

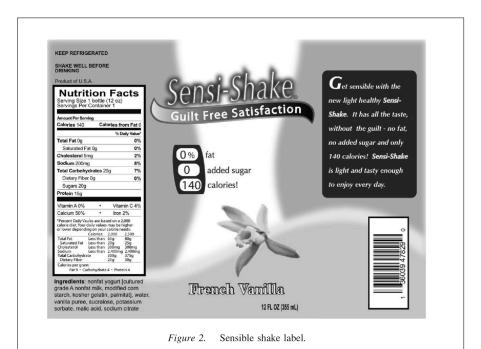
NYC 2018

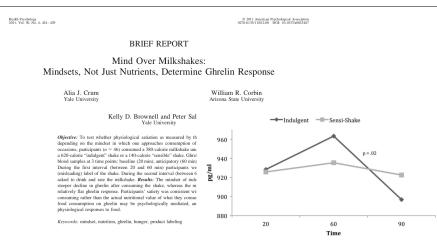
DISCLAIMER

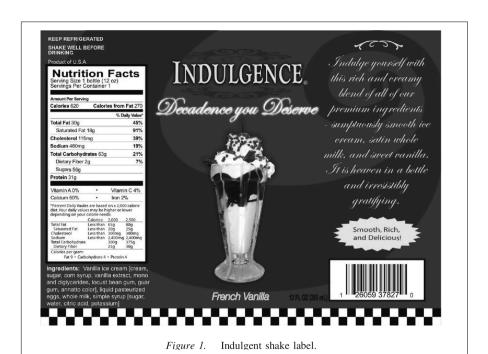
- ▶ i. The information, comments, and opinions expressed in these presentations are those of the speaker based on their own clinical experience and interpretation of the literature and for educational purposes only. You should evaluate the information, comments, and opinions using your own expertise coupled with an assessment for yourself, clients or patients.
- None of the content herein has been evaluated by the Food and Drug Administration. These ideas are not intended to diagnose, treat, cure, or prevent any disease.

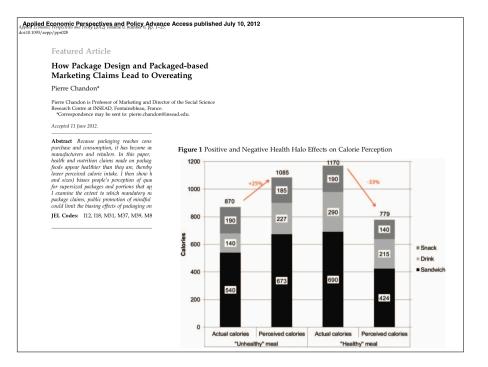
OUTLINE

- ▶ Essential Non-Nutritional Factors that Affect Ketosis
- **▶** Exercise and Time-Restricted Feeding
- ▶ **Gut health on keto**: key insights all keto dieters should know
- ▶ Importance of the Gut-Liver Axis on Ketosis
- ▶ Carb Cycling, Meal Prep and Seasonal Eating Tips
- Mindset & Meal Prep




IN 2002 THROWING OUT THE EGG YOLK WAS CONSIDERED HEALTHY THE EGG YOLK WAS CONSIDERED HEALTHY



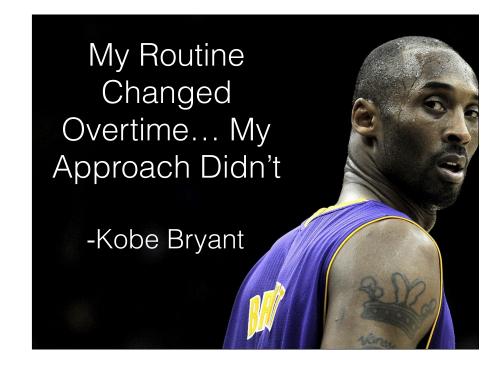


Participants' satiety was consistent with what they believed they were consuming rather than the actual nutritional value of what they consumed.

