
1

Pseudocode

Pseudocode is a generalized English-based language that describes an algorithm. There are many
versions of pseudocode so expect deviations from this handout.

An algorithm are the steps needed to solve a problem in computer programming.

Once an algorithm has been described in pseudocode it can be coded into any computer-based
programming language.

Indentation is part of pseudocode.

Declaration and initialisation. Data type is not specified but is implied

1 size <- 4
2 runningAvg <- 0
3 flag <- false
4 name <- "Billy"
5 letter <- 'Z'
6 name <- Get user input: "What is your name?"

Arrays. Declaration and initialization

1 agentName <- {"Hermione","Fazul","Jean","Thabo"}
2 agentGender <- {'F','M','F','M'}

Pseudocode “reserved” words. Often the following words are used with an implied meaning

1 size - often refers to the size of an array
2 pos - often means the position (index) in an array
3 flag - often used for Boolean
4 count – a counter variable - number of occurrences
5 begin end - used to define a block of code

Where pseudocode is very similar to Java

 1 if (condition) // executes if true
 2 if (condition AND condition) // executes if true
 3 if (condition OR condition) // executes if true
 4 if (variable1 = variable2) // executes if they are equal
 5 if (variable1 != variable2) // executes if not equal (T)
 6 if (variable1 <> variable2) // executes not equal (T)
 7 while (condition) // executes if true
 8 while (condition > condition) // executes if true
 9 while (condition < condition) // // executes if true
10 while (condition <> variable) // executes if not equal (T)
11 i++ // increase i by one
12 i-- // decrease i by one
13 i = i + 1 // increase i by one
14 i = i - 1 // decrease i by one
15 break // used to break out of a loop
16 return // the instruction to return a value to the call

2

17 [] // implies an index within an array
18 () // implies a condition
19 { } // used when declaring an literal array

For loop with a nested if statement

Here a for loop executes looking for “value” inside an array. When it finds it, it breaks out of the
loop. Note that indentation is part of pseudocode.

1 for (i < size) // size of array. i increases by 1 (implied)
2 begin
3 if (value = valArr [i])
4 pos <- i
5 break // break out of the loop when found
6 endif
7 end for

While loops with a nested if statement

Here a while loop executes looking for “value” inside an array. When it finds it, the flag becomes
true and the position is assigned to “pos”

1 while (i < size AND flag = false)
2 begin
3 if (value = valArr [i])
4 flag <- true
5 pos <- i
6 endif
7 i = i + 1
8 end while

A typed method that returns a value

Here a method is coded in pseudocode; the method is looking for the position of a value in an array.
The method accepts a parameter i.e. the value being searched for. The position in the array (an
integer) is returned.

1 Method searchStop (int value) for parameter
2 begin
3 code . . . uses a loop
4 code . . . to find the position
5 pos <- i
6 return pos
7 end method

3

Output to the monitor

Here we are looking to count the factors of a certain number (The factors of 12 are 1,2,3,4,6 and
12). We use a while loop with a nested if statement to do this.

The if statement looks for division where the remainder is equal to zero (uses MOD for this). The
number of factors found is printed to the monitor.

 1 while (count <= number)
 2 begin
 3 if (number MOD count = 0) // finds factors
 4 begin
 5 numOfFactors <- numOfFactors + 1
 6 end if
 7 count <- count + 1
 8 end while
 9
10 Display “The number has “ + numOfFactors

Parallel arrays

The first array has the person’s name. The second array stored their gender.

Here we are looking for a name inside an array. We want to exit out of the array as soon as the name
is found, therefore we use a flag. Once found we record the position in “pos”. We then display the
name that we found as well as their gender (found in the matching parallel gender array)

 1 agentName <- {"Hermione", "Fazul", "Jean", "Thabo"}
 2 agentGender <- {'F', 'M', 'F', 'M'} // their gender
 3
 4 size <- 4 // Four members in each array
 5 i <- 0
 6 pos <- 0
 7 flag <- false
 8
 9 while (i < size AND flag = false)
10 begin
11 if (name = agentName[i]
12 begin
13 flag <- true
14 pos <- I // store position for output
15 end if
16
17 i++
18 end while
19
20 Display name[pos], agentGender[pos]

4

Calling methods inside an instantiated object

We can call a method inside an instantiated object in the normal way using dot notation e.g.

 popular <- bookArr[i].getTimesBorrowed()

 return "The book is: " + BookArr[pos].getTitle()

Here bookArr is an array of book objects.

 Each book object has a “getTimesBorrowed” method that returns a value i.e. how many
times the book has been borrowed.

 The book that has been borrowed the most is therefore the most popular book
 Each book object has a “getTitle” method that returns a string i.e. The title of the book

 1 pos <- 0
 2 popular <- 0
 3 size <- number of elements in bookArr
 4
 5 for (i <- to size)
 6 begin
 7 if (bookArr[i].getTimesBorrowed() > popular
 8 begin
 9 popular <- bookArr[i].getTimesBorrowed()
10 pos <- i
11 end if
12 end loop
13
14 return "Most popular book is: " + BookArr[pos].getTitle()
15
16 end for loop

