
 1

Talking OOP Java. Version Two

You must express yourself using the correct Java terminology.

Data and Information

 Data is either primitive or complex. There are “primitive data variables”
(int, double, boolean, char) or “complex data structures” (classes and
objects – String is complex). Raw data is not useful until it is processed.

 Information is processed, structured, organized or filtered and is
therefore useful.

Data that is read out of a text file is raw data because it is not organized (the field
names are not part of the text file usually)

Classes and Objects

 A class is a template from which we create child objects.
 An object is an instance of a parent class.
 From a class we create instances of that class (instantiation)

We instantiate an object using the parent class as a template – the created
object inherits the data and methods of the parent class but is its own separate
entity. Classes do not contain objects – they define the data and methods that
the child object will have.

A newly create object is also a class - you can instantiate a new child object from
it. The new child object will inherit all data/methods from both parent classes.

Classes are encapsulated (an advantage of OOP programming). The data inside
an object is protected from outside interference –therefore the primitive data
types in the class are declared as private.

We should only use the accessor methods and mutator methods to
alter the values inside a class.

Classes have methods - 1) constructor method(s) 2) getter methods (accessor
methods) 3) setter methods (mutator methods) 4) toString method.

Constructors
You instantiate a new object from a class using the special class method called a
constructor. A class can have more than one constructor – we say that the
constructor method is overloaded. Note: All the constructors have the same
name i.e. the same name as the class but have a different number of
parameters. See below.

Constructor and parameters

 One constructor can accept no parameters.
 Other constructors can accept one parameter.
 A third constructor can accept three parameters etc.

o Two constructors cannot have the same number of parameters

 2

All constructors within a class have the same name as the class.

All classes have a constructor method, even if you don’t create one - Java will
provide a default one for the application to use if relevant. The default
constructor will instantiate the object with default values in all fields e.g. int will
be 0, double will be 0.0, String will be null, boolean will be false, char will be the
very first ASCII value (‘\u0000)

Java knows which one to use as it matches the arguments in the call statement
with the parameters in one of the constructors – a call with three arguments is
matched to the constructor with three parameters.

Therefore when we instantiate new objects they can there have different
properties because they were created using different constructors (one
vehicle object can have the colour property “white” while another has a
null value in the colour field – note – all will have the colour field but the
data in the colour field can vary from null to any colour you can think of.

toString Method

 If you don’t create your own toString method Java will create one for you
– a default method. It will concatenate all the fields together in the same
order that they were declared in.

 If you create your own toString method you can choose the fields you
want, their order and format.

Methods are declared private when they are helper methods – they are only
needed internally by that class (or any child class created from it.)

Math.pow(double a, double b) is a public method of the Math class. It can be
called anywhere at any time. It is static because we never need to create a child
object from the Math class.

A class has data/properties and methods. We create instances of the class, which
become separate child objects – we use the constructor method to do this.
Instance objects inherit all the data and methods of the parent class.

Methods in a class can be void or typed. A void method returns nothing e.g. it
changes the colour from red to blue. A typed method returns a value
e.g. price * VAT – we need the new value back.

Arrays and an arrays of objects

 An array is a complex data structure.
 An array is “static”. Different meaning. The structure of an array may not

be altered after it is created using the new keyword e.g. new Puzzle[200].

private Puzzle[] puzzleArray = new Puzzle[200]

This array of 200 is indexed from 0 to 199 (it has 200 elements)
The size of the array may not be altered – it is “static”

 3

An array can only contain elements of the same data type i.e. the same
primitive data type or the same complex data type. NOTE: Don’t be fooled. An
array of objects still contains the same data type – in this case it is the same
complex data type (that contains many primitives variables of different types.)

Class diagrams
Using puzzles in a toy store; they would not only have one – therefore the full
program would create an array of puzzle objects.

Field/Properties – all private

1. Name of the puzzle
2. Description of the puzzle
3. Level of difficulty – 1 to 10
4. Price
5. Imported – yes or no

NOTES:
The method “updatePrice” is a setter (mutator method). You do not have to use
the word “set”.
The parameters and their primitive data types are part of the class diagram.

 Without brackets is a return type - getName : string
 With brackets is a parameter that is passed - updatePrice (p : double)
 The method getWelcomeScreen – no parameters and no return type

Puzzle
Properties:
- name : string
- description : string
- difficulty : integer
- price : double
- imported : boolean
Methods: (just some possible examples)
+ Constructor (n : string, de : string, di : integer, p : double, im : boolean)
+ Constructor (n: string, d: string)
+ getWelcomeScreen
+ getName : string
+ setDescription (d: string)
+ updatePrice : (p : double)
+ toString : string

Method Headers – Four parts
1) Access modifier, 2) return data type, 3) name of method, 4) parameter list
(can be empty) – these four are compulsory**

 public String getName(int i) – method needs the index number of puzzle
 public void setDescription(string d)

** public Puzzle (String n, String d) - Constructor method. No return type.