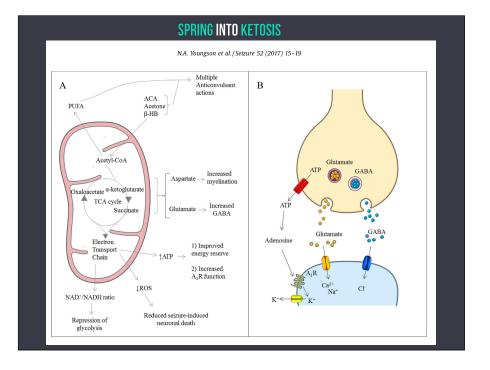
Research Article

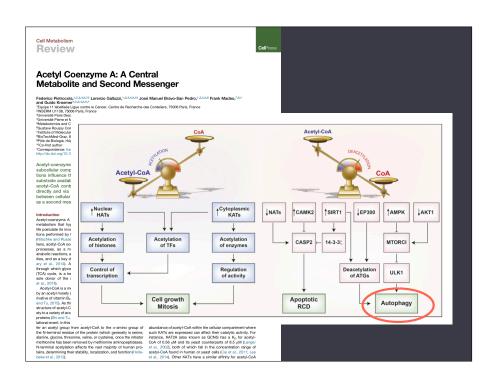
The Effect of Fitness Branding on Restrained Eaters' Food Consumption and Postconsumption Physical Activity

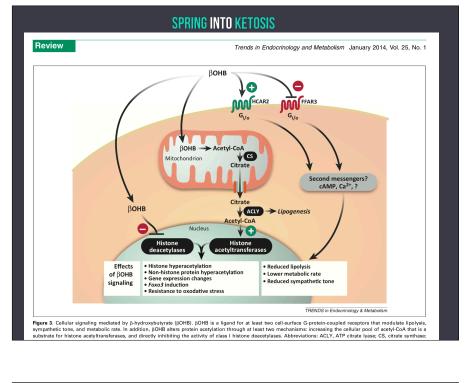
Joerg Koenigstorfer and Hans Baumgartner*

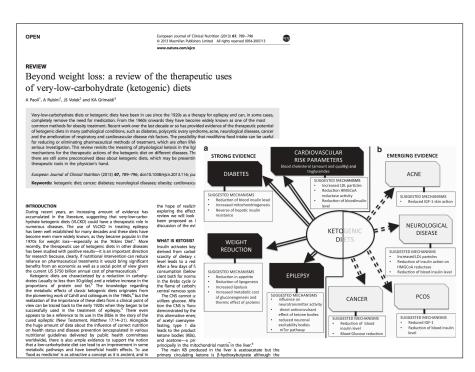

*Joerg Koenigstorfer is Professor of Sport & Health Management, Technische Universität München (e-mail: ioerg.koenigstorfer@tum.de).

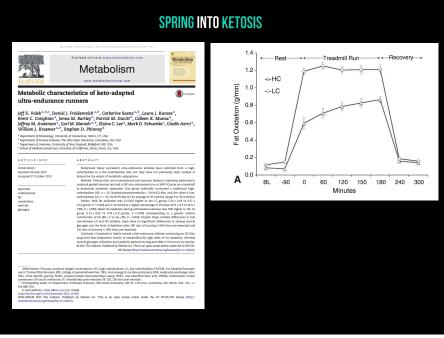
Hans Baumgartner is the Smeal Professor of Marketing, Smeal College of Business, Pennsylvania State University (e-mail: <u>ixb14@psu.edu</u>).

