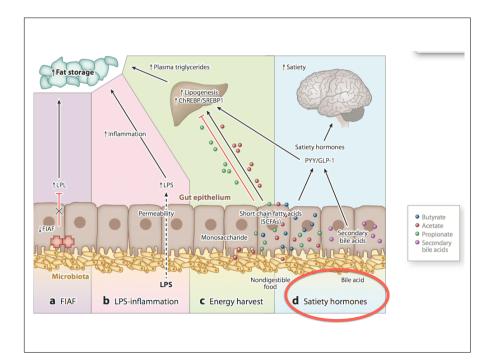
Clinical Breakthroughs in Metabolism and Body Composition

Disclaimer

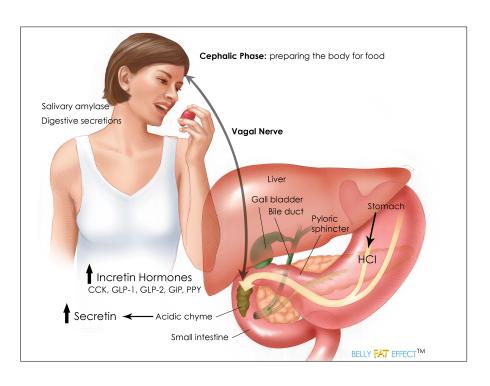
- i.The information, comments, and opinions expressed in this presentation are those of the speaker based on their own clinical experience and interpretation of the literature and for educational purposes only. Practitioners should evaluate the information, comments, and opinions using their own expertise coupled with an assessment for each patient.
- ii. The information in this presentation is neither approved nor endorsed by SHINE. The content herein does not necessarily represent the views or brand of SHINE or Dr. Rita Marie. None of the content herein has been evaluated by the Food and Drug Administration.

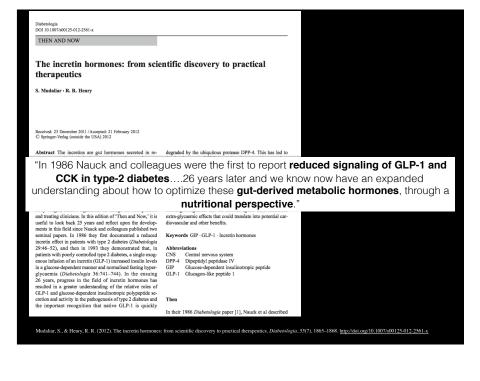

Disclosure

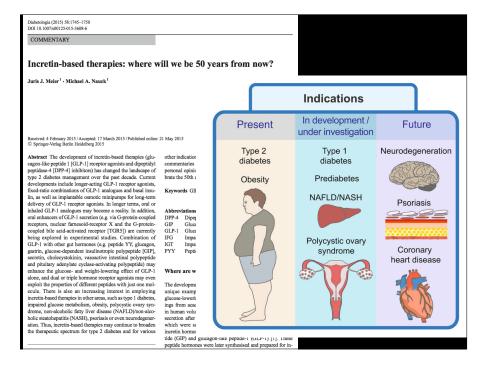
- I am a not being paid for this talk.
- I am a consultant for XYMOGEN
- I am selling Belly Fat Effect books on amazon.com and through other book retailers

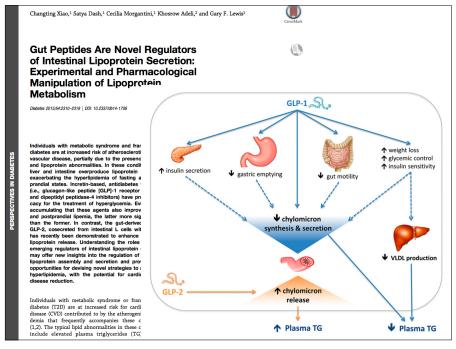
THREE BIG IDEAS FROM OUR DISCUSSION

- How gut microbiome metabolites affect your metabolic health
- Bacterial Endotoxin: what is it and why you should care?
- Overview of the metabolic switches of the gastrointestinal tract—that are highly modifiable
- The metabolic potential of muscle
- Ketogenic Diet/Time-Restricted Feeding




What is the incretin effect?


"...a humoral substance is released from the **jejunal wall** (small intestine) during glucose absorption which acts by **stimulating the release of insulin** from the pancreatic islet cells."


-Neil McIntyrre 1965

McINTYRE, N., HOLDSWORTH, C. D., & TURNER, D. S. (1965). Intestinal Factors in the Control of Insulin Secretion. The Journal of Clinical Endocrinology and Metabolism.

REVIEWS

Gut Sensors:

Enteroendocrine Cells

Bowels control brain: gut hormones and obesity

Benjamin C. T. Field, Owais B. Chaudhri and Stephen R. Bloom

Abstract | Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic process that integrates diverse hormonal, neuronal and metabolic signals. The gastrointestinal tract is an important source of such signals, which include several hormones released by specialized enteroendocrine cells. These hormones exert powerful effects on appetite and energy expenditure. This Review addresses the physiological roles of peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon-like peptide 1, glucagon, oxyntomodulin, cholecystokinin and ghrelin and discusses their potential as targets for the development of novel treatments for obesity.

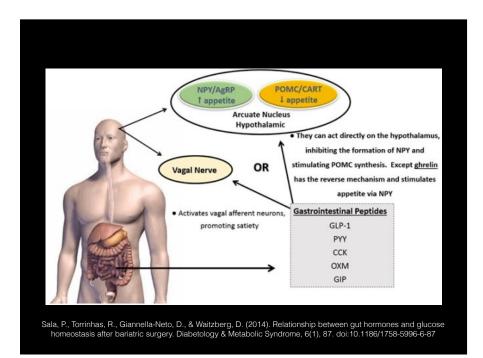
and make an experiental art regulated by a complex static mechanism; in healthy adults, body weight thus remains relatively constant over decades despite large short-term fluctuations in food intake and physical activity. This remarkable feat is achieved by a complex state, such as fatty acids and the adipocyte hormone

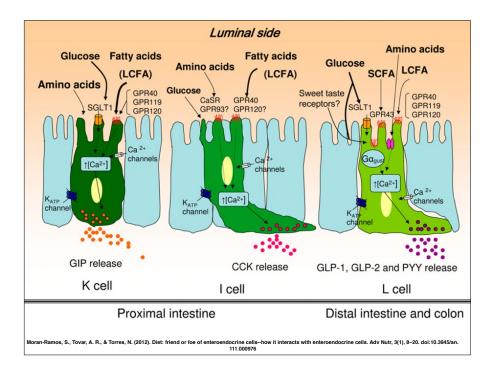
Energy intake and expenditure are regulated by a homeo- and nucleus accumbens, where reward is assigned to

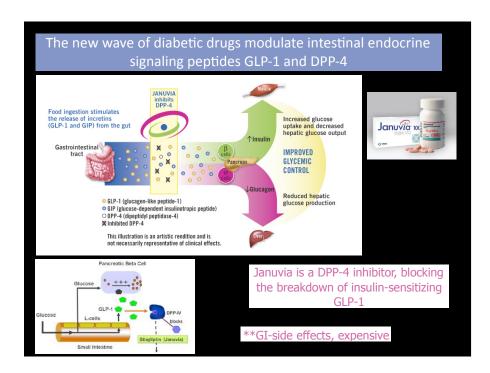
"A potential therapy for obesity might be based on the concept of pharmacological mimicry of the hormonal milieu after bariatric surgery."

