
[required]

The provided data is either encrypted or decrypted using the key value
given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the AES OFB algorithm on”
ASCIIValue=”Protect me” />
</S>

User Guide www.fortra.com page: 96

Configuration Elements / External functionality

Parameter Description
Key
[required]

The provided key used for both encrypting and decrypting. The Key value
needs to be either 16, 24 or 32 bytes long depending on the value of
KeySize given to the function. If the provided Key value shorter than
required, the Key is padded with NULL (0x00) characters.

<S Name=”Key” ParamName=”Key”>
<C Name=”The Key that is used by the AES OFB algorithm
(16 bytes in this case)” ASCIIValue=”1234567890123456”
/>
</S>

KeySize
[required]

The key size that is to be used with the AES OFB algorithm. Valid values
are 16, 24 or 32 in their ASCII form. If the value of KeySize does not match
16, 24 or 32 the value of 16 is used.

<S Name=”Key Size”ParamName=”KeySize”>
<C Name=”The key size we desire” ASCIIValue=”16” />
</S>

IV The initial vector used for encryption. The length of the initial vector can
be up to 16 bytes long, if no value is provided for it the initial vector of 0
(zero) is used. If the IV value provided is shorter than 16 bytes, the IV is
padded with NULL (0x00) characters.

<S Name=”IV” ParamName=”IV”>
<C Name=”The IV value we want to use
”ASCIIValue=”1234567890123456” />
</S>

User Guide www.fortra.com page: 97

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="AESCFB Round" Procedure="AESOFBDecrypt"
Library="OpenSSL Interface.dll">
<SP Name="Data" Procedure="AESOFBEncrypt"
Library="OpenSSL Interface.dll">
<S Name="Data" ParamName=”Data”>
<C Name="ascii value" ASCIIValue="Encrypt Me" />
</S>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>
<S Name="Key" ParamName=”Key”>
<C Name="key value" ASCIIValue="This is a key 16" />
</S>
<S Name="Key Size" ParamName=”KeySize”>
<C Name="keySize value" ASCIIValue="24" />
</S>
</SP>

RSAPublicEncrypt – Encrypts the provided data using the public key. RSA encryption's
padding method is set to RSA_PKCS1_OAEP_PADDING.

Parameter Description
Data
[required]

The provided data is either encrypted using the key value given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the RSA Public Key encryption”
ASCIIValue=”Protect me” />
</S>

User Guide www.fortra.com page: 98

Configuration Elements / External functionality

Parameter Description
PublicKey
[required]

The provided public key used for encryption. The key is either what is
referred to by OpenGPG as armored key, base 64 encoded form of the key,
or its binary form (BER encoded).

<S Name=”PublicKey” ParamName=”Public-Key”>
<C Name="Key" ASCIIValue="-----BEGIN RSA PUBLIC KEY----
-
MIGHAoGBALPLeJAQ7+Rl5ZL3Bb1USsLfgEoT/5eeQkpTO6rL0is3m5D
zr+oeUrIQ+ep8ZxNC
k041Bcp81JJ+OYXY8sRYoirAP2qbGIe6SxrasFsK0jhJN/z53tHYnRr
w8Ry9wlVDh7v06IqRbRL
+byHIJJyDWF7AQcFoXgMbc6zCLg08+9nzAgED-----END RSA
PUBLICKEY----" />
</S>

User Guide www.fortra.com page: 99

Configuration Elements / External functionality

Parameter Description
PublicKeyM
ode

The public key mode sets whether the Public Key is in its base64 encoded
form or in its binary form. A value of 0x00 (zero) tells beSTORM that we are
going to provide a binary form public key, while a value of 0x01 (one) tells
beSTORM that we are going to provide a base 64 encoded form of the
public key. Base64 encoded form supports unlimited length of public keys,
while the binary form supports up to 128 bytes long key. By default the
Public Key Mode is textual (base64 encoded).

<S Name="PublicKeyMode" ParamName=”Public-Key-Mode” >
<C Name="Value" Value="0x00" />
</S>
<S Name="PublicKey" ParamName=”Public-Key” >
<C Name="Key" Value="0xb3, 0xcb, 0x78, 0x90, 0x10,
0xef,
0xe4, 0x65, 0xe5, 0x92, 0xf7, 0x05, 0xbd, 0x54,
0x4a,0xc2,
0xdf, 0x80, 0x4a, 0x13, 0xff, 0x97, 0x9e, 0x42, 0x4a,
0x53,
0x3b, 0xaa, 0xcb, 0xd2, 0x2b, 0x37, 0x9b, 0x90, 0xf3,
0xaf,
0xea, 0x1e, 0x52, 0xb2, 0x10, 0xf9, 0xea, 0x7c, 0x67,
0x13,
0x42, 0x93, 0x4e, 0x35, 0x05, 0xca, 0x7c, 0xd4, 0x92,
0x7e,
0x39, 0x85, 0xd8, 0xf2, 0xc4, 0x58, 0xa2, 0x2a, 0xc0,
0x3f,
0x6a, 0x9b, 0x18, 0x87, 0xba, 0x4b, 0x1a, 0xda, 0xb0,
0x5b,
0x0a, 0xd2, 0x38, 0x49, 0x37, 0xfc, 0xf9, 0xde, 0xd1,
0xd8,
0x9d, 0x1a, 0xf0, 0xf1, 0x1c, 0xbd, 0xc2, 0x55, 0x43,
0x87,
0xbb, 0xf4, 0xe8, 0x8a, 0x91, 0x6d, 0x12, 0xfe, 0x6f,
0x21,
0xc8, 0x24, 0x9c, 0x83, 0x58, 0x5e, 0xc0, 0x41, 0xc1,
0x68,
0x5e, 0x03, 0x1b, 0x73, 0xac, 0xc2, 0x2e, 0x0d, 0x3c,
0xfb,
0xd9, 0xf3" />
</S>