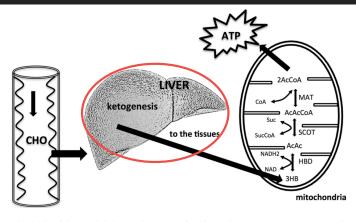

The authors thank Lisa E. Bolton, Rik Pieters, and Karen Page Winterich for their valuable feedback on the manuscript. The


"...restrained eaters because it discourages physical activity despite an increase in consumption."


have developed fitness-branded food that may lead restrained eaters (i.e., consumers who are chronically concerned about their body weight) to believe that they can achieve these two goals at the same time by consuming the food. The purpose of this research is to investigate the effects of fitness branding in food marketing (i.e., the integration of fitness into the brandin of food) on consumption and physical activity in restrained (vs. unrestrained) eaters. The authors show that fitness branding increases consumption volumes for restrained eaters unless consumers view the food as dietary forbidden. Restrained eater are also less physically active after consuming fitness-branded food, and food consumption volumes mediate this effect in restrained eaters. Fitness branding may therefore have undesirable effects on the weight-control behaviors of restrained eaters because it discourages physical activity despite an increase in consumption, which is contrary to the principle of ene halance







Ketones Are Made in the

GURE 2 | A reduced availability of dietary carbohydrates leads to an creased liver production of KBs. The liver cannot utilize KBs because it ks the mitochondrial enzyme succinyl-CoA: 3-ketoacid (oxoacid) CoA nsferase (SCOT) necessary for activation of acetoacetate to acetoacetyl

CoA. KBs are utilized by tissues, in particularly by brain. KBs enter the citric acid cycle after being converted to acetyl CoA by hydroxybutyrate dehydrogenase (HBD), succinyl-CoA: 3-CoA transferase (SCOT), and methylacetoacetyl CoA thiolase (MAT). Modified from Owen (2005), Paoli et al. (2014).

The Ketone GIGL Extra hepatic organs Liver TCA cycle Fatty acid oxidation SIRT3 SIRT5 Succinylation Acetylation HMGCS2 3-Hydroxy-3-Methylglutaryl-CoA OXCT1 Succinyl-CoA Acetylation HMGCL NAD/NADH Acetylation BDH1 NAD/NADH Acetylation Succinylation SIRT3? SIRT5? MCT1/MCT2 SLC16A6

PSYCHOLOGY

Ketosis, ketogenic diet and food intake control: a complex relationship

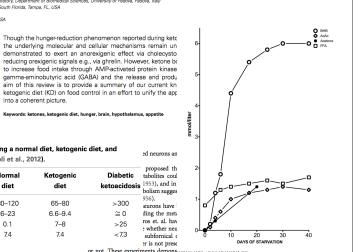
Keywords: ketones, ketogenic diet, hunger, brain, hypothalamus, appetite

Antonio Paoli^{1*}, Gerardo Bosco¹, Enrico M. Camporesi^{2,3} and Devanand Mangar^{3,4}

- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
 Department of Surgery, University of South Florida, Tampa, FL, USA
- 3 TEAMHealth, Tampa, FL, USA

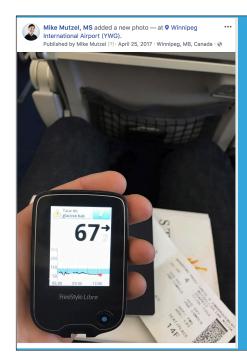
Tanya Zilberter, Infotonic Conseil, France

Reviewed by:

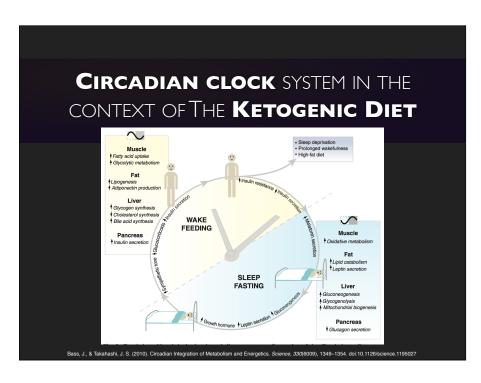

Tanya Zilberter, Infotonic Conseil,

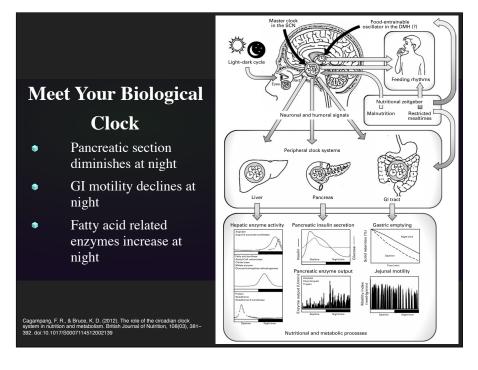
Antonio Paoli, Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35031

