
1

OOP THEORY

Author: Mr H Peuckert

ALGORITHMS/PSEUDO CODE

To be able to answer anything they throw at you in

Section B of the PRACTICAL EXAMINATION & the OOP Question in THEORY
EXAMINATION,

you need to do the program in these notes practically and study all the theory and
definitions.

Program Theme: Products sold at a Grocery Shop

In the explanation of these notes we will consider the following theme: A grocery shop wants to

manage the products they sell. They have stored the data of the products in secondary storage in

a text file called Products.txt.

Examine the contents of the text file:

TOM01#Simba Tomato Chips#125 g#F#16.50#5#31

CHE01#Fasta Pasta Cheese#65 g#F#13.20#3#186

CAN01#B-well Canola Oil#750 ml#F#68.70#6#73

NIV01#Nivea Body Lotion#400 ml#T#37.80#4#19

GAR01#Smash Garlic Butter#104 g#F#21.00#5#93

GIL01#Gillette Shaving Foam#200 ml#T#29.30#4#24

TOM02#Simba Tomato Chips#30 g#F#7.90#3#85

HAN01#Handy Andy Lemon#750 ml#O#33.50#6#49

Each line stores the information of one product in the following format:

TOM01 # Simba Tomato Chips # 125 g # F # 16.50 # 5 # 31

Product ID # Product Name # Weight of the product (in g or ml) # Type of Product # Cost

Price # Markup Percentage # Quantity in Stock

Type of Product is represented by the following characters in the text file:

‘F’ – Food ‘T’ – Toiletries ‘O’ – Other

2

The Cost Price stored in the file does not include VAT and is the purchase price – it has not been

marked up yet. Your program will do that by adding the VAT and marking it up by the value stored

in the Markup Percentage field (when creating a product object).

QUESTION 1

Use the class diagram below to create a class called Product. This class will be used to create

objects that will store the details of the products that are sold at the Grocery shop. The diagram

below indicates the properties and methods that are required. You must use these names in your

program!

Product

Properties:

– prodID : String NOTE: When doing this in Java, replace – with the word private

– prodName : String Whenever you see the : character in a class diagram

– weight : String you need to take the data type to the front of the

– prodType : int variable name / method name, e.g.

– sellPrice : double – prodName : String

– quantity : int becomes private String prodName;

+ (static/class constant) double VAT = 15 NOTE: These are called

constants.

+ (static/class constant) integer TYPE_FOOD = 1 They are just like

variables/fields

+ (static/class constant) integer TYPE_TOILETRIES = 2 but we assign values to them

+ (static/class constant) integer TYPE_OTHER = 3 that can never be changed.

Methods:

– addVATandMarkUp(costPrice : real, markup : real) : real NOTE: This is Helper Method

 It is private

+ Construct(pi : String, pn : String, w : String, pt : char, costPrice : real, markup : real, quantity :

int)

+ getProdID : String NOTE: Here the () are omitted. You need to add the round

+ getProdName : String brackets after each method name in Java.

+ getWeight : String

3

+ getProdType : integer

+ getSellPrice : real

+ getQuantity : integer

+ setProdID(pi : String) NOTE: Setter methods do not have return types because they

+ setProdName(pn : String) do not have a return statement in their code.

+ setWeight(w : String) So there are no : data type at the end.

+ setPrice(cP : real, mU : real) So remember to add the word void before the method

+ setQuantity(quantity : integer) name when doing it in Java.

+ getProductTypeName(pt : integer) : String NOTE: Another Helper Method

+ toString : String NOTE: Remember to add the round brackets after

 the method name.

1.1 Write code to create a new class called Product.

 public class Product { START A NEW CLASS!

1.2 Write code to create the 6 properties for the Product class as indicated in the above

class diagram.

 FIELDS/PROPERTIES:

 private String prodID;

 private String prodName;

 private String weight;

 private int prodType;

 private double sellPrice;

 private int quantity;

 NOTE: Other terms they can use for properties/fields: instance variables, attributes

NOTE: More on Access Modifiers:

When declaring these fields/properties we use the private access modifier when the field

name is preceded with a – character in the class diagram and we use the public access

modifier when the method name is preceded with a + character in the class diagram.

4

Do not confuse it with Accessor method. It is the word private, public or protected we use

when

declaring fields or creating methods, e.g. private String name; or public String getName();

Private means that the field or method can only be used in the class in which it was created

(it

is only accessible in that class). It cannot be used from other classes.