User Guide www.fortra.com page: 100

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="Data" Procedure="RSAPublicEncrypt"
Library="OpenSSL Interface.dll">
<S Name="PublicKeyMode" ParamName=”Public-Key-Mode”>
<C Name="Value" Value="0x00" />
</S>
<S Name="PublicKey" ParamName=”Public-Key”>
<C Name="Key" Value="0xb3, 0xcb, 0x78, 0x90, 0x10,
0xef,
0xe4, 0x65, 0xe5, 0x92, 0xf7, 0x05, 0xbd, 0x54, 0x4a,
0xc2, 0xdf, 0x80, 0x4a, 0x13, 0xff, 0x97, 0x9e, 0x42,
0x4a, 0x53, 0x3b, 0xaa, 0xcb, 0xd2, 0x2b, 0x37, 0x9b,
0x90, 0xf3, 0xaf, 0xea, 0x1e, 0x52, 0xb2, 0x10, 0xf9,
0xea, 0x7c, 0x67, 0x13, 0x42, 0x93, 0x4e, 0x35, 0x05,
0xca, 0x7c, 0xd4, 0x92, 0x7e, 0x39, 0x85, 0xd8, 0xf2,
0xc4, 0x58, 0xa2, 0x2a, 0xc0, 0x3f, 0x6a, 0x9b, 0x18,
0x87, 0xba, 0x4b, 0x1a, 0xda, 0xb0, 0x5b, 0x0a, 0xd2,
0x38, 0x49, 0x37, 0xfc, 0xf9, 0xde, 0xd1, 0xd8, 0x9d,
0x1a, 0xf0, 0xf1, 0x1c, 0xbd, 0xc2, 0x55, 0x43, 0x87,
0xbb, 0xf4, 0xe8, 0x8a, 0x91, 0x6d, 0x12, 0xfe, 0x6f,
0x21, 0xc8, 0x24, 0x9c, 0x83, 0x58, 0x5e, 0xc0, 0x41,
0xc1, 0x68, 0x5e, 0x03, 0x1b, 0x73, 0xac, 0xc2, 0x2e,
0x0d, 0x3c, 0xfb, 0xd9, 0xf3" />
</S>
<S Name="Data" ParamName=”Data”>
<C Name="Encrypt me" ASCIIValue="Please encrypt this
data for me and show me it in plaintext" />
</SP>
</S>

RSAPrivateDecrypt – Decrypts the provided data using the private key. RSAdecryption's
padding method is set to RSA_PKCS1_PADDING.

Param
eter

Description

Data
[requir
ed]

The provided data is either decrypted using the key value given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the RSA Private Key decryption”
ASCIIValue=”Unscarmble me” />
</S>

User Guide www.fortra.com page: 101

Configuration Elements / External functionality

Param
eter

Description

Private
Key
[requir
ed]

The provided private key used for decryption. The key is either what is referred
to by OpenGPG as armored key, base64 encoded form of the key, or its binary
form (BER encoded).

<S Name="PrivateKey" ParamName=”Private-Key”>
<C Name="Key" ASCIIValue="-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQCzy3iQEO/kZeWS9wW9VErC34BKE/+XnkJKUzuqy9IrN5u
Q86/qHlK
yEPnqfGcTQpNONQXKfNSSfjmF2PLEWKIqwD9qmxiHuksa2rBbCtI4STf8+d
7R2J0a8PE
cvcJVQ4e79OiKkW0S/m8hyCScg1hewEHBaF4DG3Oswi4NPPv
Z8wIBAwKBgHfc+wq19ULumQykrn44Mdc/qtwNVQ++1tw3fRyH4XIlEmCidU
a+4cwLUUb
9mgzXDN7OA9xTOGGpe66Qodg7FsYMQVSedzkxUjUj+mawv
JUlRr917i8NRINdmpQD1rV8l2xAPMzxgP9Bx8f6hSx71bLTMty5Ft83bULO
9yZiDGp7AkEA
4+m1PcsgwI3+UGxwab348dVzxJzEGC+JyofOc8+kWJni7krDw
ETkGgcg5euOX9L5spf/Wzd5FIQBkmdnnrmoxwJBAMnztm+akS/BzNRMUJf5
X594agRcxyy
GzBoBcEQwoLAKtqZCk2bmsAG8VOpxS2nE2NDddveEOzPLx
vlT7AsvkXUCQQCX8SN+h2srCVQ1naBGfqX2jk0tvdgQH7Exr97338Llu+ye
3IKALe1mr2tD8l
7qjKZ3D/+SJPtjAqu275pp0RsvAkEAhqJ5n7xgyoEzODLgZVDqa
lBGrZMvcwSIEVZK2CBrIAckbtcM70R1Vn2N8aDc8S3l4JOkpQLSIofZ+41I
B3ULowJAGz9t
LqbixQteNwtGJ3v1Gy5wE7XNU6SbWSc0lbfWj+i6d9x/JmgMFX0X
crnj/4ExhQK8iUZL2JgDw0XA+JvEpw==
-----END RSA PRIVATE KEY " />
</S>

User Guide www.fortra.com page: 102

Configuration Elements / External functionality

Param
eter

Description

Private
KeyMo
de

The private key mode sets whether the Private Key is in its base 64 encoded
form or in its binary form. A value of 0x00 (zero) tells beSTORM that we are
going to provide a binary form private key, while a value of 0x01 (one) tells
beSTORM that we are going to provide a base 64 encoded form of the private
key. Base64 encoded form supports unlimited length of private keys, while the
binary form supports up to 128 bytes long key. By default the Private Key Mode
is textual (base64 encoded).