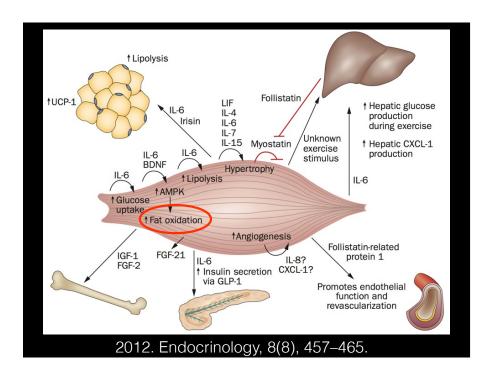
Table 1 | Blood levels during a normal diet, ketogenic diet, and diabetic ketoacidosis (Paoli et al., 2012).

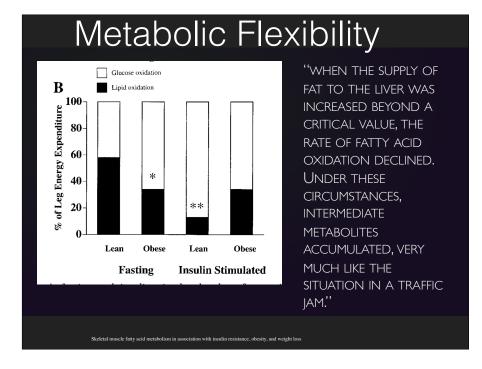

into a coherent picture.

Blood levels	Normal diet	Ketogenic diet	Diabetic ketoacidosis	proposed th tabolites coul 1953), and in bolism sugges
Glucose (mg/dL)	80–120	65–80	>300	956). eurons have
Insulin (μU/L)	6-23	6.6-9.4	≅ 0	ding the meta
KB conc (mmol/L)	0.1	7–8	>25	ros et. al. hav
pН	7.4	7.4	<7.3	subfornical c
			or not. These experis	ments demons.




Effect on ketogenesis Mechanisms of action Environmental factors Low carbohydrate diet Low insulin, leptin Ghrelin and Growth Hormone: Ghrelin is a potent stimulus for Growth increases inulin sensitivity, so maybe supportive of normone secretion ketogenesis *Omega-3 FA Increase High GH and Ghrelin increase Low insulin High AMPK gene expres Physical activity Adiponectin Ghrelin +1 IGF-I Glucagon Insulin KETOGENESIS AMPK activity ARNT/HIF1beta 4 Metformin Low insulin Sulfonvlureas High insulin SGLT2 inhibitors Octreotide analogues Low GH, glucagon Kruljac, I. Ketosis in type 2 diabetes mellitus: complication or compensatory mechanism?2016 Endocrine Oncology and Metabolism





WHAT ABOUT STRESS?



Original Article
EPIDEMIOLOGY/GENETICS

Weight Training, Aerobic Physical Activities, and Long-Term Waist Circumference Change in Men

Rania A. Mekary^{1,2}, Anders Grøntved^{1,3}, Jean-Pierre Despres⁴, Leandro Pereira De Moura^{5,6}, Morteza Asgarzadeh¹, Walter C. Willett^{1,7,8}, Eric B. Rimm^{1,7,8}, Edward Giovannucci^{1,7,8}, and Frank B. Hu^{1,7,8}

Objective: Findings on weight training and waist circumference (WC) change a examined prospectively whether weight training, moderate to vigorous aerobic at ment of one activity for another were associated with favorable changes in WC an Methods: Physical activity, WC, and BW were reported in 1996 and 2008 in a U.S. men in the Health Professionals Follow-up Study. Multiple linear regressic tution) to assess these associations were used.

