
order to effectively function, mathematics forms the back-
bone of all of kids’ emerging cognition. 

Infants’ and young children’s full engagement with amounts, 
quantities, and magnitudes—as well as their ability to navi-
gate space, and to conceptualize, manipulate, and transform 
objects—allows them to make fundamental sense of their 
surroundings. And right from birth, infants use mathematical 
information across a wide variety of domains—emotional, 
physical, and sensory—to “crack codes” and understand 
crucial patterns in their milieus. Biorhythms as well as music 
and language follow calculable orders. For example, newborn 
infants take statistics to achieve perception of the complex 
phonemic and syllabic properties of their native language (Bulf, 
Johnson, & Valenza, 2011). Likewise, by 6 months of age, 
infants discern differences in quantities of geometric figures, 
pictures, events, or sounds. Infants also understand addition 
and subtraction! In laboratory studies, when researchers add 
or subtract toys from behind a screen, babies expect the correct 
number of items to be present - and will register immense 
surprise if they do not add up (Cantrell & Smith, 2013). 

Mathematical patterns also surround children in nature. 
Snail shells, sunflower petals, pinecones, and pineapples, for 
example, all correspond to the Fibonacci sequence, in which 
each measurement is the sum of the previous two. Even 
inanimate objects operate in mathematical ways. Planets 
in the solar system follow elliptical orbits, and when a kid 
throws a ball here on earth, it will follow a parabolic trajec-
tory (Lewis, 2014). We can best support children’s cognitive 
development by keeping their mathematics experience and 
education fully embodied.

The Embodied Nature of 
Mathematical Learning

by Wendy L. Ostroff
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Children learn with their whole bodies, not just with 
their minds and brains. Such embodied cognition 
is especially important when it comes to learning 

about mathematics. Because math describes the proper-
ties, relationships, and patterns of our physical world, and 
because the human brain makes predictions and models in 
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Finger Counting

From the time they have mastered grasping, children use 
their hands and arms to explore and manipulate objects, to 
count and make comparisons. All children—no matter what 
society or situation they are raised in—engage their fingers 
at some point for counting, adding, and subtracting. Some, 
like New Guineans, use the entire body surface, naming and 
touching their right little finger first, and then moving to 
their wrists, elbows, shoulders, eyes, noses, mouths, and ears: 
a visceral landscape of the things they have counted (Ifrah, 
1985). Ancient civilizations, such as those of the Romans, 
Greeks, Egyptians, and Mesopotamians, used the left and 
right hands to indicate different place values, with the left 
hand representing the tens and hundreds places (Linde-
mann, Alipour, & Fischer, 2011). This practice fed into the 
invention of the abacus (the first calculator), which in effect 
transposed the fingers and body into beads that could be 
manipulated to work with even larger sums. Even the cave 
art of our ancestors, dated to about 27,000 years ago, shows 
clear and compelling evidence for the use of finger counting 
for integers (Overmann, 2021).

Scientific research shows that children’s fine motor dexterity 
and spatial skills at young ages are strongly associated with 
their development of mathematical skills later on (Fischer, 
Suggate, & Stoeger, 2020; Pitchford, Papini, Outhwaite, & 
Gulliford, 2016). One study found that the better children 
were at fine motor finger skills in the first grade, the higher 
they scored on number comparison and estimation in the 
second grade (Penner-Wilger, Fast, LeFevre, Smith-Chant, 
Skwarchuk, Kamawar, & Bisanz, 2007). Neuroscience research 
using functional magnetic resonance imaging has shown that 
the somatosensory areas of the brain which correspond to the 
fingers “light up” when kids do math, even in those kids who 
no longer use their fingers to calculate. The finger areas of the 
brain were engaged to an even greater extent as math problems 
became more complex, involving higher numbers and more 
manipulation (Berteletti & Booth, 2015). 

Still, many teachers have been led to believe that finger 
counting is immature or lazy and should be abandoned as 
soon as possible. Children around the world are routinely 
asked to not use their hands or bodies to count and do 
math problems in school. They are told that this is inap-
propriate or that it is cheating. But the cognitive science 
research clearly shows otherwise: children learn and master 
concepts of mathematics much more easily and seamlessly 
when they approach them in embodied ways. Our best bet 

for enhancing counting and number sense in children is to 
encourage them to use their fingers and bodies as much as 
possible when they engage in arithmetic.

Geometric Understanding

Children’s geometric understanding and abstract math-
ematical knowledge emerges as they move (Bautista, Roth, & 
Thom, 2012). As children romp around in outdoor spaces, 
they engage spatially with their environments. For example, 
a child may enact a patterned sequence such as going up and 
down a tree; might gather objects with similar geometric 
features and arrange them based on shape and alignment; or, 
might construct forts using found materials and spend the 
afternoon adjusting their alignment, spacing, and parti-
tioning. In outdoor play, children’s bodies become the prime 
source for exploring and investigating problems (McCluskey, 
Mulligan, & Van Bergen, 2019).

Without being conscious of it, children from many different 
cultures and milieus use the same rhythms to display mathe-
matical similarities and distinctions as they touch, manipulate, 
explore, feel, or hold three-dimensional geometrical solids. 
The common rhythms that children display reflect the exact 
geometrical properties of the objects themselves (Bautista, 
Roth, & Thom, 2012; Sheets-Johnstone, 2011). Researchers 
now believe that rhythm constitutes an essential and irreduc-
ible dimension of mathematical sense and communication. 
Similarly, the sounds that young children make as they interact 
with geometrical objects are consistent across completely 
different cultures, and reflect the geometrical similarities and 
distinctions of things that they manipulate (Bautista & Roth, 
2012). In one study, a child called Nadia had an insight when 
sorting shapes. When the researchers analyzed video of her 
movements just before her epiphany, they discovered that 
Nadia’s realization was enacted and expressed kinetically first. 
Her insight was observable well before she was consciously 
aware of the ideas that her body was enacting, and certainly 
before she was able to articulate the ideas verbally (Bautista, 
Roth, & Thom, 2012). Clearly, kids’ insights are not merely 
features of the mind. Their knowing comes via the engage-
ment and movements of their living bodies. In a sense, Nadia 
merged her body with the geometric objects in order to under-
stand them. In a similar way, my 4-year-old nephew, Henry, 
was recently experimenting with the calculations of making 
paper boats and trying out which ones were most seaworthy in 
the pool. After his careful hypothesis testing, Henry explained 
to me which designs afforded sinking and which ones afforded 
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individually, indoors—we risk greatly diminishing their full 
immersion into the complexity of the mathematical world. 
Prioritizing the mind over the body is an educational prac-
tice enmeshed in the colonial legacies of “civilizing” and 
“schooling” native people, and bent on controlling nature 
itself. If we instead configure kids’ mathematical experiences 
and lessons as situated, whole-body endeavors, we embrace 
the beauty and depth, elegance and nuance, from which 
their cognitive skills have already evolved and developed. 
Young children are all set up for deep and lasting embodied 
mathematical learning, we just have to make sure that our 
educational contexts bolster and nourish it.
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