<S Name="PrivateKeyMode" ParamName=”Private-Key-Mode” >
<C Name="Value" Value="0x01" />
</S>
<S Name="PrivateKey" ParamName=”Private-Key”>
<C Name="Key" ASCIIValue="-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQCzy3iQEO/kZeWS9wW9VErC34BKE/+XnkJKUzu
qy9IrN5uQ86/qHlKyEPnqfGcTQpNONQXKfNSSfjmF2PLEWKIqwD9qmxiHuk
sa2rBbCtI4STf8+d7R
2J0a8PEcvcJVQ4e79OiKkW0S/m8hyCScg1hewEHBaF4DG3Oswi4NPPvZ8wI
BAwKB
gHfc+wq19ULumQykrn44Mdc/qtwNVQ++1tw3fRyH4XIlEmCidUa+4cwLUUb
9mgzXDN7OA9xTOG
Gpe66Qodg7FsYMQVSedzkxUjUj+mawvJUlRr917i8NRINdmpQD1rV8l2xAP
MzxgP9Bx8f6hSx71bL
TMty5Ft83bULO9yZiDGp7AkEA4+m1PcsgwI3+UGxwab348dVzxJzEGC+Jyo
fOc8+kWJni7krDwETk
Ggcg5euOX9L5spf/Wzd5FIQBkmdnnrmoxwJBAMnztm+akS/BzNRMUJf5X59
4agRcxyyGzBoBcEQw
oLAKtqZCk2bmsAG8VOpxS2nE2NDddveEOzPLxvlT7AsvkXUCQQCX8SN+h2s
rCVQ1naBGfqX2jk0t
vdgQH7Exr97338Llu+ye3IKALe1mr2tD8l7qjKZ3D/+SJPtjAqu275pp0Rs
vAkEAhqJ5n7xgyoEzODLgZV
DqalBGrZMvcwSIEVZK2CBrIAckbtcM70R1Vn2N8aDc8S3l4JOkpQLSIofZ+
41IB3ULowJAGz9tLqbixQ
teNwtGJ3v1Gy5wE7XNU6SbWSc0lbfWj+i6d9x/JmgMFX0Xcrnj/4ExhQK8i
UZL2JgDw0XA+JvEpw==
-----END RSA PRIVATE KEY " />
</S>

User Guide www.fortra.com page: 103

Configuration Elements / External functionality

Param
eter

Description

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name="RSAEncrypt Test" Procedure="RSAPrivateDecrypt"
Library="OpenSSL Interface.dll">
<S Name="PrivateKey" ParamName=”Private-Key”>
<C Name="Key" ASCIIValue="-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQCzy3iQEO/kZeWS9wW9VErC34BKE/+XnkJKUzuqy9IrN5u
Q86/qHlKyEPnqfGcTQpNONQXKfNSSfjmF2PLEWKIqwD9qmxiHuksa2rBbCt
I4STf8+d7R
2J0a8PEcvcJVQ4e79OiKkW0S/m8hyCScg1hewEHBaF4DG3Oswi4NPPvZ8wI
BAwKB
gHfc+wq19ULumQykrn44Mdc/qtwNVQ++1tw3fRyH4XIlEmCidUa+4cwLUUb
9mgzXDN7OA9xTO
GGpe66Qodg7FsYMQVSedzkxUjUj+mawvJUlRr917i8NRINdmpQD1rV8l2xA
PMzxgP9Bx8f6hSx71
bLTMty5Ft83bULO9yZiDGp7AkEA4+m1PcsgwI3+UGxwab348dVzxJzEGC+J
yofOc8+kWJni7krDw
ETkGgcg5euOX9L5spf/Wzd5FIQBkmdnnrmoxwJBAMnztm+akS/BzNRMUJf5
X594agRcxyyGzBoBc
EQwoLAKtqZCk2bmsAG8VOpxS2nE2NDddveEOzPLxvlT7AsvkXUCQQCX8SN+
h2srCVQ1naBGfqX2
jk0tvdgQH7Exr97338Llu+ye3IKALe1mr2tD8l7qjKZ3D/+SJPtjAqu275p
p0RsvAkEAhqJ5n7xgyoEzODLgZ
VDqalBGrZMvcwSIEVZK2CBrIAckbtcM70R1Vn2N8aDc8S3l4JOkpQLSIofZ
+41IB3ULowJAGz9tLqbixQt
eNwtGJ3v1Gy5wE7XNU6SbWSc0lbfWj+i6d9x/JmgMFX0Xcrnj/4ExhQK8iU
ZL2JgDw0XA+JvEpw==
-----END RSA PRIVATE KEY " />
</S>
<SP Name="Data" Procedure="RSAPublicEncrypt"
Library="OpenSSL Interface.dll">
<S Name="PublicKey" ParamName=”Public-Key”>
<C Name="Key" ASCIIValue="-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBALPLeJAQ7+Rl5ZL3Bb1USsLfgEoT/5eeQkpTO6rL0is3m5Dzr+o
eUrIQ
+ep8ZxNCk041Bcp81JJ+OYXY8sRYoirAP2qbGIe6SxrasFsK0jhJN/z53tH
YnRrw8Ry
9wlVDh7v06IqRbRL+byHIJJyDWF7AQcFoXgMbc6zCLg08+9nzAgED
-----END RSA PUBLIC KEY " /></S>
<S Name="Data" ParamName=”Data”>
<C Name="Encrypt me" ASCIIValue="Please encrypt this data
for me and show me it in plaintext" />
</S>
</SP>
</SP>

User Guide www.fortra.com page: 104

Configuration Elements / External functionality

HMAC_MD5 and HMAC_SHA1 – Generates a keyed-hash message authentication code
using MD5 or SHA1 respectively as the supporting algorithm.