Results: After adjusting for potential confounders, a significant inverse dose-rest

weight training and WC change (P-trend <0.001) was observed. Less age-association of Adherence to Recommendation to Aerobic Description (-0.6) "Substituting 20 min/day of weight training for any other (-0.16) (-0.1

discretionary activity had the strongest inverse association with wast circumference change."

increase. Studies on frequency/volume of weight training and WC change are warranted.

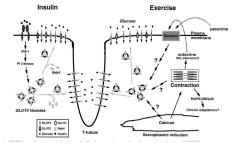
Obesity (2014) 00, 00-00. doi:10.1002/oby.20949

weigh

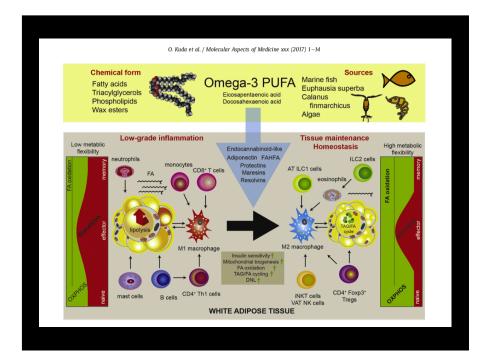
MVAA

Conc

Mekary, R. A., Grontved, A., Després, J.-P., De Moura, L. P., Asgarzadeh, M., Willett, W. C., et al. (2014). Weight training, aerobic physical activities, and long-term waist circumference change in men. Obesity, n/a-n/a. doi:10.1002/oby.20949


Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors1-3 Alison M Hill. Jonathan D Buckley. Karen J Murphy, and Peter RC Howe and the rate of mortality from coronary artery disease (4). Furthermore, regular consumption of n-3 FAs, particularly deco-subscanetic acid (DAIA), has the capacity to melliorate several cardiovascular risk factors, including elevated blood pressure and tracylglycerols, placed aggregation, endotheall dystumetion, and arrhythmia (5). Evidence also suggests that n-3 FAs may live a favorable effect on metabolism by modulating general properties, and arrhythmia (5). Evidence also suggests that n-3 FAs may live a favorable effect on metabolism by modulating general part of properties of the control of th ABSTRACT ABSI KACLT Background: Regular exercise and consuming long-chain n—3 fatty acids (FAs) from fish or fish oil can independently improve cardio-vascular and metabolic health, but combining these lifesty emodifications may be more effective than either treatment alone. Objective: We examined the individual and combined effects of n—3 FA supplements and regular exercise on body composition and confidence of the continuous parts of the co Design: Overweight volunteers [body mass index (BMI; in kg/m²): >25] with high blood pressure, cholesterol, or triacylglycerols were randomly assigned to one of the following interventions: fish oil (FO), FO and exercise (FOX), sunflower oil (SO; control), or SO and out (12) concomitant dietary restriction. Physical activity is often recommended for weight loss, al-though most studies find that physical activity alone produces cise (SOX). Subjects consumed 6 g tuna FO/d (~1.9 g n-3 FA) g SO/d. The exercise groups walked 3 d/wk for 45 min at 75% predicted maximal heart rate. Plasma lipids, blood pressure, and relatively small changes in body weight (13-15). The extent of weight loss that can be achieved through exercise may be small, but it is clear that physical activity plays a key role in preventing weight gain; however, as much as 60-90 min/d of moderate only. Results: HDL cho 2000 sodilatio 0.05). Be (P < 0.0 Conclusi body fat ing intak aimed at lar disear 1000 **6** -1000 ☐ Fish Oil Fish Oil and Exercise -2000 Sunflower Oil □ Sunflower Oil and Exercise -3000 Fat Mass Lean Mass

invited review


Exercise regulation of glucose transport in skeletal muscle

TATSUYA HAYASHI, JØRGEN F. P. WOJTASZEWSKI, AND LAURIE J. GOODYEAR¹
Research Division, Joslin Diabetes Center, Department of Medicine, Brigham
and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215;
and *Copenhagen Muscle Research Centre, August Krogh Institute,
University of Copenhagen, DK-2100 Copenhagen, Demarak