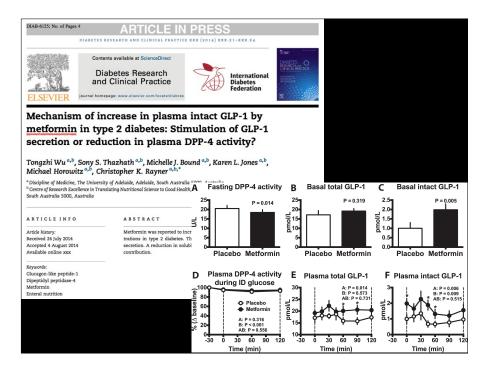
toxic substances in the blood; the volume, composition and satisting effect of nutrients in the gastrointestinal and satisting effect of nutrients in the gastrointestinal tract; and the appearance, aroma and taste of potential foodstuffs. This information is integrated with neuronal contributions from pleasure and reward pathways, as well as higher cognitive functions, such as an awareness of social context. Efferent signals from the homeostatic network are directed to the neuroendocrine axes, autonomic nervous system and diverse regions of the CNS. The result is a finely controlled, continuous adaptation to, and alteration of, a fluctuating energy requirement.

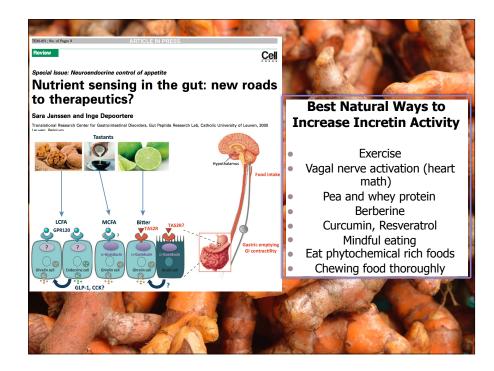
ronal control of energy homeostasis

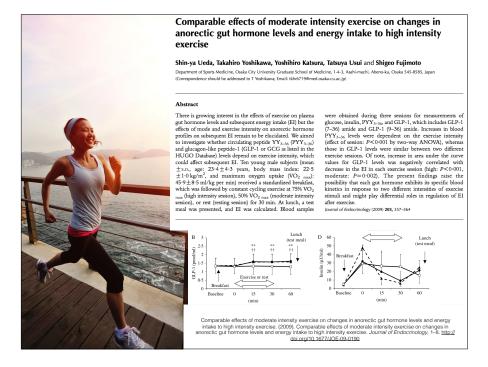

Meal-related hormonal and neuronal signals from the gastrointestinal tract are received via the blood in the area gastrominesunai tract are received via me blood in the area postrema and through vagal afferent fibers in the nucleus of the tractus solitarius (Figure 1). These sensory inputs are transmitted via the parabrachial nucleus and ventral tegmental area to other centers, including the amygdala

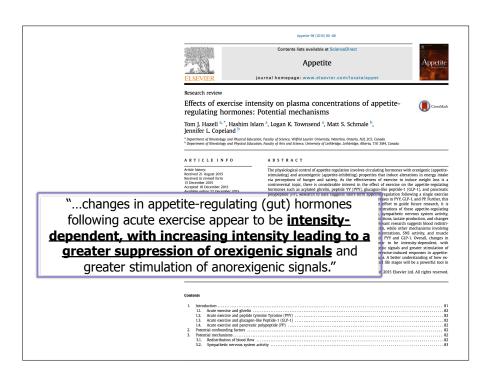

is inhibited. Axons from both types of neurons project in is immore. Acous room out types or neurons project parallel to the paraventricular nucleus and lateral hypo-thalamic area. Release of a-melanocyte-stimulating hormone by POMC-expressing neurons leads to acti-vation of the melanocortin receptor 4 (MC4R), which results in the reduction of food intake and an increased energy expenditure. By contrast, release of NPY activates Y, and Y, receptors, which increases food intake and reduces energy expenditure. NPY-expressing neurons reduces energy expenditure. NPT-expressing neurons also release agouti-related peptide, an endogenous antagonist of the MC4R. The response to this dual innervation within the paraventricular nucleus leads to modulation of energy expenditure via the thyroid and adrenal axes and the sympathetic nervous system.

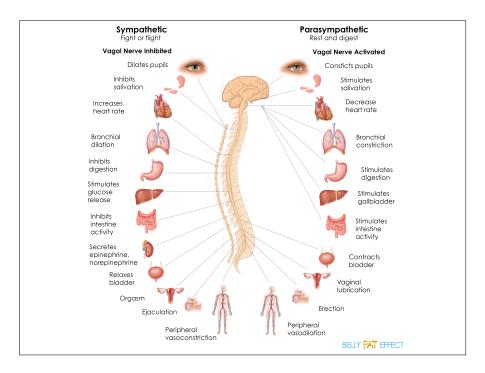

Within the lateral hypothalamic area, second order neurons that express melanin-concentrating hormone neurons that express meianin-concentrating normone and orexins are of importance in modulating food intake. In the ventromedial nucleus, neurons that express brain-derived neurotrophic factor regulate palatable food ingestion via interactions with the amygdala and nucleus sccumbens. Motivation and cognition influence energy homeostasis and are influenced in turn by nutritiona

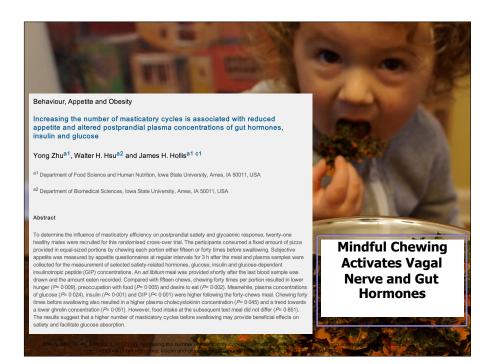

Increase in Gut peptides with bariatric surgical procedures Diabetes Procedure Malabsorption Hormone effect Ghrelin With PYY weight loss No change gastric GLP-1 No change Ghrelin Vertical With PYY No change banded GLP-1 No change Ghrelin With PYY gastrectomy GI P-1 loss Ghrelin † or no change Roux-en-Y PYY Rapid bypass GLP-1


Weight







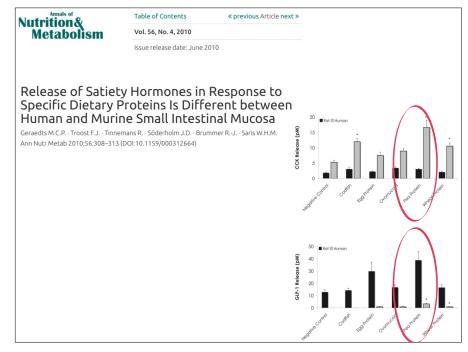


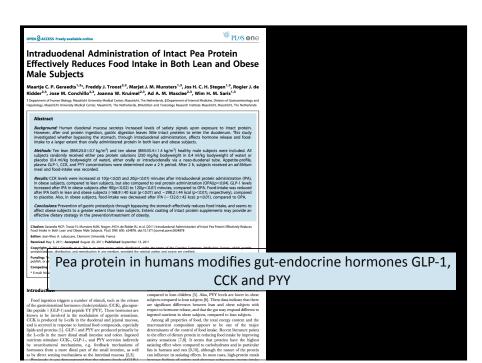
Contents lists available at ScienceDirect

Physiology & Behavior

journal homepage: www.elsevier.com/locate/phb

Effects of chewing on appetite, food intake and gut hormones: A systematic review and meta-analysis


Sophie Miquel-Kergoat a,*, Veronique Azais-Braesco b, Britt Burton-Freeman c, Marion M. Hetherington d

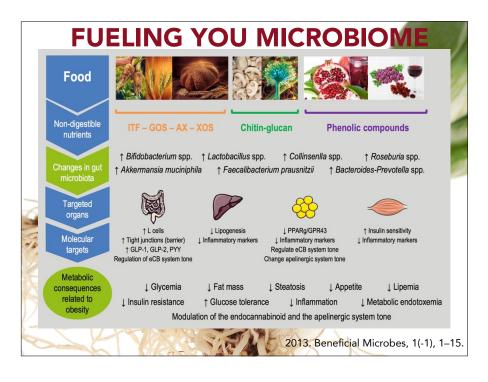

- Wrigley (Mars Inc.), 1132 West Blackhawk Street, Chicago, IL 60642, USA
 VAB Nairtikon, J. Rue Claude Dunziger, 63100 Clermont-Ferrand, France
 Putartiston Leptarment, University of California, Davis, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616-5270, USA
 School of Psychology, University of Leeds, Leeds LC 937, United Kingdom

Reference	Participants		Intervention	Results			
	N	BMI	Design	Effect on appetite	Effect on energy intake	Hormones & metabolites	
Cassady et al. [19]	13	HW	Fixed weight almonds (11×5 -g portions) chewed 10, 25 or 40 times; within subjects	Yes, (40-chew condition differs from 25 chews, but not from 10-chews)	NA	No. But trend (p = 0055) for GLP-1 to be ↑ when chewing increases	
Li et al. [25] Study 1 (observational, not reported here)	30	16 HW 14 OB	Fixed amount of pork pie (300 g in 10-g pieces) chewed 15 or 40 times; 12 h later breakfast intake measured; within subjects	No effect on appetite ratings	Yes, \downarrow energy intake when food is chewed longer	No effect on glucose or insulin Ghrelin ↓, GLP-1 ↑, CCK ↑ with more chews	
Zhu et al. [32]	21	HW and OW	Fixed breakfast of pizza "bites" chewed 15 or 40 times; 3 h later ad libitum pasta intake recorded; within subjects	Yes; hunger, desire to eat and preoccupation with food were ↓ after longer chewing (no effect on fullness ratings)	No effect on energy intake	Yes more chews ↑ glucose, insulin and GIP and ↑ CCK; tend to ↓ decrease ghrelin	

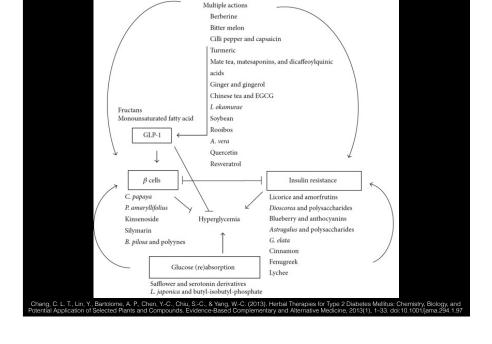
Miquel-Kergoat, S., Azais-Braesco, V., Burton-Freeman, B., & Hetherington, M. M. (2015). Physiology & Behavior. Physiology and Behavior, 151(C), 88-96. http://doi.org/10.1016/j.physbeh.

Medical conditions may have been mentioned or implied in our discussion of the circadian clock.

It is important to remember that dietary supplements CANNOT mitigate diseases or replace drugs.


However, XYMOGEN products CAN give your patients their best chance to stay healthier longer*

* These statements have not been evaluated by the US Food and Drug Administration. These products are not intended to diagnose, treat, cure , or prevent any disease.



Polyphenol	Neuropeptide	Observed results	Refrences
Cinnamon polyphenol	Insulin	Improved insulin sensitivity in subjects with type-2 diabetes, metabolic syndrome, and in women with PCOS; anti-oxidant effects in obese subjects; improves insulin	[6, 124–127]
	GLP-1	sensitivity in an animal model of metabolic syndrome; Increased postprandial serum GLP-1 in healthy subjects (Hlebowicz et al. 2009)	[128]
Curcumin	IGF-1	Increases IGF-1 levels in the rat brain in an animal model of	[129]
Resveratrol	NPY, AgRP	insulin resistance Downregulation of NPY and Agrp activities in N29-4 mouse hypothalamic cells.	[130]
	Insulin	improved insulin resistance in fructose-fed insulin-resistant improved insulin resistance in fructose-fed insulin-resistant ratus attenuated abnormal insulin sensitivity in normal lemura without affecting insulin secretion; improved insulin tolerance in KKAly) insulin-resistant mice inhibits armit fibril formation in INS-1E at insulinoma cells	[131–134]
	GLP-1	Increased GLP-1 content in high-fat fed diabetic mice	[136]
Grape-seed Extract	Insulin	Improved insulin resistance in high-fructose fed rats; no significant effect on insulin resistance in type-2 diabetic subjects; displayed insulin-mimetic activity in L6E9 myoblasts and 313-L1 adipocytes	[137–139]
Apigenin	POMC, CART	Decreased food intake in mice fed a high-fat diet; increased POMC and CART gene expression in N29-2 and SH-SY-5Y neuronal cell lines	[140]
Adlay seed water Extract	NPY, leptin	Decrease in hypothalamic NPY and leptin mRNA and antiobesity effects in rats	[141]
Soy isoflavone	PYY Insulin,	Plasma PYY increased in healthy postmenopausal women Improved insulin sensitivity in postmenopausal leptin women but did not change serum leptin; possible effect on reducing serum leptin in obese postmenopausal women Increased circulating levels of (IGF-1 in postmenopausal	[142] [143,144]
		women	(4.40)
Oleuropein Aglycone EGCG	amylin	Atenuated aggregation of amylin in RIN-5F pancreatic cells Inhibits amylin fibril formation in vitro	[146] [147]
EGGG	IGF-1	Inhibitory effect of EGCG mediated by IGF-1 in human glioblastoma cell lines.	[148]
Carob pulp Polyphenol	ghrelin	Decreased acyclated ghrelin in healthy subjects and enhanced lipid oxidation	[149]
Green tea polyphenol	ghrelin	Decreased ghrelin prepropeptide mRNA in the liver in rats fed a high-fat diet	[150]
	IGF-1, leptin Insulin	Decreased serum IGF-1 and leptin levels in obese rats Maternal feeding of green tea ameliorates insulin resistance in offspring; improves insulin secretion in obese mice	[151] [152, 153]
Berries	GLP-1	Modest response of GLP-1 response in the venous blood of healthy subjects with improved glycemic profile	[154]
Chocolate	Orexin	Context-dependent expectation of chocolate increased orexin-A neuronal activation in rat hypothalamus	[155]
	Insulin	Decreased insulin resistance and increased insulin sensitivity in hypertensive subjects with impaired glucose tolerance	[156]
	Ghrelin	Olfactory stimulation with chocolate induced a satiation response in 12 women that inversely correlated with plasma ohrelin levels	[157]
Cocoa	Insulin	Meta-analysis report shows that cocoa improved insulin resistance in subjects; no significant difference in fasting plasma insulin levels in obese/diabetic rats	[158, 159]

Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control

Thi-Mai Anh Dao^{1,2,3}, Aurélie Waget^{1,2}, Pascale Klopp^{1,2}, Matteo Serino^{1,2}, Christelle Vachoux^{1,2}, Laurent Pechere⁵, Daniel J. Drucker⁵, Serge Champion³, Sylvain Barthélemy⁶, Yves Barra³, Rémy Burcelin^{1,2,5}, Eric Séréa^{3,5}

Tinstitut National de la Santé et de la Recherche Médicale UTORB, Institut de recherche sur les Maladies Mitaboliques et Cardiovasculaire, 12MC, Toulouse, France, 2 Librhewith de Toulouse, UTS, Institut de Maladies Metaboliques et Cardiovasculaire, 19 MC, Hotplati de Ranguell, Toulouse, France, 3 Institut National de la Recherche Agronomique 1260, Faculté de Pharmacie, Maneelle, France, 4 DNITE/DNOVIA SAS, Incubateur Midi-Pyrennels, Toulouse, France, 3 Department of Medicine, Samuel Lumentéel Reusench Institute, Mount Stall Hospital, University of Tourona, Tourant, Chataric, Carada, 6 VIVIET SAIL, Maneelle, France

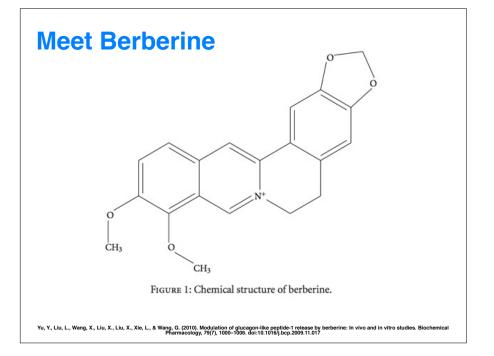
Abstract

ABSTRACT

Resverator (GSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fixel diet (HPD-fed diabete wild type mice, administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intertial content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Gpl-1) as entire glucose on insulin levels were modulated in Gpl-1-* mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor stagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo.

Citation: Dao T-MA, Waget A, Klopp P, Serino M, Vachoux C, et al. (2011) Resveratrol increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control. PLoS ONE 6(6): e20700. doi:10.1371/journal.pone.0020700

Editor: Kathrin Maedier, University of Bremen, Germany


Received February 28, 2011; Accepted May 7, 2011; Published June 6, 2011

Copyright: © 2011 Dao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fundings Rémy Burcelin is the recipient of subsidies from the Agence Nationale de la Recherche (Program Brain GLP-1). This manuscript was partly funded by a grant (ISP program) from Merck Sharp and Dohm to RB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal's policy and have the following conflicts Laurent Pichner and Sylvais Barthelies, have a duality of interest with NITEMONOVA and YMBRY Commisci, bocause they are employed by the above mentioned companies. Rimply interini and Erfs Select have a duality of interest with ENTERONOVA as they have a consultancy mission. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: remy.burcelin@inserm.fr (RB); eric.Seree@univmed.fr (ES)

Zhang et al. BMC Complementary and Alternative Medicine 2014, 14:188

RESEARCH ARTICLE

Berberine moderates glucose metabolism through the GnRH-GLP-1 and MAPK pathways in the intestine

Qian Zhang, Xinhua Xiao*, Ming Li, Wenhui Li, Miao Yu, Huabing Zhang, Fan Ping, Zhixin Wang and Jia Zheng

Ba "Rhuzima Coptidis was recorded as an anti-diabetes medication the approximately **1500 years ago** in a book titled "Note of Elite Physicians" by Hongjing Tao"

Results: We found that 8 weeks of treatment with berberine significantly decreased fasting blood glucose levels. An oral glucose tolerance test (OGTT) showed that blood glucose was

groups before and at 30 min, 60 min and 120 min after oral glucose at Absorption?? like peptide-1 (GLP-1) levels were increased in the berberine-treated gr 2112 genes with significantly changed expression (780 increased, 1332 d that all differentially expressed genes included 9 KEGG pathways. The tor pathway and the GnRH signaling pathway. Q-RT-PCR and immunohistod

receptor (Glp1r) and mitogen activated protein kinase 10 (Mapk10) were significantly up-regulated, in contrast, gonadotropin releasing hormone receptor (Gnrhr) and gonadotropin-releasing hormone 1 (Gnrh1) were down-regulated in the BerH group.

Conclusion: Our data suggest that berberine can improve blood glucose levels in diabetic rats. The mechanisms involved may be in the MAPK and GnRh-Glp-1 pathways in the ileum.

Keywords: Diabetes, Digestive tract, Gene expression, GnRH

Volume 2012, Article ID 591654, 12 page doi:10.1155/2012/591654

Berberine in the Treatment of Type 2 Diabetes Mellitus: A Systemic Review and Meta-Analysis

Hui Dong,1 Nan Wang,2 Li Zhao,1 and Fuer Lu1

¹Institute of Integrated Traditional Chinese and Western Medicine, Tongii Hoopinal, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
¹Department of Radiology, Tongii Hoopinal, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 43003, China

Correspondence should be addressed to Hui Dong, tjhdonghui@163.com and Fuer Lu, felu@tjh.timu.edu.cr

Received 23 May 2012: Accepted 23 July 2012

"Based on the existing evidence reviewed, berberine has beneficial effects on blood glucose control in the treatment of type 2 diabetic patients and exhibits efficacy comparable with that of conventional oral hypoglycaemics."

1. Introduction

adverse effects limit their widespread use in clinical practice

The prevalence of diabetes mellitus (DM) has continued to increase globally. According to the latest figures from the international Diabetes Federation (DF), the number of the international Diabetes Federation (DF), the number of the international Diabetes Federation (DF), the content of th

Biochemical Pharmacology 79 (2010) 1000-1006

Contents lists available at ScienceDirect

Biochemical Pharmacology

Modulation of glucagon-like peptide-1 release by berberine: In vivo and in

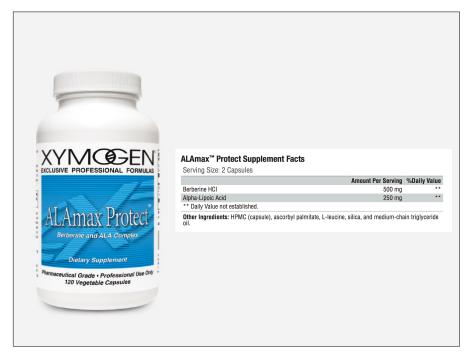
Yunli Yu, Li Liu, Xinting Wang, Xiang Liu, Xiaodong Liu*, Lin Xie, Guangji Wang

Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China

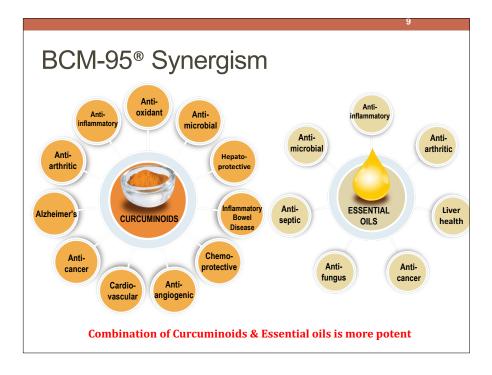
Received 3 October 2009

Glucagon-like peptide (GLP)-1 is a potent glucose-dependent insulinotropic gut hormone released from intestinal L cells. Our previous studies showed that berberine increased GLP-1 secretion in streptozotocin-induced diabetic rats. The aim of this study was to investigate whether berberine

Koponota: "The main finding in the present study was that **berberine** Chicagon-li Proplucagon modulated GLP-1 release and biosynthesis..."


> mediated GLP-1 secretion. Compound C (inhibitor of AMPK) also inhibited berberine-mediated GLP-1 secretion. But only low concentrations of H89 (inhibitor of PKA) showed inhibitory effects on berberine-mediated GLP-1 release. The present results demonstrated that berberine showed its modulation on GLP-1 via promoting GLP-1 secretion and GLP-1 biosynthesis. Some signal pathways including PKC-dependent pathway were involved in this process. Elucidation of mechanisms controlling berberine-mediated GLP-1 secretion may facilitate the understanding of berberine's antidiabetic effects.

@ 2009 Elsevier Inc. All rights reserved


TABLE 6: Comparison of clinical studies of berberine in diabetes patients

Study type	Study subjects	Berberine dosage	Control treatment	Major findings	Side effects	Reference	
Randomised, double-blind, placebo-controlled, multiple-center	Type 2 diabetes and dyslipidemia $(n = 116)$	0.5 g, b.i.d for 3 months	Placebo	Significantly reduced fasting and postload plasma glucose, HbA _{1c} Significantly reduced triglyceride, total cholesterol, and LDL-cholesterol	Mild to moderate constipation in 5 patients	[61]	
	Type 2 diabetes (n = 36)	0.5 g, t.i.d for 3 months	Metformin (0.5 g t.i.d)	Significantly reduced FBG, PBG, and HbA _{1c} Significantly reduced plasma triglycerides			
Randomised, blinded placebo-controlled	Type 2 diabetes poorly controlled (n = 48)	0.5 g, t.i.d for 3 months	Existing anti-diabetic treatment	Lowered FBG and PBG Significantly decreased HbA _{1c} Significantly reduced fasting plasma insulin and HOMA-IR	Transient gastrointestinal adverse effects. No liver or kidney damage	[14]	
Randomised	Type 2 diabetes (n = 97)	1 g/day for 2 months	Metformin (1.5 g/day); rosiglitazone (4 mg/day)	Significantly reduced FBG, HbA_{1c} and triglycerides Serum insulin level was declined significantly ($P < 0.01$), increased insulin sensitivity in peripheral tissues. Significantly elevated surface expression of InsR by 3.6-fold	No adverse events	[62]	
	Type 2 diabetes with chronic hepatitis C virus infection (n = 35)	1 g/day for 2 months	N/A	Significantly reduced FBG and triglyceride levels Reduced the elevated ALT and aspartate aminotransferase levels			

Synergism in study

"

binding activity. These results indicate that both curcuminoids and sesquiterpenoids in turmeric exhibit hypoglycemic effects via PPAR-gamma activation as one of the mechanisms, and suggest that E-ext including curcuminoids and sesquiterpenoids has the additive or synergistic effects of both components.

Nishiyama T, et al. J. Agric. Food Chem. 2005.

(DSS)-induced shortening of the large bowel by 52–58%. We also evaluated the chemopreventive effects of oral feeding of TUR, CUR, and their combinations using a model of dimethylhydradine-initiated and DSS-promoted mouse colon carcinogenesis. At the low dose, TUR markedly suppressed adenoma multiplicity by 73%, while CUR at both doses suppressed adenocarcinoma multiplicity by 63–69%. Interestingly, the combination of CUR and TUR at both low and high doses abolished tumor formation. Collectively, our results led to our

Murakami A, et al. Biofactors. 2012

In conclusion, despite the fact that the antileishmanial activity of curcuminoids has been extensively studied by various laboratories worldwide, the results reported here highlight the positive influence of the volatile constituents (enriched in turnerones) not hitherto associated with antileishmanial activity, reinforcing the scientific evidence of *C. longa* as the botanic species of the century. In addition, the incorporation of the hexane fractions into liposomes

Amaral AF, et al. BioMed Res Int. 2014

Table 5. Human trials reporting pharmacokinetic parameters for curcumin formulations aimed at enhancing curcumin bioavailability Study Dosage form Capsules of pure subjects curcumin powder combined with 0.02 g of pure piperine Capsules of curcumin Healthy Capsules of solid lipid [41] nanoparticles of which, curcumin lealthy Capsules of a $\textbf{3.8} \pm \textbf{0.6}$ ealthy Submicron (nano) [39] lealthy Cansules of a 0.15 [40] 10 ± 1167 curcumin nanoparticle of 2 ± 0.2 85 ± 16 819 ± 113 coma which, curcumir a) AUC, area under the blood concentration-time curve; C₁₉₆₀, maximum blood concentration; CUR, curcumin; n. d., not detected; T₁₉₆₀, time to reach maximum blood concentration. b) Free curcumin concentrations were quantified by extraction of the analyte without prior enzymatic hydrolysis of conjugates with ji-bluournidease/sulfatese. c) Teal durcumin concentrations were quantified by extraction of the analyte after prior enzymatic hydrolysis of conjugates with ji-bluournidease/sulfatese.

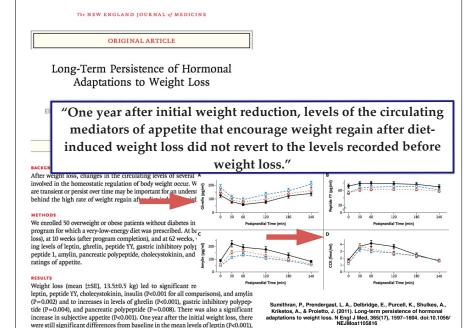
Why BCM-95® is more bioavailable

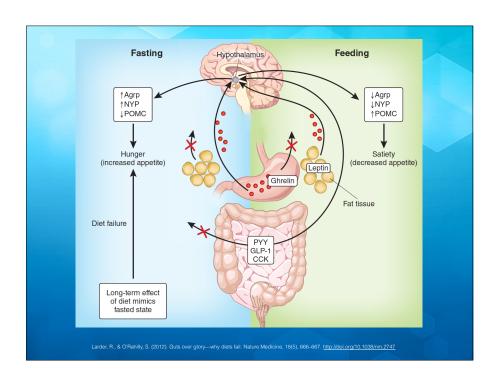
- Turmerones fragrant constituent of turmeric *usually discarded*
 - In BCM-95 as a mixed spectrum AR (aromatic), α, etc.
 - Turmerones increased curcumin absorption in independent study (Yue et al, 2012)
 - · Statistically significant increases of curcumin + turmerones inside Caco-2 cells
 - Relative increase in curcumin + turmerones on basolateral surface of Caco-2 cells

Table 3.

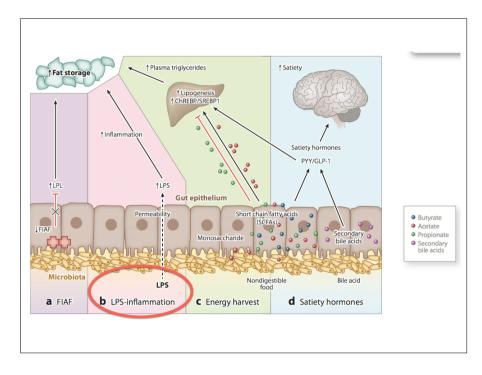
Amount of Curcumin Measured Before and After Transport Experiments

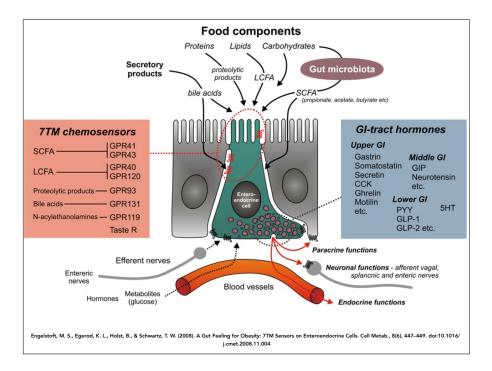
	E	xperiment A	Experiment B		
Measured curcumin amount (µg)	Curcumin	Curcumin+turmerones	Curcumin	Curcumin+turmerones	
Apical (before)	1.90±0.48	0.67±0.076	0.60±0.071	0.60±0.12	
Basolateral (after)	0.028±0.012	0.030±0.010	0.025±0.015	0.035±0.013	
Inside cells (after)	0.032±0.0052	0.044±0.0080	0.042±0.010	0.068±0.024	

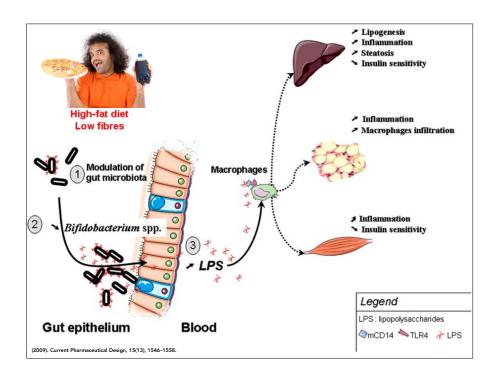

- Human PK study finds BCM-95 bioavailable (Antony B, 2008)
 - Found "free" in plasma at 7X the standard unformulated curcumin (p < 0.05)
 - Initial peak at 1 hour (vs. 2.5 hours*) and maximum at 4.5 hours
 - Residual curcumin in blood at 8 hours post intake (vs. 4.5 hours*)

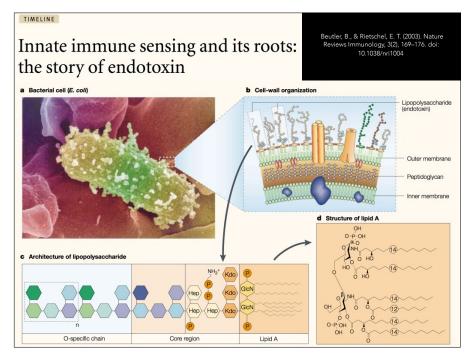


to the rational design and development of selective DPP4 inhibitors for the treatment of T2D.

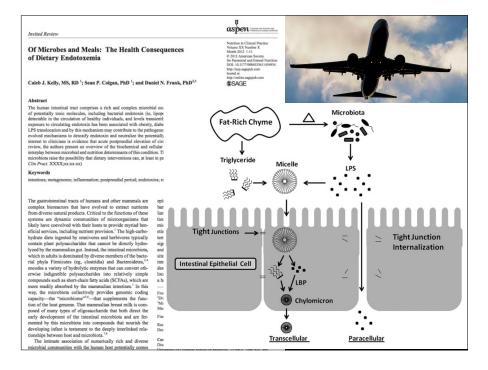







Summary of Gut Hormones

- DPPIV enzyme digests gut hormones, avoid it
- Eating breakfast, mindfully and thorough chews increase gut hormones
- Pea protein has unique amino acids that increase gut hormone release
- Fiber and phytonutrients (especially Berberine and Curcumin) increase gut hormone release



SHORT COMMUNICATION

An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice

Na Fei¹ and Liping Zhao^{3,2}

State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao

Tong University, Shanghai, China and ³Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong

University, Shanghai, China

Lipopolysaccharide endotoxin is the only known beoterial product which, when subcutaneously initused lato mice in its purified form, can induce obesity and insusin resistance via an inflammation-mediatel pathway. Here we show that one endotoxin-producing bacterium lossisted from a most producing bacterium lossisted from a most producing bacterium in lossisted from a most producing bacterium for insisted and in material submitted in the producing bacterios from 35% of the solventier's got bacterio producing bacterioscher decreased in relative abundence from 35% of the solventier's got bacterio from 15% of the solventier's got bacterior from 15% of the solventier's got from 15% of the so coses numer's gul induced obsetty and insulin resistance in germine mice. The endotoxin-producing Emendent excreased in situate abundance to any Six of the availance by a business to producing Emendent excreased in situate abundance to any Six of the availance by a business to from hyperplyceria and hyperheadson after 22 weeks on a dat of emise grain, traditional Chieses and traditional foods and particular, a decreased shandance of endotox blosymited genes in the inflammation. Mono-association of germines CSTBLIAD ratios with strain Citerabater cleases Bibliotated bring the system of the strain of the strain

The role of the gut microbiota in the pathogenesis of clossity has emerged into an important research area (Backade et al., 2004). Grame-segative opportunistive proportunistive proportunisti p

Epidemiological studies show increased population of endotoxin producers and elevated endotoxin load in various obserochers (Leppee et al., 2007; Mormos-Navarrete et al., 2011), but cet al., 2007; Mormos-Navarrete et al., 2011, but cet al., 2007; Mormos-Navarrete et al., 2011, but cette al., 2011, but Oerespondenou I, Zhan, State Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Gentre for Systems Biomedicine, Shanghai Jan Tong University, Room 3-457, Biology Building, 800 Jongschuss Koad, Minhang Cempus, Shanghai 200240, China, Constitution State of Stat

endotoxemia in obese and diabetic

R Barclay³, AA Darboe², H Mark², OA Nyan⁴ and AM Prentice^{1,2}

nodels suggests that translocation of bacterial debris across a leaky gut may trigger ssulin resistance. The current study set out to investigate this phenomenon, termed

bese non-diabetic (BMI: \geqslant 30.0 kg m⁻²) and obese diabetic (BMI: \geqslant 30.0 kg m⁻² and rum bacterial lipopolysaccharide (LP5) and endotoxin-core IgM and IgG antibodies re and interleukin-6 (IL-6) as a marker of inflammation. ntly and positively associated with both obesity and diabetes (F = 12.7, P < 0.001). LPS up compared with the other two groups (F = 4.4, P < 0.02). IgM EndoCAb (but not total bese (55% of lean value) and obese diabetic women (30% of lean; F = 21.7, P < 0.0001

thesis that gut-derived inflammatory products are associated with obesity and elucidation of the role of the microbiota, gut damage and the pathways for new avenues for prevention and treatment of type 2 diabetes.

8/nutd.2013.24: published online 26 August 2013 olic endotoxemia: The Gambia

microbiota from obeet animals results in adiposity in those who are born germ-free.¹¹ One suggested mechanism is through a more efficient energy harvest.¹² Molitonal evidence suggests that the microbiota can influence metabolic disease through a second control of the cont

endotoxemia and obesity in humans. A study in Saudi Arabian patients reported a positive association between endotroxin levels and various components of the metabolic syndrome, "whereas another study in healthy Fennoth men reported a positive association between energy Intake and endotoxemia." The inner-core of LPS milecules is relatively conserved across species and antibodies to this are therefore the most conserved and antibodies to this are therefore the most conserved and antibodies of the conserved and th

Lyte et al. Lipids in Health and Disease (2016) 15:186 DOI 10.1186/s12944-016-0357-6

Lipids in Health and Disease

0.001

0.03

0.01

0.1

0.4

5.63±1.3 6.12±1.4 0.05

1.37±0.9

10.9±4.8

1.22±1.1

9.1±4.5

we hypothesized a p zonulin, obesity and p Fasting triglycerides (mg/dl) 83 (58.5–120.5) 100 (69.5–129) 0.5

Uric acid (mg/dl)

Circulating IL-6 (pg/ml)

Zonulin (ng/ml)

tolerance.

Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study

Joshua M, Lyte 1,2,3*, Nicholas K, Gabler 2 and James H, Hollis 1

Table 4 Effect of treatment meal on participant postprandial serum endotoxin concentration ov	er time ^a
---	----------------------

Meal	Time postprandi	Time postprandial (minutes)							
	0	60	120	180	240	300			
Low Fat	0.39 ± 0.09	0.45 ± 0.14	0.37 ± 0.10	0.28 ± 0.03	0.25 ± 0.02	0.32 ± 0.07			
Saturated	0.27 ± 0.03	0.39 ± 0.11	0.51 ± 0.14	0.49 ± 0.1	0.31 ± 0.08	0.38 ± 0.20			
N-3	0.43 ± 0.15	0.29 ± 0.07	0.26 ± 0.03	0.24 ± 0.02	0.26 ± 0.02	0.26 ± 0.02			
N-6	0.36 ± 0.12	0.59 ± 0.20	0.46 ± 0.16	0.36 ± 0.09	0.24 ± 0.02	0.31 ± 0.09			

participats were analyzed using repeated-measures ANCOVA.

Results: Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p < 0.05). The n-6 meal did not effect a different outcome in participant postprandial serum endotoxin concentration from that of the control meal (p > 0. 05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment

Conclusions: Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo

Trial registration: This study was retrospectively registered at clinicaltrials gov as NCT02521779 on July 28, 2015.

Keywords: Endotoxin, Lipopolysaccharide, Diet, Lipid, Fat, Oil, Inflammation

nature publishing group

SHORT COMMUNIC

Intestinal Permeability Is Associated With Visceral Adiposity in Healthy Women

Anders Gummesson^{1,2}, Lena M.S. Carlsson¹, Len H. Storlien^{2,3}, Fredrik Bäckhed¹, Pål Lundin², Lars Löfgren², Kaj Stenlöf⁴, Yan Y. Lam³, Björn Fagerberg¹ and Björn Carlsson^{1,2}

Increased visceral fat, as opposed to subcutaneous/gluteal, most strongly relates to key metabolic dysfunction including insulin resistance, hepatic steatosis, and inflammation. Mesenteric fat hypertrophy in patients with Crohn's disease and in experimental rodent models of gut inflammation suggest that impaired gut barrier fun

1 lipid deposition. The aim of this study was t with visceral adiposity in healthy humans. I ased cohort. Intestinal permeability was ass mannitol (S/M). In study 1 (n = 67), we found ion within a time frame of urine collection cor st-ingestion; P = 0.022). These results were f Contents lists available at SciVerse ScienceDirect

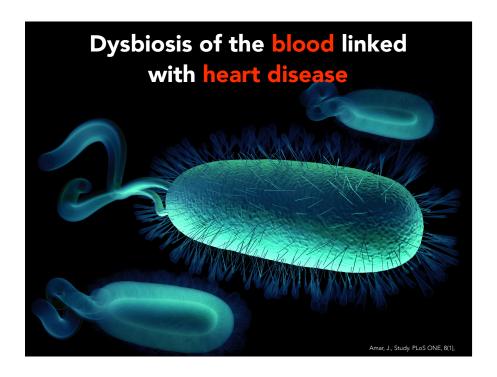
d dual energy X-ray absorptiometry to meas tent, and total body fat of the same women. area (P = 0.0003) and liver fat content (P = 0.0003) an association between intestinal permeabili s that impaired gut barrier function should be

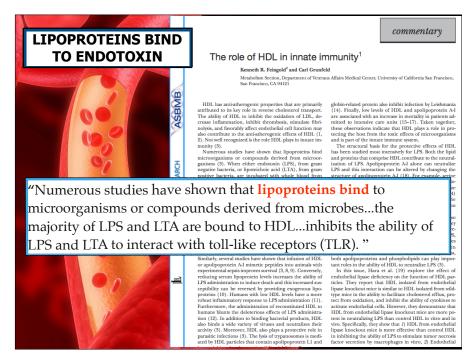
on and metabolic dysfunction.

ized lipopolysaccharide stimulation induces rplasia in rats (7) and immunoglobin recepshown to stimulate lipogenesis in adipocytes is ther similar interactions between the gastrointe isceral adipose tissue exists in humans, and me y, if this is confined to pathological conditions rown. The aim of this study, therefore, was to it elationship between intestinal permeability an

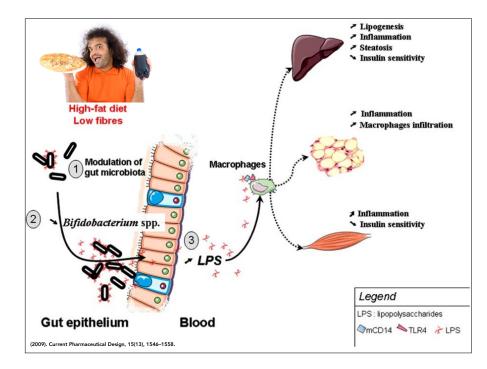
Clinical Nutrition

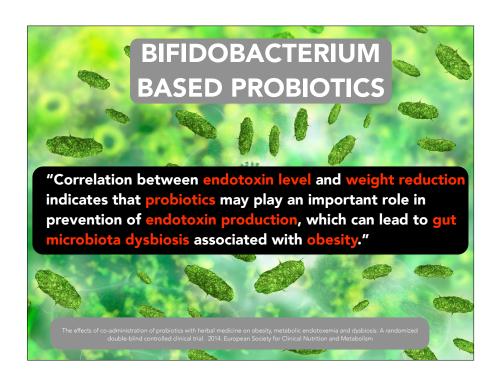
journal homepage: http://www.elsevier.com/locate/clnu

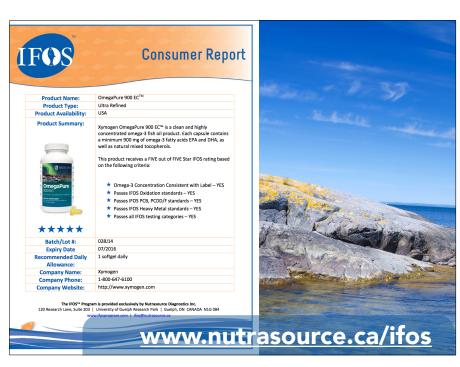

Original article

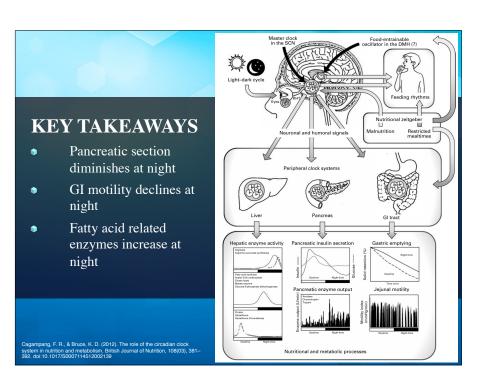

Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors*

Tatiana F.S. Teixeira ^{a,*,d}, Nilian C.S. Souza ^{b,e}, Paula G. Chiarello ^{b,f}, Sylvia C.C. Franceschini ^{a,g}, Josefina Bressan ^{a,h}, Célia L.L.F. Ferreira ^{c,i}, Maria do Carmo G. Peluzio ^{a,j}

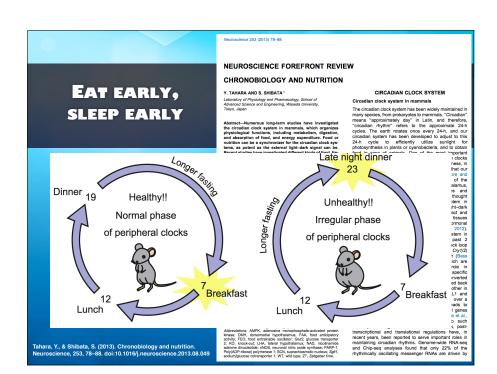

versidade Federul de Vicosa, Departmento de Natrilicoo e Saude, Avenida P.H. Rolfs, (in. Campus Univestidrio, 35570-000 Vicosa Minas Geruis, Brazil versidade de Sos Puulo, Departmento de Clinica Médica, Iscuidade de Medicina de Ribertio Petra, No Bendermans, 1900, 1648-900, Ribertio Petra, Sos Puulo, Ibrazil versidade Federal de Vicosa, Departmento de Clinica Medica, Vicosa (Inc.), 1800,







Patton, D. F., & Mistlberger, R. E. (2013). Circadian adaptations to meal timing:


Circadian rhythms of behavior and physiology are generated by central and perip circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food by direct and indirect neural, normonal and behavioral outputs. Ine daily nymmn or tood intake provides stimuli that entrain most peripheral and central collators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin mice. Hormones for which state are available include corticosterone, griefin, legitin, insulin, quicagni, end guicagni-leis peptide. I Ail of these hormones exhibit daily rightms of that ghrein and legitin mobilate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entirement. Circlinia religion deletri likely modulate food-entrained rhythms by actions in hypothelemic circuits utilizing melanoid and orient signaling, although again food-entrained behavioral rhythms can poesiat in

"Circadian time-keeping coordinates cellular and physiological processes" internally, and synchronizes these with daily cycles in the environment, ensuring that biological activities, from gene expression to foraging behavior, occur in the right sequence and at the right time of day

ensuring that biological activities, from gene expression to forage. The first revealed by studies of circulation activity physimization in the right sequences and at the right time food-restrated roberts. Acute and drovine food restrictions their of day. Although daily light-dark (LTD) cycles are considered to well-known behavioral and physiological responses to maintain the dominant environmental attentials for synchronizing in entablish from constants. Acute deprovation recruits neural circulations are considered to the contract of t cadian oscillators to local time, for many circadian processes, cuits that promote arousal and food seeking behavior. Chronic it is the timing of food intake that is most important. In this caloric restriction induces physiological adaptations to facilitate ulate circulain colosis im antennals. We then critically examine the role of metabolis and arter-servician bornous in this process. The role of metabolis and arter-servician bornous in this process. The role of the process of the p

eview, we briefly outline the evidence that feeding patterns regthe extraction and storage of energy from ingested nutrients and

CIRCADIAN CLOCK SYSTEM IN THE CONTEXT OF OPTIMAL METABOLIC HEALTH Muscle Fatty acid uptake Liver Glycogen synthesi Chalesteral synthesis WAKE **FEEDING** Muscle Pancreas Insulin secretii Fat Lipid catabolism Leptin secretion SLEEP **FASTING** Liver Glycogenolysis Mitochondrial biogenes Glucagon secretion Bass, J., & Takahashi, J. S. (2010). Circadian Integration of Metabolism and Energetics. Science, 330(6009), 1349-1354. doi:10.1126/science.1195027

Medical conditions may have been mentioned or implied in our discussion of the circadian clock.

It is important to remember that dietary supplements CANNOT mitigate diseases or replace drugs.

However, XYMOGEN products CAN give your patients their best chance to stay healthier longer*

* These statements have not been evaluated by the US Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease.

Time-Restricted Feeding

16/8 schedule

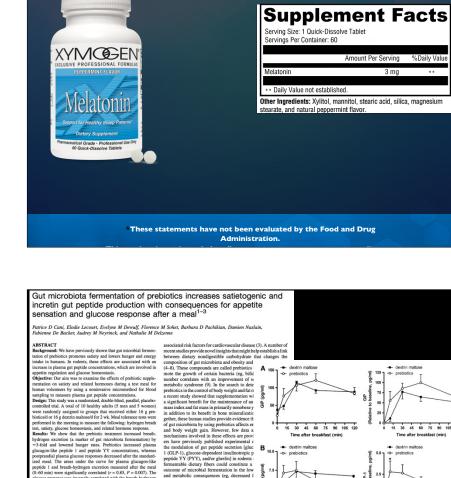
Benefits the microbiome and gut-hormones (as you're eating within your body's circadian rhythm

Helps to induce nutritional ketosis

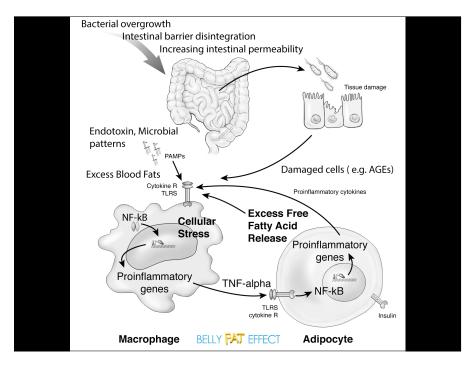
Enhances mitochondrial biogenesis

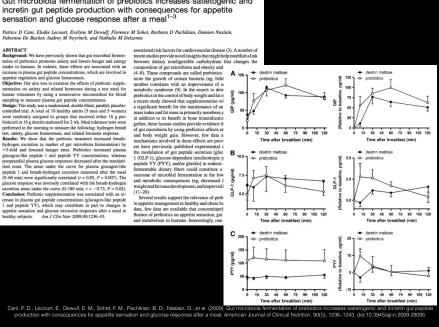
Time-Restricted Feeding

16/8 schedule


Benefits the microbiome and gut-hormones (as you're eating within your body's circadian rhythm

Helps to induce nutritional ketosis


Enhances mitochondrial biogenesis



Melatonin

Amount Per Serving %Daily Value