Parameter Description
Data
[required]

The provided data is either decrypted using the key value given.

<S Name=”Data” ParamName=”Data”>
<C Name=”Value to use the RSA Public Key encryption”
ASCIIValue=”Protect me” />
</S>

Key
[required]

The key to be used by the HMAC algorithm for calculation of the keyed-
hash message value.

<S Name=”Key” ParamName=”Key”>
<C Name=”The key to use with HMAC” ASCIIValue=”My key
is my password” />
</S>

[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”HMAC_SHA1 Compute” Library=”OpenSSL
Interface.dll” Procedure=”HMAC_SHA1”>
<S Name=”Key” ParamName=”Key”>
<C Name=”The Key is the password”
ASCIIValue=”MyPassword” />
</S>
<S Name=”Data” ParamName=”Data”>
<C Name=”The data to compute for”
ASCIIValue=”MyUsername” />
</S>
</SP>

STREAM UTILS.DLL
The Stream Utils.dll provides several functions that can be incorporated into beSTORM's
modules, this includes:

l Left – Extracts up to the rightmost location of a provided data set
l Right – Extracts from the leftmost location of a provided data set
l Mid – Extracts the middle part of a data set
l Copy – Copies from a location a set number of characters from a provided data set

User Guide www.fortra.com page: 105

Configuration Elements / External functionality

l CopyFromChar – Finds a defined character and copies from there up to the end of a
provided data set

l CopyUntilChar – Copies until a defined character is found inside a provided data set
l LongToString and UnsignedLongToString – Converts up two 4 bytes of data into

their string form. These are ltoa() and ultoa() respectively equivalents
l NetBIOSEncode and NetBIOSDecode – either encodes or decodes respectively the

data provided to it into NetBIOS equivalent strings
l CopyFromCharReverse and CopyFromCharReverseInclusive – Finds in reverse (goes

backwards) a defined character and copies from there up to the end of a provided
data set, while the inclusive version copies also the character we looked for

l Find – returns the position of a provided string
l Patch – modifies an existing data set and replaces a given data in it
l Compare – compares to given data sets and returns either 0 for no match or 1 for

match
l ProcessLV – processes a provided data set and returns its data in accordance to its

Length Value structure

Left – Extracts up to the rightmost location of a provided data set.

Parameter Description
Data [required] The data that is used as the source from which beSTORM copies the

data from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from here []
to the end”/>
</S>

To [required] The rightmost location that beSTORM will copy the data to.

<S Name=”To” ParamName=”To”>
<C Name=”binary value” Value=”0x10” />
</S>

This will copy from the 16 th position up to the end of the string. An
error is returned if we try to copy from outside the data set.

TooShortCopy If there is insufficient data to copy, the function will copy as much as is
available instead of giving out an error.

<S Name=”TooShortCopy”>
<C Name=”TooShortCopy value” ASCIIValue=”1” />
</S>

User Guide www.fortra.com page: 106

Configuration Elements / External functionality

Right – Extracts from the leftmost location of a provided data set.

Parameter Description
Data
[required]

The data that is used as the source from which beSTORM copies the data
from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from the
beginning until here” />
</S>

From
[required]

The leftmost location that beSTORM will copy the data from.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x10” />
</S>

This will copy from beginning up to the 16 th position up. An error is
returned if we try to copy from outside the data set.

Mid – Extracts the middle part of a data set.

Parameter Description
Data
[required]

The data that is used as the source from which beSTORM copies the data
from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from a certain
location up to another location” />
</S>

From
[required]

The leftmost location that beSTORM will copy the data from.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x0B” />
</S>

This will copy from the 12th position. An error is returned if we try to copy
from outside the data set.

User Guide www.fortra.com page: 107

Configuration Elements / External functionality

Parameter Description
To [required] The rightmost location that beSTORM will copy the data from.

<S Name=”To” ParamName=”To”>
<C Name=”binary value” Value=”0x10” />
</S>

This will copy up to the 16th position. An error is returned if we try to copy
from outside the data set.

Copy – Copies from a location a set number of characters from a provided data set.

Parameter Description
Data
[required]

The data that is used as the source from which beSTORM copies the data
from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from a certain
location up to a given length” />
</S>

From
[required]

The leftmost location that beSTORM will copy the data from.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x0B” />
</S>

This will copy from the 12th position. An error is returned if we try to copy
from outside the data set.

Length
[required]

The number of characters that beSTORM will copy the data from.

<S Name=”Length” ParamName=”Length”>
<C Name=”binary value” Value=”0x10” />
</S>

This will copy 10 bytes. An error is returned if we try to copy from outside
the data set.

CopyFromChar – Finds a defined character and copies from there up to the end of a
provided data set.

User Guide www.fortra.com page: 108

Configuration Elements / External functionality

Parameter Description
Data
[required]

The data that is used as the source from which beSTORM copies the data
from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from a certain
location found by looking for a certain character” />
</S>

From
[required]

The leftmost location that beSTORM will start looking for the character.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x0B” />
</S>

Char
[required]

The character you seek to copy from.