Public means that the field or method can be used in other classes (it is accessible from

other

classes – it can be used from other classes).

1.3 Write code to create 4 constants for the Product class as indicated in the above

class diagram.

CONSTANTS:

 public static final double VAT = 15;

 public static final int TYPE_FOOD = 1;

 public static final int TYPE_TOILETRIES = 2;

 public static final int TYPE_OTHER = 3;

NOTE: A “brief” explanation of constants:

A constant is like a variable but its value can never be changed:

 int num1 = 19;  Here we create a variable called num1 and store 19 in it.
 num1 = 20;   Here we change its value to 20 (we assign (store) 20 to it).

 Here we create a constant called num2 and store 21 in it.
 Putting the word final in front means that the value cannot be
 final int num2 = 21; changed. This is the final value that is stored in it.

num2 = 22;  This instruction will result in an error and will be underlined
 in red in Netbeans. Constant’s values cannot be changed.

We also capitalise the identifier name to indicate that it is a constant.

final int NUM2 = 19;

5

Let us look at a few fields and constants from the Product object class:

 If a variable is used as a field/property at the top of an object class and we want
 to use it as a constant (we do not want its value to be changed), then we also add the
 word static in front of it. Why?
 NOTE:
 private String prodName; These variables are seen as fields of an object
 private double sellPrice; and will be created for every object. The values
 stored in them can be changed (using setter methods),
 e.g. product1.setSellPrice(96.70);
 If they were public we could use them from another
 class by using the format object.field, e.g.
 product1.sellPrice = 96.70;
 but because they are private, we have to use the
 setter method (as indicated above).

 So the instruction Product product1 (coded in another
 class) will create the fields for this object:
 product1.prodName
 product1.sellingPrice

 So the instruction Product product2 will create the
 fields for this object as well:
 product2.prodName
 product2.sellPrice

 Important: Because they are non-static (we
 do not use the word static when declaring them)
 these fields will be created for every object. All of
 these fields will be created in memory.

 NOTE:
 public static final double VAT = 15; VAT is a constant which will always store 15
 which cannot be changed in the program.
 It is also static meaning it belongs to the
 class. To use them from another class we
 use the format Class.constant,
 e.g. Product.VAT (not object.constant)
 So important: Because they are static they
 will not be created for every object.

 So if the word static was removed from its
 declaration, then VAT will be created for every
 object:
 product1.VAT
 product2.VAT which is unnecessary!

 For each object, VAT will be created in memory
 that will take up unnecessary space.

See my explanation at the top of the ProductsUI class for clarity

6

1.4 Create a new method called addVATandMarkUp that will be used to add the VAT to

 the cost/purchase price of the product and increase the price (with VAT already added)

 by the markup percentage. The cost price and markup percentage must be received

 as parameters. Use the values from the parameters and the VAT constant, and

 calculate and return the selling price of the product.

 HELPER METHOD 1:

 private double addVATandMarkUp(double costPrice, double markUp) {

 double pricePlusVAT = 0;

 pricePlusVAT = costPrice + costPrice * VAT / 100; // Add VAT to costPrice

 pricePlusVAT = pricePlusVAT + pricePlusVAT * markUp / 100; // Increase price by

markup %

 DecimalFormat dec = new DecimalFormat("#.##"); // Change the real

number

 pricePlusVAT = Double.parseDouble(dec.format(pricePlusVAT)); // to 2 decimal places

 return pricePlusVAT;

 }

 NOTE: This is a Helper method. In this case it will be used to help the constructor method

 to calculate the selling price of a product. Helper methods are mostly private which means

 that it can only be used in the class where it was created (in this case in the Product class).

 It cannot be called from other classes. Its main purpose is to assist the other public

methods

 in the class and normally to perform calculations that the other public methods need.

1.5 Write code to create a constructor method that will initialize all 6 properties of the

Product

class. Please note that the Type of Product will be received as a character (F, T or O) and

your code needs to assign the correct constant to the prodType field. Also, make a call to

the addVATandMarkUp method to calculate the selling price and assign it to the sellPrice

property of the product object.

CONSTRUCTOR METHOD:

7

 public Product(String pi, String pn, String w, char pt, double costPrice,

 double markUp, int quantity) {

 prodID = pi;

 prodName = pn;

 weight = w;

 if (pt == 'F') {

 prodType = TYPE_FOOD;

 } else if (pt == 'T') {

 prodType = TYPE_TOILETRIES;

 } else {

 prodType = TYPE_OTHER;

 }

 sellPrice = addVATandMarkUp(costPrice, markUp);

 this.quantity = quantity; // Please note that when the parameter name and

 } // the object’s field name is the same, then you

 field name parameter name // have to put this. before the field name.

NOTE: The constructor method is used to (1) create a new object and (2) to assign

values to

the fields of the object (received as parameters).

Instead of saying “create” we can use the word “instantiate”, i.e. “to instantiate an object” =

“to create an object”. This must not be confused with the word “initialise” which means to

give a variable a begin value, e.g. sum = 0;

NOTE: This constant can be used in other classes using the format Class.contant,

e.g. Product.TYPE_FOOD and Product.VAT. So instead of using the value of 15 for the

VAT in the program we just use Product.VAT. What is the advantages of this? When the

vat changes to 16 we do not have to search through hundreds of lines of code and change

15

to 16. We just change it in one place (at the top of the object class were you declared the

constant).

Also, instead of using the value of 1 for the Type of Product we can use

Product.TYPE_FOOD

8

(you just type in Product, press full stop and choose TYPE_FOOD from the list).

Your code just became more user friendlier to other programmers because instead

of seeing the value of 1 they see TYPE_FOOD so they know immediately the type of

Product

is food. And instead of using the value of 2 we use TYPE_TOILETRIES which is more

understandable.

1.6 Write code to create accessor methods (also called getter methods) for all the properties

as indicated in the class diagram.

ACCESSOR\GETTER METHODS:

 public String getProdID() {

 return prodID;

 }

 public String getProdName() {

 return prodName;

 }

 public String getWeight() {

 return weight;

 }

 public int getProdType() {

 return prodType;

 }

 public double getSellPrice() {

 return sellPrice;

 }

 public int getQuantity() {

 return quantity;

 }

NOTE: A getter method (or called an accessor method) is used to return the value of a field

(property) of an object.

Because the fields/properties of the object is using the private access modifier, they cannot be

used from other classes. That is the reason why we create getter methods which are using the

9

public access modifier that will simply just return the value of the field. Since these methods are

public they can be used from other classes (they are accessible from other classes).

1.7 Write code to create mutator methods (also called setter methods) for all the properties

as indicated in the class diagram.

MUTATOT\SETTER METHODS:

 public void setProdID(String pi) {

 prodID = pi;

 }

 public void setProdName(String pn) {

 prodName = pn;

 }

 public void setWeight(String w) {

 weight = w;

 }

 public void setPrice(double cP, double mU) {

 sellPrice = addVATandMarkUp(cP, mU);

 }

 public void setQuantity(int quantity) {

 this.quantity = quantity;

 }

NOTE: A setter method (or called a mutator method) is used to change the value of the field of

an object.

Because the fields/properties of the object is using the private access modifier, the values stored

in them cannot be changed from other classes. That is the reason why we create setter methods

which are using the public access modifier that will be used to change the value of a field. Since

these methods are public they can be used from other classes (they are accessible from other

classes). Some of the code (i.e. the parameters & assignment statement in the body of the

method) is identical to the code found in the constructor method since both types of methods are

used to initialise/change the values of the objects’ fields. In a constructor method many fields are

changed whereas in a setter method only one field is normally changed at a time.

10

1.8 Create another method called getProductTypeName that will be used to return a

word (“Food”, “Toiletries” or “Other”) indicating the type a product. The method must

receive an integer that represents the type of product (1 – Food, 2 – Toiletries, 3 – Other).

It must then compare the received value to the constants of the class and return the correct

word “Food”, “Toiletries” or “Other”.

HELPER METHOD 2:

 private String getProductTypeName(int pt) {

 String word = "";

 if (pt == TYPE_FOOD) {

 word = "Food";

 } else if (pt == TYPE_TOILETRIES) {

 word = "Toiletries";

 } else {

 word = "Other";

 }

 return word;

 }

NOTE: This helper method will be used to display the type of product not as a number,

e.g. 2,

but as more descriptive word, e.g. “Toiletries”. It will be called in the toString method when

an object’s data is combined into a string.

1.9 Write code to create a toString method which will return a String comprised of the

 data of a product. You need to combine the data of an object into one string and format it

as indicated in the example below:

 Example:

TOM01: Simba Tomato Chips 125 g (Food)

31 x R19.92 = R617.52

TOSTRING METHOD:

11

 public String toString() {

 String output = "";

 output = "\n" + prodID + ": " + prodName + " " + weight;

 output = output + " (" + getProductTypeName(prodType) + ")";

 output = output + "\n" + quantity + " x R" + sellPrice;

 DecimalFormat dec = new DecimalFormat("#.##");

 output = output + " = R" + Double.parseDouble(dec.format(quantity * sellPrice));

 return output;

 }

 NOTE: The toString method is used to combine many of the object’s field’s values into

 one string an return it. It will be called/used by other classes when they want to display

the data of an object.

They are very similar to getter/accessor methods but instead of just returning one field’s

data, it will return data from many fields (combined into one string).

NOTE: Calling the toString method: When calling/using the toString method from other

classes, you will use the format object.toString(), e.g. System.out.println(

product1.toString());

You can actually leave the toString out and just use: System.out.println(product1);

 which means display the object called product1. The toString method will then be

automatically

be called. Both instructions work the same.

NOTE: What if you call the toString method and it does not exist in the object class?

Example: You call the toString method from another class, e.g. System.out.println(product1

);

or System.out.println(product1.toString()); BUT the toString method does not exist in the

object class (it was not coded in the Product class). What will be displayed then? Go and

test it on your completed program that works properly. Comment the toString method out in

the Product class (select/highlight it and press Crtl and / on the keyboard) – so it does not

12

exist anymore. Run the program and see what will be displayed.

Instead of displaying the following:

 ALL PRODUCTS:

 TOM01: Simba Tomato Chips 125 g (Food)

 31 x R19.92 = R617.52

 CHE01: Fasta Pasta Cheese 65 g (Food)

 186 x R15.64 = R2909.04

it will display:

 ALL PRODUCTS:

 productsui.Product@33909752

 productsui.Product@55f96302

 Please note: When calling a toString method (or displaying an object) when there is

no toString method in the object class (which the programmer created), it will call the

default

toString method (that can be found in the class called Object). This default toString method

in

this Object class will return the hashcode of the object’s memory location. It returns the

reference to the address space where the object can be found. That reference will then be

displayed, e.g.productsui.Product@33909752

By creating our own toString method in our own created object class, the toString method of

the Object class will be overridden and our toString method will be used instead. A user-

defined toString method is needed to combine the data of the object into one string. Here

we

use the following concept:

Method over-riding: Where more than one method exists with the same name and the

same parameter list.

There are 2 toString methods available in the Products program. The one toString method

we coded in the Product class. There also exist a second toString method in the Object

class

(that will only be used in the situation when a toString method was never coded in the user-

defined object class, e.g. Product). So 2 toString methods, with the same name and the

same

13

parameter list (there are no parameters):

 * toString() - from Product class

 * toString() - from Object class

The toString method of the Object class will be overridden and our newly created toString

method from our newly created object clas will be used instead.

This is different from the concept of overloading:

Method overloading:

Where more than one method exists with the same name and a different parameter list

So you have two methods with the exact same name but the parameters are different.

An example of this is the showMessageDialog method of the JOptionPane class:

There are many of these methods that have the same name but with different parameters:

So calling the method with only 2 arguments will call/use the first method listed above:

 JOptionPane.showMessageDialog(null, "Hi");

But calling the same method with 4 arguments will call the second method listed above:

 JOptionPane.showMessageDialog(null, "Today is Friday!",

 

"Weekend",JOptionPane.WARNING_MESSAGE);

Do you see the constant that I used (that is declared at the top of the JOptionPane class):

 public static final int WARNING_MESSAGE = 2;

So instead of using the number 2…

 JOptionPane.showMessageDialog(null, "Today is Friday!","Weekend",2);

…we can use the constant that is static, so Class.constant:

14

 JOptionPane.WARNING_MESSAGE

We can just type in the class name, press full stop on the keyboard and select it from the

list.

1.10 Create a new method called getVAT that will return the value stored in the VAT constant.

STATIC METHOD:

 public static double getVAT() {

 return VAT;

 }

 NOTE: I have to make the method static since the VAT constant is also static. We do not

 actually need this method since VAT is public. We would need it if VAT is private so other

 classes can get the VAT value. How it is programmed in the memo, we can get the VAT

 in other classes by saying:

 Product.VAT or Product.getVat()

 since they both are static (Class.Field or Class.Method()) and public:

 public static final double VAT = 15;

 public static double getVAT() {

 return VAT;

 }

QUESTION 2

2.1 Write code to create a new class called ProductsManager.

 public class ProductsManager { START A NEW CLASS!

2.2 Write code to create the following two properties that should not be accessible from

outside

the class:

 An array, called item, which can be used to store up to 150 Product objects.

 An integer counter to keep track of how many products are stored in the item array.

15

MANAGER CLASS'S FIELDS/PROPERTIES:

 private Product item [] = new Product[150];

 private int size = 0;

NOTE: The following fields will be created in memory for every object: item[0], item[1],

etc…

item[0] item[1]

item[0].prodID item[1].prodID

item[0].prodName item[1].prodName

item[0].weight item[1].weight

item[0].prodType item[1].prodType

item[0].sellPrice item[1].sellPrice

item[0].quantity item[1].quantity

NOTE: The code on page 25/26 can be inserted in the user interface class (ProductsUI).

This is more Grade 11 work and explain how objects are created and how the values of

their fields can be retrieved in other classes and how the values of their fields can be

changed in other classes. The instructions Product product1 and Product product2 will

only declare 2 objects called product1 and product2. It is better to declare an array of

objects (like what you are doing here in this question). It takes less code to declare many

objects, you just use

Product item[] = new Product[150] and it will declare 150 objects at once, called

item[0], item[1], item[2], etc. It is also easier to later look at these objects at once. By

looping through the array, we can quicker (and with less code) perform calculations and find

objects, etc.

2.3 Write code to create a constructor method that will read the contents of the Products.txt

text file and create an object for each product and store it in the item array. The method

must

receive a string representing the file name as a parameter and open that file for reading.

Each line of text contains data of a product. Read each line from the file and instantiate

 a Product object and add it into the array. Display a suitable message if the file was not

 found.

MANAGER CLASS'S CONSTRUCTOR METHOD:

16

 public ProductsManager(String fileName) {

 try {

 Scanner scFile = new Scanner(new File(fileName));

 while (scFile.hasNext()) {

 String line = scFile.nextLine();

 String data[] = line.split("#");

 item[size] = new Product(data[0], data[1], data[2], data[3].charAt(0),

  Double.parseDouble(data[4]),

Double.parseDouble(data[5]),

  Integer.parseInt(data[6]));

 //TOM01 #Simba Tomato Chips#125 g#F#16.50#5#31

 size++;

 }

 } catch (FileNotFoundException ex) {

 JOptionPane.showMessageDialog(null, "Cannot find Products.txt");

 }

 }

2.4 Write code that will create a method called getAllProducts. This method should return a

string that contains the information of all the products. Each product should appear on its

own line. Use the object’s toString method that you have created in question 1.9.

METHOD USED TO DISPLAY ALL DATA (RETURN AS ONE STRING):

 public String getAllProducts() {

 String output = "";

17

 for (int i = 0; i < size; i++) {

 output = output + item[i].toString() + "\n";

 }

 return output;

 }

2.5 Write code that will create a method called totalWorth. The method must loop through

 the item array and calculate the total worth of all the products in stock. Return the result.

METHOD TO CALCULATE THE TOTAL WORTH OF ALL THE PRODUCTS IN

STOCK:

 public double totalWorth() {

 double total = 0;

 for (int i = 0; i < size; i++) {

 total = total + item[i].getQuantity() * item[i].getSellPrice();

 }

 return total;

 }

2.6 Write code that will create a method called AverageWeight. Calculate and return the

average weight of only the foods that are measured in grams.

METHOD TO CALCULATE THE AVERAGE WEIGHT OF FOODS THAT ARE

MEASURED IN GRAMS:

 public double AverageWeight() {

 double total = 0;

 int count = 0;

 for (int i = 0; i < size; i++) {

18

 if (item[i].getProdType() == Product.TYPE_FOOD) {

 String data[] = item[i].getWeight().split(" "); // "125 g" will be split around the space

 // data[0]: "125" data[1]: "g"

 double weight = Double.parseDouble(data[0]); // weight: 125.0

 String unit = data[1]; // unit: "g"

 if (unit.equals("g")) {

 total = total + weight;

 count++;

 }

 } //end if

 } // end for loop

 double avg = total / count;

 return avg;

 }

2.7 Write code that will create a method called getProductQuantity that must receive a String

 representing the ID of a product as a parameter. Find this product in the item array and

 return the number of that specific product in stock (it’s quantity). Stop searching as soon as

 the product has been found.

METHOD TO RETURN THE QUANTITY OF A CERTAIN PRODUCT:

 public int getProductQuantity(String id) {

 int qty = 0;

 for (int i = 0; i < size; i++) {

 String prodIDNumber = item[i].getProdID();

 if (prodIDNumber.equals(id)) {

19

 qty = item[i].getQuantity();

 i = size; //So that it will stop looping when the product was found

 } // end if

 } // end for

 return qty;

 }

2.8 Write code that will create a method called decreaseQuantity that must receive a String

 and an integer as parameters representing the ID of a product and the amount by which

its quantity needs to decrease by. Find this product in the item array and decrease its

quantity by the value received as a parameter. Again, stop searching as soon as

 the product has been found. This method will be used when someone buys an item

 and the object’s quantity field needs to be updated.

METHOD TO DECREASE THE QUANTITY OF A PRODUCT IN STOCK BY A CERTAIN

AMOUNT:

 public void decreaseQuantity(String id, int byAmount) {

 for (int i = 0; i < size; i++) {

 String prodIDNumber = item[i].getProdID();

 if (prodIDNumber.equals(id)) {

 int currentQty = item[i].getQuantity();

 int newQty = currentQty - byAmount;

 if (newQty >= 0) {

20

 item[i].setQuantity(newQty);

 }

 i = size; //So that it will stop looping when the product was found

 } // end if

 } // end for

 }

QUESTION 3

3.1 Write code to create a simple user interface called ProductsUI which will declare and

instantiate a ProductsManager object (send the Products.txt file to the

ProductsManager’s

 constructor method).

 public class ProductsUI { START A NEW CLASS!

 public static void main(String[] args) {

ProductsManager pm = new ProductsManager("Products.txt");

3.2 Write code that will display the following by calling the appropriate methods in the

ProductsManager class. You must call the methods in the following order:

 Display all the products in stock.

 Display the total worth of all the products in stock.

 Display the average weight of foods that are measured in gram.

 Display the quantity of 30 g tomato chips in stock (Product ID: TOM02)

 Ten packets of 30 g tomato chips were sold. Update the quantity in the array.

 Again, display the quantity of 30 g tomato chips in stock.

 System.out.println("\n\nALL PRODUCTS: \n" + pm.getAllProducts());

 System.out.println("\nTOTAL WORTH OF ALL THE PRODUCTS IN STOCK: R"

 + pm.totalWorth());

21

 System.out.println("\n\nAVERAGE WEIGHT OF FOODS THAT ARE MEASURED IN GRAM:

"

 + pm.AverageWeight() + " g");

 System.out.println("\n\nQUANTITY OF TOMATO CHIPS IN STOCK: "

+ pm.getProductQuantity("TOM02"));

 System.out.println("10 PACKETS OF TOMATO CHIPS SOLD");

 pm.decreaseQuantity("TOM02", 10);

 System.out.println("NEW QUANTITY OF TOMATO CHIPS IN STOCK: "

+ pm.getProductQuantity("TOM02"));

DEFINITIONS: OOP

 OOP Definition: fields/properties

Object-oriented programming (OOP) refers to a type of computer programming (software

design) in which programmers define not only the data type of a data structure, but also

the

types of operations (functions) that can be applied to the data structure.

 methods

 Advantages of using Object Orientated Programming:

o Code reusability:

Objects can be reused within and across applications.

o Improved software maintainability:

22

It makes software easier to maintain. Since the design is modular, part of the system

can be updated in case of issues without a need to make large-scale changes. Objects

can be maintained separately, thus locating and fixing problems more easily

o Faster development:

Object-oriented programming languages come with rich libraries of objects, and code

developed during projects is also reusable in future projects.

 Class/Fields/Methods:

A class consist of fields and methods:

o A class is a blueprint/plan for an object.

o A field (also known as the property/attribute) of an object stores a characteristic of

an object, e.g. the colour field created of a car object will store the colour of a car,

e.g. blue.

o A method is a set of instructions to perform a task/action.

 Constructor method:

The constructor method is used to create a new object and to assign values to the fields of

the object (received as parameters).

 Getter (Accessor) method:

A getter method (or called an accessor method) is used to return the value of a field of an

object.

 Setter (Mutator) method:

A setter method (or called a mutator method) is used to change the value of the field of an

object.

 Access modifier:

Do not confuse it with Accessor method. It is the word private, public or protected we use

when declaring fields or creating methods, e.g. private String name; or public String

getName();

Private means that the field or method can only be used in the class in which it was created

(it is only accessible in that class). It cannot be used from other classes.

23

Public means that the field or method can be used in other classes (it is accessible from

other classes – it can be used from other classes).

 Helper method:

This is a method that normally uses the access modifier private and can only be used in the

class where it was created. It will only be used by other methods in the same class and will

not be used by other classes (maybe other classes will not have a need for it). The Helper

method is used in other public methods of the same class to perform a calculation that the

public method needs.

 Encapsulation:

o A class encapsulates the fields and the methods in a capsule-type entity.

 Fields

 Java class

 Methods

Encapsulation occurs when a class combines the fields and methods into one unit.

When you instantiate an object all the fields are created and the methods have

access to these fields.

o A method of protecting data from unwanted access or alteration by packaging it in an

object where it is only accessible through the object’s interface.

o The hiding of the internal presentation of objects and implementation details from the

client program.

o In other words: making your fields private, and controlling access to them by using

methods (e.g. getter and setter methods).

 Instantiation:

Instantiation means that we are creating an object of a class.

Let us say we create 2 objects of the Product class called product1 and product2:

Product product1 = new Product("TOM03", "All Gold Tomato Sauce", "500 ml", 'F',46.70,5,

18);

Product product2 = new Product("TOM04", "All Gold Tomato Sauce", "250 ml", 'F',24.80,3,

27);

24

Then we say we created 2 instances of the Product class. The object product1 is an

instance of the Product class. The object product2 is another instance of the Product class.

Each

instance use the same fields and methods of the Product class but one instance’s fields

contain different data than another instance of the class.

In programming, instantiation is the creation of a real instance of a class of objects.

To instantiate is to create such an instance by, for example, defining one particular variation

of object within a class, giving it a name, and locating it in some physical place.

 Parameter:

o A variable passed to a method.

o Allows the same method to produce different results.

o It is declared in a method header.

 Static methods:

o Use the keyword static in the header of the method.

o To call a static method you use the format Class.method()

 Static Data Structures vs Dynamic Data Structures:

o A static data structure is an organization or collection of data in memory that is fixed in

size. This results in the maximum size needing to be known in advance, as memory

cannot be reallocated at a later point. Arrays are a prominent example of a static data

structure.

o Static data structures stand in contrast to dynamic data structures, wherein with the

latter the size of the structure can dynamically grow or shrink in size as needed, which

provides a

programmer with the ability to control exactly how much memory is utilized.

 Non Static methods:

o Does not use the keyword static in the header of the method.

25

o To call a non-static method you use the format object.method(); So you first have to

instantiate (create) an object of the class and then call the method by using the

object.

 // THE FOLLOWING INSTRUCTIONS IS NOT PART OF THE PROGRAM

 // AND CAN BE INSERTED IN THE USER INTERFACE CLASS FOR EXPLANATION

 // PURPOSES:

// Here we are creating 2 objects called product1 and product2, displaying the values of

some

// of its fields and changing others. The value of the VAT constant is also displayed.

 Product product1 = new Product("TOM03", "All Gold Tomato Sauce", "500 ml", 'F', 46.70, 5,

18);

 System.out.println("The product1 object contains the following data: \n"

 + product1.toString()); // OR just: + product1

 System.out.println("\n" + Product.getVAT() + "% VAT has been added to the purchase

 price of R46.70");

 System.out.println("Yes, that is right, it has been increased by a massive " + Product.VAT

+ "%");

 System.out.println("Further, it's cost has been marked up by 5% to R" +

product1.getSellPrice());

 int currentQty = product1.getQuantity();

 System.out.println("\nThe number of " + product1.getProdName() + " bottles in stock: "

+ currentQty);

 product1.setQuantity(currentQty - 2);

 System.out.println("2 bottles have been purchased. There are "

26

 + product1.getQuantity() + " bottles

left.");

 Product product2 = new Product("TOM04", "All Gold Tomato Sauce", "250 ml", 'F', 24.80, 3,

27);

 System.out.println("The product2 object contains the following data: \n"

 + product1.toString()); // OR just: + product1

 System.out.println("\n" + Product.getVAT() + "% VAT has been added to the purchase price

 of R24.80");

 System.out.println("Yes, that is right, it has been increased by a massive " + Product.VAT

+ "%");

 currentQty = product2.getQuantity();

 System.out.println("\nThe number of " + product2.getProdName() + " bottles in stock: "

+ currentQty);

// PLEASE NOTE that the constant VAT is static and belongs to the class and is not created for

every

object product1 and product2 unnecessarily. The fields of the objects, e.g prodName, is not-static,

so

they will be created for every object: product1.prodName and product2.prodName (which is

correct).

Now imagine you removed the word static from the declaration of VAT, then it will be created

for every object: product1.VAT and product2.VAT which is unnecessary and wastes memory

space.

ALGORITHMS: PSEUDO CODE

27

An algorithm is the steps we need to follow to solve a problem. Each step represents one line of

code in a program. One line of pseudo code can be translated to one instruction in any

programming language, e.g. Java, C++, Phyton, etc.

So someone can write the steps to solve a problem on paper (or type it out in a word processor)

instead of writing down the code and a programmer (using any kind of programming language)

can then convert each step into an instruction in his/her program. We call this code (steps of

solving the problem) Pseudo Code because it is not real code.

In the matric final examination you will have to give solutions to problems by writing down the

steps instead of providing the code.

So instead of writing down

name = JOptionPane.showInputDialog(“Please enter your name”);

you simply write down

Enter name

JAVA PSEUDO CODE

DECLARATIONS:

int age;

String name;

boolean found;

double amount;

Prisoner convict;

declare age as integer

declare name as string

declare found as boolean

declare amount as double

 (or as a real number)

declare convict as prisoner

(or declare a prisoner object called

convict)

OUTPUT:

28

JOptionPane.showMessageDialog(null,”Age:” + age);

System.out.println(“Age:” + age);

display “age:” + age

INPUTS:

name = JOptionPane.showInputDialog(“Enter name”);

int age = Integer.parseInt(JOptionPane.showInput

 Dialog(“Enter age”);

display “enter name”

input name

declare age as integer

display “enter age”

input age

ASSIGNMENT STATEMENTS / CALCULATIONS:

amount = 300;

total = total + 5;

found = true;

count++;

convict = new Prisoner(“Thomas Corke”,30,’B’);

amount  300

total  total + 5

found  true

add 1 to count

instantiate the object convict from the

prisoner class

(in other words: create the object convict

from the prisoner class)

DECISIONS – IF:

if (name.eqauls(“Tony”) && age == 21

if (age != 21)

if (convict[i].getMonth() > 30)

if name = “Tony” and age = 21

if age ≠ 21

if convict[i].getMonth() > 30

29

if (convict[i].getName().equalsIgnoreCase(searchName))

if (found == true) OR just: if (found)

if (found == false) OR just: if (!found)

if convict[i].getName() == seachName

if found = true OR: if found

if found = false OR: if not found

LOOPS – FOR:

for (int i = 1; i <= 5; i++)

 OR

for (int i = 0; i < 5; i++)

For sorting:

for (int i = 0; i < size-1; i++)

 for (int j = i+1; j < size; j++)

for i  1 to 5

 OR

for i  0 to 4

For sorting:

for i  0 to size – 1 – 1

 for j  i+1 to size – 1

The instructions inside the loop is

indented:

 for i  0 to 5

 input name[i]

 input age[i]

LOOPS – WHILE:

while (number != 0)

Example:

int age = Integer.parseInt(JOptionPane.showInput

 Dialog(“Enter age”);

while (age > 100) {

 JOptionPane.showMessageDialog(null,”Error!”);

 age = Integer.parseInt(JOptionPane.showInput

while number ≠ 0

 display “Enter age”

 input age

 while age > 100

 display “Error!”

 display “Enter age”

30

 Dialog(“Enter age”);

}

JOptionPane.showMessageDialog(null,”Age:” + age);

 input age

 display “Age:” + age

Algorithms (discussed during IEB conference)

31

Question 1: Write down the algorithm in pseudocode to determine the highest number.

int number[] = new int[3]; Declare the number as an array of type integer with size 3

number[0] = -10; number[0]  – 10

number [1] = -3; number[1]  – 3

number [2] = -13; number[2]  – 13

 Declare max as an integer

int max = number [0]; max  number[0]

for (int i = 1; i < 3; i++) { for i from 1 to 3

 if (number [i] > max) { if (number[i] > max)

 max = number [i]; max  number[i]

 } end if

} end for

System.out.println(“Highest number:” + max); Display “Highest number:” + max

Question 2: Complete the trace table for the above program.

number[0] number[1] number[2] max i i < 3 number[i]>max output

32

Answer:

number[0] number[1] number[2] max i i < 3 number[i]>max output

-10

 -3

 -13

 -10

 1

 True

 True

 -3

 2

33

 True

 False

 3

 False

 Highest

number:

-3

See what happens if

 int max = number [0]; If all the numbers are negative, the highest number will be 0

changes to which is wrong! So rather put the first element in the array in

max

 int max = 0;

34

Answer:

-10

 -3

 -13

 0

 0

 True

 False

 1

 True

 False

 2

 True

 False

 3

 False

 Highest

number: 0

