Parameters of H2OCoxPH¶
Affected Class¶
- ai.h2o.sparkling.ml.algos.H2OCoxPH
Parameters¶
- Each parameter has also a corresponding getter and setter method. (E.g.: - label->- getLabel(),- setLabel(...))
- ignoredCols
- Names of columns to ignore for training. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- interactionPairs
- A list of pairwise (first order) column interactions. - Scala default value: - null; Python default value:- None
- columnsToCategorical
- List of columns to convert to categorical before modelling - Scala default value: - Array(); Python default value:- []
- convertInvalidNumbersToNa
- If set to ‘true’, the model converts invalid numbers to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- convertUnknownCategoricalLevelsToNa
- If set to ‘true’, the model converts unknown categorical levels to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- detailedPredictionCol
- Column containing additional prediction details, its content depends on the model type. - Default value: - "detailed_prediction"- Also available on the trained model. 
- exportCheckpointsDir
- Automatically export generated models to this directory. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- featuresCols
- Name of feature columns - Scala default value: - Array(); Python default value:- []- Also available on the trained model. 
- init
- Coefficient starting value. - Default value: - 0.0- Also available on the trained model. 
- interactions
- A list of predictor column indices to interact. All pairwise combinations will be computed for the list. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- interactionsOnly
- A list of columns that should only be used to create interactions but should not itself participate in model training. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- labelCol
- Response variable column. - Default value: - "label"- Also available on the trained model. 
- lreMin
- Minimum log-relative error. - Default value: - 9.0- Also available on the trained model. 
- maxIterations
- Maximum number of iterations. - Default value: - 20- Also available on the trained model. 
- modelId
- Destination id for this model; auto-generated if not specified. - Scala default value: - null; Python default value:- None
- namedMojoOutputColumns
- Mojo Output is not stored in the array but in the properly named columns - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- offsetCol
- Offset column. This will be added to the combination of columns before applying the link function. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- predictionCol
- Prediction column name - Default value: - "prediction"- Also available on the trained model. 
- singleNodeMode
- Run on a single node to reduce the effect of network overhead (for smaller datasets). - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- splitRatio
- Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set. - Default value: - 1.0
- startCol
- Start Time Column. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- stopCol
- Stop Time Column. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- stratifyBy
- List of columns to use for stratification. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- ties
- Method for Handling Ties. Possible values are - "efron",- "breslow".- Default value: - "efron"- Also available on the trained model. 
- useAllFactorLevels
- (Internal. For development only!) Indicates whether to use all factor levels. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- validationDataFrame
- A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. - Scala default value: - null; Python default value:- None
- weightCol
- Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- withContributions
- Enables or disables generating a sub-column of detailedPredictionCol containing Shapley values. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withLeafNodeAssignments
- Enables or disables computation of leaf node assignments. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withStageResults
- Enables or disables computation of stage results. - Scala default value: - false; Python default value:- False- Also available on the trained model.