<S Name=”Char” ParamName=”Char”>
<C Name=”binary value” Value=”0x0D” />
</S>

This will look for the 0x0D character in a stream and return any content
found after it, or nothing if it is not found.

Find – Returns the position of a sub-string inside a provided string.

Parameter Description
Data [required] The data that is used as the source from which beSTORM tries to

locate the data inside.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy from a
certain location found by looking for a string” />
</S>

From [required] The leftmost location that beSTORM will start looking for the sub
string.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x0B” />
</S>

User Guide www.fortra.com page: 109

Configuration Elements / External functionality

Parameter Description
Value [required] The value string you want to seek inside the Data set.

<S Name=”Value” ParamName=”Value”>
<C Name=”The string weare looking for”
ASCIIValue=”Cookie: ” />
</S>

This will look for the “Cookie: “ string (without the quotes) returns the
position if found, or 0 if not found, if the position of the sub-string is at
the beginning (at position 0) of the provided Data there is no way to
use this function's return value to determine whether we found or not
found the provided string.

PosAfterValue By setting this value you can tell the function whether to return the
position just after the provided Value or at the beginning of it, valid
values are 0x00 (for position of value) and 0x01 (for position after
value).

<S Name=”PosAfterValue" ParamName=”PosAfterValue”>
<C Name=”Flag of whether to return the position of
Value or just after it” Value=”0x01” />
</S>

CopyUntilChar – Copies until a defined character is found inside a provided data set.

Parameter Description
Data
[required]

The data that is used as the source from which beSTORM copies the data
from.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” ASCIIValue=”Copy until a
certain location found by looking for a certain
character” />
</S>

From
[required]

The leftmost location that beSTORM will start looking for the character.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x0B” />
</S>

User Guide www.fortra.com page: 110

Configuration Elements / External functionality

Parameter Description
Char
[required]

The character you seek to copy from.

<S Name=”Char” ParamName=”Char”>
<C Name=”binary value” Value=”0x0D” />
</S>

This will look for the 0x0D character in a stream and return any content
found before it, or nothing if it is not found.

LongToString and UnsignedLongToString – Converts a provide long value (up to 4 bytes)
into its string form by using the ltoa and ultoa function respectively. For the LongToString
function values larger than 2^31 will be regarded as negative values and the string returned
by the function will include a minus sign, while for the UnsignedLongToString function
values larger than 2^31 will not be regarded as negative.

Parameter Description
Data
[required]

The data that is used to provide the long value or unsigned long value
respectively.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>

User Guide www.fortra.com page: 111

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”LongToString convert” Library=”Stream
Utils.dll” Procedure=”LongToString”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Value” Value=”0x01, 0x02, 0x03, 0xF4” />
</S>
</SP>

Returns the value of -2011292471 (0x2D, 0x32, 0x30, 0x31, 0x31, 0x32,
0x39, 0x32, 0x34, 0x37, 0x31), as the DWORD value provided is
0xF4030201.

<SP Name=”UnsignedLongToString convert”
Library=”Stream Utils.dll”
Procedure=”UnsignedLongToString”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Value” Value=”0x01, 0x02, 0x03, 0xF4” />
</S>
</SP>

Returns the value of 4093837825 (0x34, 0x30, 0x39, 0x33, 0x38, 0x33,
0x37, 0x38, 0x32, 0x35), as the DWORD value provided is 0xF4030201.

NetBIOSEncode and NetBIOSDecode – NetBIOS has its own encoding mechanism, this is
supported by way of these two functions, either to encode or decode respectively.

Parameter Description
Data
[required]

The data that is used to provide the data to either encode or decode.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>

User Guide www.fortra.com page: 112

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”NetBIOSDecode data” Library=”Stream
Utils.dll” Procedure=”NetBIOSDecode”>
<SP Name=”Data” Comment=”NetBIOSEncode data”
Library=”Stream Utils.dll” Procedure=”NetBIOSEncode”>
<S Name=”Data” ParamName=”Data”>
<C Name=”Value” ASCIIValue=”Encode this” />
</S>
</SP>
</SP>

Patch – Modifies an existing data set and places another data set inside it. Patch cannot
insert new bytes into the original data set, rather it can only modify it.

Parameter Description
Data
[required]

The data that is used to provide the data to patch.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>

From
[required]

The location where to start the patch work.

<S Name=”From” ParamName=”From”>
<C Name=”From location” Value=”0x01 />
</S>

Patch
[required]

The data to patch with.

<S Name=”Patch” ParamName=”Patch”>
<C Name=”Patch value” Value=”0x03, 0x02” />
</S>

User Guide www.fortra.com page: 113

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”Patch call” Library=”Stream Utils.dll”
Procedure=”Patch”>
<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>
<S Name=”From” ParamName=”From”>
<C Name=”From location” Value=”0x01 />
</S>
<S Name=”Patch” ParamName=”Patch”>
<C Name=”Patch value” Value=”0x03, 0x02” />
</S>
</SP>

Would result in the following output: 0x01, 0x03, 0x02 , 0x04.

Compare – Compares two given sets of data and returns whether they match (0x01) or not
(0x00).

Parameter Description
A [required] The data that is used to provide the data to compare.

<S Name=”Data A”ParamName=”A”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>

B [required] The data that is used to provide the data to compare.

<S Name=”Data A”ParamName=”A”>
<C Name=”binary value” Value=”0x01,0x02, 0x03, 0x04”
/>
</S>

User Guide www.fortra.com page: 114

Configuration Elements / External functionality

Parameter Description
[Return
value]

The 'Output' value contains the content returned by the function.