Hayashi, Tatsuya, Jørgen F. P. Wojtaszewski, and Laurie Goodyear. Exercise regulation of guicose t Am. J. Physiol. 273 (Endocrinol. Metab. Exercise increases the rate of glucose uptake muscles. This effect of exercise is similar glucose uptake, and the mechanism through skeletal muscle glucose uptake involves it glucose transporters to the plasma membri Most studies suggest that exercise and first consistent of the property of the face of carbohydrate deprivation. The insulin-independent mechanisms to increas muscle has important clinical implications, diseases that are associated with periphera non-insulin-dependent mechanisms to increas muscle has important clinical implications, diseases that are associated with periphera non-insulin-dependent mechanisms to increas muscle has important clinical implications, diseases that are associated with periphera non-insulin-dependent mechanisms to increas muscle has important clinical implications, diseases that are associated with periphera non-insulin-dependent mechanisms to increas muscle has important clinical templetations, diseases that are associated with periphera non-insulin-dependent mechanisms to increase muscle has important clinical templetations, diseases that are associated with periphera non-insulin-dependent mechanisms to increase muscle has important clinical templetations, diseases that are associated with periphera non-insulin-dependent mechanisms to increase muscle has important clinical templetations, diseases that are associated with periphera non-insulin-dependent mechanisms to increase muscle has important clinical templetations.

muscle contraction; glucose transporters; GLUT-4; calcium; insulin

Mar. Drugs 2015, 13, 996-1009; doi:10.3390/md13020996

marine drugs

Effects of n-3 Polyunsaturated Fatty Acids (ω-3) Supplementation on Some Cardiovascular Risk Factors with a Ketogenic Mediterranean Diet


Antonio Paoli ^{1,0}, Tatiana Moro ¹, Gerardo Bosco ¹, Antonino Bianco ², Keith A. Grimaldi ³, Enrico Camporesi ^{4,5,6} and Devanand Mangar ^{5,6}

- Department of Binomfoids Sciences, University of Padova, \$1313 Padova, Italy;
 E-Mails: tatinas among halfigmail com (T.M.); gerands boxoc@uniplat.it (O.B.)
 Sport and Exercise Sciences Research Unit, University of Palermo, 90144 Palermo, Italy;
 E-Mail: antenino binasco@unipai.
 Binomedoid Engineering Laboratory, Institute of Communication and Computer Systems,
 National Technical University of Athens, Athens 19775, Greece;
 E-Mail: steith granal/di@gmail.com
 Department of Suegey, University of South Florida, Tampa, FL 33620, USA;
 E-Mail: emapore@ikealth.unf-cdu
 TEAMHelahl. Tampa, FL 3360, USA; E-Mail: danagar1@gmail.com
 6 Tampa General Hospital, Tampa, FL 33605, USA

- * Author to whom correspondence should be addressed; E-Mail: antonio.paoli@unipd.it; Tel.: +39-049-8275318; Fax: +39-049-8275301.

Received: 9 October 2014 / Accepted: 6 February 2015 / Published: 13 February 2015

Abstract: Background: the ketogenic diet (KD) has become a widely used mutritional approach for weight loss. Some of the KD's positive effects on metabolium and cardiovascular risk factors are similar to hous seen after as polymutantured farty scids (6-5) supplementation. We hypothesized that a ketogenic Mediterraneam diet with ephysecurators combined with or 3-upplementation may have increased positive effects on cardiovascular risk factors and inflammation. Methods: We analyzed 34 anale overweight budgets, and pel-these m25 and 65 years who were overall healthy apart from overweight. The subjects followed a ketogenic diet protocol for four weeks; with (KDOs) or without (KD) or 3-upplementation. Results: All subjects experienced a significant so so fooly weight and body fat and there was no significant of differences between treatment (hody weight:

