
 1

Class Diagrams

Candidates offering Information Technology need to be able to read and create class diagrams.
Both Paper 1 and Paper 2 will make use of class diagrams in varying ways. Standardisation is
important because, as with an algorithm, these diagrams should be able to be used by
programmers as the basis for coding structures in any language.

The main components of a class diagram are:

 The name of the class

 The fields of the class

 The methods of the class

If a candidate is being asked to draw up a class diagram from a specification or from some
supplied code, it is important that these three components (name, fields and methods) are
named exactly as defined in the specification or code. Similarly, parameters to methods should
be named and typed as per the specification.

Fields
Fields should be defined in the same order as they are supplied, with the same name. They will
additionally have an access modifier and a type.

Methods
Methods should be defined in the same order as they are supplied, with the same name. They
will additionally have an access modifier, possibly a parameter list and a type. Method names
are always followed by a set of parentheses, whether there are parameters or not.

Access modifiers
Candidates are expected to be familiar with the following three access modifiers and
understand their function:

+ public

- private

protected

Public : directly accessible in any class in the same package
Private : directly accessible only in the class in which defined
Protected : directly accessible in the class in which defined as well as any class which inherits
from it and by any class in the same package

Types
Field, method and parameter types are generic in a class diagram so as to be used in any
programming language. The following conventions will apply:

 string

 integer

 real

 char

 boolean

 [] (array)

 2

Imperative to the understanding of class diagrams and their contents are the concepts of static
and non-static, typed and void.

 Static fields and methods belong to a CLASS.

 Non-static fields and methods belong to an OBJECT

 Void methods do something.

 Typed methods do something AND return a value of the same type as the method.

Field definitions
The naming convention which applies to fields is as follows: names start in lower case. A field
name which is a combination of two words still starts in lower case, but the second word starts
in upper case. Types are always shown in lower case, not abbreviated, and follow the field
name.

Example of field definitions
- description : string

- qty : integer

- costPrice : real

- sellingPrice : real

Constructor method
A constructor method is used to instantiate objects and either assign the fields default values or
specific values via a set of parameters. As a standard, the constructor method is named
“Constructor”, not the name of the class, which will happen during coding. Note the use of upper
case in the name – this is because the method name will be the same as the class, and class
names always have the first letter in upper case. The parameters to a constructor method must
be in the same order supplied and named and typed accordingly.

Example of a constructor method
+ Constructor (d : string, q : integer, c: real)

toString method
The toString method is used to concatenate the fields of an object into a single string. A toString
method can also be used to do the same with an array of objects via a loop. This detail would
not be shown in a class diagram, but would be coded according to the specification.

Example of a toString method
+ toString() : string

Methods which operate on non-static fields
Generally, candidates will need to add accessor and mutator methods to a class diagram.
These methods are important to allow the manipulation of, particularly, private fields of an
object. Accessor methods are always prefixed with “get” and mutator methods are always
prefixed with “set”. Accessor methods are always typed – this stands to reason as they are
going to access, or get, a value of a field and return this. Mutator methods are always void
methods, but will always accept a parameter which is passed to the method.

 3

Example of mutator and accessor methods
+ getDescription() : string

+ getQty() : integer

+ setPrice(p:real)

+ setSellingPrice(sp:real)

Void methods other than accessor methods
Various methods may be called for in a class diagram which allow for, for example, a
calculation. These methods are defined in the same way as a normal void method.

Example of a void method
+ sell (q : integer)

Static fields and constants
Static constants and static fields need to be distinguishable from static fields. There are
conventions which are applied as follows:

 Static fields are named and typed in a similar fashion to non-static fields. However, to
distinguish between the two, they are underlined in a class diagram.

 Constants, whose value by definition cannot change, are distinguished twofold: they are
underlined but the name of the field is always shown totally in upper case.

Example of static fields and static constants
- totalQty : integer (static)

- totalSales : real (static)

+ MARKUP = 75 : integer (static constant)

Methods which operate on static fields and constants
These methods are defined and operate in a similar manner to methods which operate on non-
static fields. Once again, to distinguish them, they are shown in a class diagram underlined.

Example of methods which operate on static fields
+ getTotalQty() : integer

+ getTotalCost() : real

 4

Full example of a class diagram incorporating all of the above:

Fruit

- description : string

- qty : integer

- costPrice : real

- sellingPrice : real

- totalQty : integer

- totalCost : real

- totalSales : real

+ MARKUP = 75 : integer

+ Constructor (d : string, q : integer, c: real)

+ getDescription() : string

+ getQty() : integer

+ getPrice() : real

+ getSellingPrice() : real

+ setDescription(d : string)

+ setPrice(p : real)

+ sell(q : integer)

+ getTotalQty() : integer

+ getTotalCost() : real

+ getTotalSales() : real

+ toString() : string

Inheritance
There are three things to bear in mind when reading or creating class diagrams in an
inheritance scenario:

 The protected access modifier

 The constructor method in the child class

 The layout of the diagram showing the link between the child and parent class

Access modifiers
Fields and methods can be set as public, private or protected in an inheritance scenario. These
have been detailed earlier in this document. Candidates need to be able to understand which
modifier is required for which field or method by reading the question carefully. Remember # is
used for protected.

Constructor method
The constructor method of a child class is a special case in terms of the parameters. Some
designs show only the fields which relate to the child object as parameters. The standard to be
adopted is that all fields must be shown in the constructer, ie the fields of the parent object as
well as the additional fields which relate to the child object.

Example of constructors
Assume a parent object has the following three fields:
description : string

qty : integer

costPrice : real

 5

Assume that a child object has the following two fields:
- markUp : integer

- sellingPrice : real

An example constructor for a PARENT object would look like:
+ Constructor(d : string, q : integer, c : real)

An example constructor for a CHILD object would look like:
+ Constructor(d : string, q : integer, c : real, m : integer, s :

real)

Class diagram layout

Parent class name

Parent class fields

Parent class methods

Child class name

Child class fields

Child class methods

NB: The arrowhead is shown as clear, not filled.