<SP Name=”Compare call” Library=”Stream Utils.dll”
Procedure=”Compare”>
<S Name=”Data” ParamName=”A”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>
<S Name=”Data 2” ParamName=”B”>
<C Name=”binary value” Value=”0x01, 0x02, 0x03, 0x04”
/>
</S>
</SP>

Would result in the following output: 0x01.

ProcessLV – Process a given data set for a structure of Length Value and returns the LV
structure's components.

Parameter Description
Data [required] The data that is used to provide the data to compare.

<S Name=”Data” ParamName=”Data”>
<C Name=”binary value” Value=”0x03, 0x02, 0x03, 0x04”
/>
</S>

Size [required] The size of the length value (between 0x01 and 0x04).

<S Name=”Size” ParamName=”Size”>
<C Name=”binary value” Value=”0x01” />
</S>

From [required] The starting location from which the function will start processing.

<S Name=”From” ParamName=”From”>
<C Name=”binary value” Value=”0x00” />
</S>

User Guide www.fortra.com page: 115

Configuration Elements / Load a custom module

Parameter Description
NetworkOrder Whether to expect the length value to be in big-endian (host) or little-

endian (network). Big-endian 0x010203 stored in memory like so 0x01,
0x02, 0x03 while little-endian which is stored in memory like so 0x03,
0x02, 0x01. By default we length is expected to be in big-endian.

<S Name=”NetworkOrder” ParamName=”NetworkOrder”>
<C Name=”binary value” Value=”0x00” />
</S>

[Return value] Several output values return 'Data' – containing the data found inside
thestructure – 'Length' – the length found inside the structure and 'To' –
the position just after the 'Data', which can then be used for any follow-
up functions that need to know where the LV structure ended.

<SP Name="SP Process LV" Library="Stream Utils.dll"
Procedure="ProcessLV">
<S Name="NetworkOrder">
<C Name="Network Order" ASCIIValue="0" />
</S>
<S Name="From">
<C Name="From value" Value="0x00"/>
</S>
<S Name="Size">
<C Name="Size value" Value="0x02"/>
</S>
<S Name="Data">
<C Name="Length" Value="0x00, 0x04"/>
<C Name="Value" ASCIIValue="Noam"/>
</S>
</SP>
<S Name="Results">
<C Name="1" ASCIIValue="Length: "/>
<PC Name="V1" ConditionedName="SP Process LV"
Parameter="Length" />
<C Name="2" ASCIIValue="Data: " />
<PC Name="V2" ConditionedName="SP Process LV"
Parameter="Data" />
<C Name="3" ASCIIValue="To: " />
<PC Name="V3" ConditionedName="SP Process LV"
Parameter="To" />
</S>

Load a custom module

User Guide www.fortra.com page: 116

Configuration Elements / Load a custom module

You can load a Custom Module by selecting New Project from the Welcome page, and then
selecting Import a Custom Module from a BSM File. In some occasions the module you are
trying to write is malformed which in turn will trigger a Module Error Log dialog.

As shown in the above image, we tried to load the 'Math Utils Samples.bsp' but the XML
parser has detected an error at line 9, column 35. Proceed by fixing the issue reported, and
then selecting Retry, or select Abort and select another file.

User Guide www.fortra.com page: 117

beSTORM Monitoring / Overview

beSTORM Monitoring
Overview
beSTORM comes bundled with several samples of monitors:

l The SNMPMonitor.java monitor which utilizes the SNMP protocol to determine
whether the remote host's SNMP agent is alive.

l The gdb_monitor.pl utilizes the GNU Debugger to attach to the process and sends a
notification whenever the debugger detects that an error has occurred.

l The bestorm_tail.pl and bash_monitor.sh which tail a log file and based on detected
strings inform beSTORM whenever something out of the ordinary has occurred.

Monitoring consists of sending traffic to beSTORM traffic on two ports by way of UDP
packets, 6969 and 6970:

l 6969 allows you to notify beSTORM that an exception/vulnerability/a problem with
the product has been detected - whatever you send to this port will get documented,
up to 64K.

l Via communication on port 6970 (UDP) you can control beSTORM, all commands
return either the command issued followed by a FAILURE or SUCCESSFUL string,
except NOOP which returns a timestamp.

In most cases it is sufficient for the monitor to just send the NOOP command (which means
sending N O O P without spaces) to the remote beSTORM installation and letting beSTORM
know you are alive, and stop sending them when it wants to inform that something needs to
be reported to the user.

Available commands

Command Description Response
NOOP Allows you to tell beSTORM that the

monitor is still alive.
Returns NOOP followed by a
timestamp.

EXCEPTION Any text that follows this string will be
handled as an exception data that needs
to be reported to the user as a possible
vulnerability.

Returns either EXCEPTION
FAILURE if it failed to log
the exception or
EXCEPTION SUCCESS if it
was successful.

User Guide www.fortra.com page: 118

beSTORM Monitoring / Overview

Command Description Response
ERROR Any text that follows this string will be

handled as an error data that needs to be
reported to the user as a possible
problem with the testing process.

Returns either ERROR
FAILURE if it failed to log
the exception or ERROR
SUCCESS if it was
successful.

UP Tell beSTORM to speed up. Returns either UP FAILURE
if it failed to log the
exception or UP SUCCESS if
it was successful.

DOWN Tell beSTORM to speed down. Returns either DOWN
FAILURE if it failed to log
the exception or DOWN
SUCCESS if it was
successful.

FINISH If beSTORM is currently in PAUSED mode,
beSTORM will move to FINISH mode
which means that it will allow you load
another project if required.

Returns either FINISH STOP
FIRST if beSTORM is still
running and cannot be put
into FINISH mode or FINISH
SUCCESS if it was
successful.

l Code value of 0
means internal error
while trying to
process the FINISH
command.

l Code value of 1
means successfully
processed the FINISH
command.

l Code value of 2
means that we were
already in FINISH
state.

STOP Request that beSTORM to move to
PAUSED mode.

Returns either STOP
FAILURE if it failed to log
the exception or STOP
SUCCESS if it was
successful.

User Guide www.fortra.com page: 119

beSTORM Monitoring / Overview

Command Description Response
START Request that beSTORM to move to

RUNNING mode.
Returns either START
FAILURE if it failed to log
the exception or START
SUCCESS if it was
successful.

STATUS Ask beSTORM what is its running status,
possible status values are PRE_RUN,
RUNNING, CONCLUSION, FAILURE,
PAUSED, UNKNOWN and UNSET, the last
two status values should be regarded as
a failure of the beSTORM program and it
is recommended that beSTORM is
restarted.

EXIT Ask beSTORM to shutdown/exit. Returns either EXIT STOP
FIRST if beSTORM is still
running and cannot be put
into FINISH mode or EXIT
SUCCESS if it was
successful.

User Guide www.fortra.com page: 120

beSTORM Monitoring / Overview

Command Description Response
LOAD Ask beSTORM to load another beSTORM

project (settings.bsp file), any text the
follows this string will be used as the file
to load (for example,
LOADc:\project\settings.bsp).

Returns either one of these:
l LOAD FAILURE STOP

FIRST if beSTORM is
still running and
cannot load a new
project.

l LOAD FAILURE
FINISH FIRST if
beSTORM is in
PAUSED mode and
cannot load a new
project.

l LOAD FAILURE NO
FILENAME if no
filename has been
provided with the
command.

l LOAD FAILURE
CANNOT OPEN
(Code: …) if opening a
settings.bsp file that
was provided failed
due to some error
(open error codes).

l LOAD FAILURE
CHANGES
DISCARDED if loading
another project
caused the settings to
be lost.

l LOAD SUCCESS if
loading of another
project was
successful.

SAVE Ask beSTORM to save the current
beSTORM project.

Returns either SAVE STOP
FIRST if beSTORM is still
running and cannot save, or
SAVE SUCCESS if it was
successful.

User Guide www.fortra.com page: 121

beSTORM Monitoring / Overview

Command Description Response
VECTOR Ask beSTORM to load a specific Attack

Vector (for example,
VECTORM0:P0:B0.BT0:B0.BT0:B0.B
T0:SE0.CC0:SR3
(L0:B0.BT0.L5:B0.BT0.L10:B0.
BT0).E2.E3).

Returns either one of these:
l VECTOR STOP FIRST

if beSTORM is still
running and cannot
load a new attack
vector.

l VECTOR CHANGES
DISCARDED if loading
another attack vector
caused the settings to
be lost.

l VECTOR FAILURE if
the provided attack
vector was invalid to
the current beSTORM
configuration.

l VECTOR SUCCESS if
loading of a new
attack vector was
successful.

COUNTEXCEP
TION

Returns the number of exceptions found
so far.

Returns either
COUNTEXCEPTION
SUCCESS (Count: …) with
the number of exceptions
recorded, or
COUNTEXCEPTION
FAILURE if it was not
possible to return the
number of exceptions.

User Guide www.fortra.com page: 122

beSTORM Monitoring / Overview

Command Description Response
RETURNEXCE
PTION

Returns the data captured for a certain
exception.

Returns either one of these:
l Returns

RETURNEXCEPTION
FAILURE (Code: 1), if
no exceptions have
been recorded –
usually means that
beSTORM is currently
in an error state.

l Returns
RETURNEXCEPTION
FAILURE (Code: 2), if
the provided
exception number is
invalid (cannot be
parsed).

l Returns
RETURNEXCEPTION
FAILURE (Code: 3), if
the provided
exception number is
larger then the
number of exceptions
present (the first
exception is found at
position number
zero).

l Returns the exception
information in the
following structure:
RETURNEXCEPTION
SUCCESS New: %d,
CommentSize: %d,
Comment: %s,
ExceptionInforma
tionSize: %d,
ExceptionInforma
tion: %s,
ExceptionTypeSiz
e: %d,

User Guide www.fortra.com page: 123

beSTORM Monitoring / Overview

Command Description Response
ExceptionType:
%s, Time: %I64d,
AttackVectorCoun
t: %d,
AttackVector
[%d]: %s

SETTINGSCHA
NGED

Returns whether the current project's
settings have changed (due to beSTORM
running or user intervention).

Returns
SETTINGSCHANGED
SUCCESS (Code: %d) either
the value of 0 or 1 – either
false or true respectively.

STATS Returns the total number of sessions
generated up to this point as well as the
current SPS (momentary value, not
average).

CURRENTVEC
TOR

Returns the current attack vector
beSTORM is at.

INCREMENTV
ECTOR

The command is followed by a positive
number from 1 and up. The command will
move the module's position by the
provided number. Every 5000 increments
a status response is sent to provide
feedback to the progress (as increments
might take a few seconds to complete).
For example, INCREMENTVECTOR1000,
This will increment the module by 1000
attacks.

User Guide www.fortra.com page: 124

beSTORM Monitoring / Overview

Command Description Response
RETURNVECT
ORS

The command is followed by a full path
and filename, the tab character (0x09)
and the number of vectors to dump. The
full path and filename will be used as the
storing place for dumping the vectors.

For example:
RETURNVECTORSC:\TEMP\DUMP.TXT\
t1000.

(In the above sample the \t was used to
distinguish that we are supposed to put a
TAB character there)

After the command finishes, the file,
C:\TEMP\DUMP.TXT will contain 1000
attack vectors from the current position
of the module up to the 1000th position

User Guide www.fortra.com page: 125

beSTORM Monitoring / Overview

Command Description Response
RUNFOR The command is followed by a number.

The number tells beSTORM how many
combinations (attack vectors) to go
through. If used in combination with
VECTOR and RETURNVECTORS you can
beSTORM run in a distributed manner by
combining a VECTOR to load a pre-
fetched vector returned by the
RETURNVECTORS command, RUNFOR
1000 combinations to prevent it from
testing more the pre-fetched interval.

l For example: RUNFOR1000 will
make beSTORM run for 1000
combinations.

l To run beSTORM in parallel the
following would be required:

l Launch one instance of
beSTORM, generate the
module you desire to utilize
for testing, configure it and
save the settings file

l Distribute this settings file
between the beSTORM clients

l Relaunch the beSTORM and
issue the following command
by way of the command
interface:
RETURNVECTORSc:\temp\list
.txt\t1000
(NOTE the \t character which
needs to replace with a real
tab character, 0x09)

l Take the list of attack vectors
found inside c:\temp\list.txt
and for each of your
beSTORM instances open
them with the same settings
file and issue these
commands
VECTOR...

User Guide www.fortra.com page: 126

beSTORM Monitoring / Microsoft Windows monitoring

Command Description Response
(Take from the list.txt file)
RUNFOR1000
(So it matches the
RETURNVECTORS command)

Microsoft Windows monitoring
One of the complementary tools beSTORM provides is a monitoring tool that attaches to the
tested application or service and reports back to beSTORM all relevant information
concerning exceptions, crashes, and various errors. This allows both the user to have more
relevant information for reproducing the problem and detecting its cause, and beSTORM to
control the test progress.

The beSTORM monitor communication allows beSTORM to log vulnerability information,
stop test if necessary, wait while tested server is on high load, increase test speed if
possible and auto-start tested server in case of crash to automatically resume the
beSTORM test.

beSTORM monitor interfaces for Windows
beSTORM monitor has two interfaces for monitoring Windows:

To monitor Windows using the GUI interface

1. Open beSTORM Monitor.
2. Select the desired process/service from the Process Name list.
3. In Host, enter the desired host IP address.
4. Select Attach.

User Guide www.fortra.com page: 127

beSTORM Monitoring / Microsoft Windows monitoring

To monitor Windows using the Console interface

l To monitor a process, run Monitor.exe --attach_pid <Process ID of the
process we wish to monitor>--host <Host to report to>.

l To monitor a service, run Monitor.exe --host 127.0.0.1 --register_
debugger <Service executable name here, with extension>, and then
restart the service.

l To stop monitoring a service, run Monitor.exe --unregister_debugger
<Service executable name here, with extension>, and then restart the
service.

To view the full usage, simply run the application with no parameters and it would be
displayed on screen.

In addition, beSTORM provides use of the same functionality with different
monitors/debuggers such as gdb, OllyDbg or even your own proprietary monitoring tool.
Since the communication is through an easy to use UDP protocol, this allows you to best
suit the monitoring process to your test scenario or setup lab.

For Windows two additional components have been provided, one that allows utilizing of
OllyDbg as the debugger and the other to allow usage of WinDBG as the debugger.

For OllyDbg support, copy the enclosed OllyDbgbeSTORMPlugin.dll file to your OllyDbg
installation folder and start OllyDbg as usual. beSTORM is notified for every pause event
triggered in OllyDbg. See the OllyDbg.ini file for extra configurations or use the added
beSTORM configuration GUI.

User Guide www.fortra.com page: 128

beSTORM Monitoring / Linux monitoring

For WinDBG support, copy the enclosed MSEC.dll file to your WinDBG winext directory under
the WinDBG installation directory, modify the beSTORM supplied windbg.txt script to
correctly point to your beSTORM's client IP address and call the script from within
windbg.txt

Linux monitoring
For Linux monitoring you have several options to monitor your process, the first one is to
use GnuDB (debugger). This open source and widely available debugger can be instructed
to inform beSTORM whenever an exception occurs. A sample script named gdb_monitor.pl,
that performs this for you can be found under the beSTORM installation folder.

In some cases debugging is not possible as the process spawns new child processes, is a
kernel module, or any other reason, in those cases you can use a non-debugger beSTORM
monitor agent.

For example, one of the monitors that comes with beSTORM is the bestorm_tail.pl, this
script tails a provided file and looks for specific strings that it will then pass them to
beSTORM to inform him that some failure/exception has occurred. One of the most
common strings you can look for is SEGFAULT, this string if found inside a log file
generated by a program indicates that a segmentation fault (a crash, usually unhandled)
has occurred.

User Guide www.fortra.com page: 129

	Introduction
	System Requirements
	Hardware
	Software

	Welcome to beSTORM Screen
	Getting Started with beSTORM
	Fuzzing
	beSTORM Walkthrough
	Interface Overview
	Menu options
	Project Settings
	Module Browser
	Preview
	Test Information
	Test Progress
	Exception Information
	Conclusion Screen

	Auto Learn
	Network File Specification Auto Learn
	Generation (Editing the output into a beSTORM module):

	Environment Variables
	Module Buffer Types
	Custom Modules
	Configuration Elements
	Words
	Bits
	Sentences
	Internal functionality
	External functionality
	Load a custom module

	beSTORM Monitoring
	Overview
	Microsoft Windows monitoring
	Linux monitoring

