
 1

Algorithms

At the start, an algorithm is a series of steps to solve a problem. An algorithm should not be
language specific, as the plan or steps should be able to be programmed in any language. That
being said, there needs to be some standards which are used in the representation of
algorithms, particularly in a teaching environment. While some of these standards may not
match directly to how a structure might be coded in a particular language, these are what will be
used in Information Technology examination papers (Paper 1 and Paper 2) and candidates are
expected to follow these guidelines when answer both papers.

An algorithm can be represented in many ways, including flowcharts or pseudocode. The focus
of this document is on pseudocode and its use to represent an algorithm.

1. Variables
In an algorithm, variables do not need to be defined or typed. This is because this process
varies depending on language. However, variables do need to be named and assigned values.
The standard symbol to indicate a variable being assigned a value, either at initialization or as a

result of a calculation is: 

Examples:

An integer variable: i  10

A string variable: name  “Bob” //note “ ” for strings

A character variable: old  ‘y’ //note ‘ ’ for characters

A real variable: mass  25.63

An array literal: a[]  5 ; 6 ; 4 ; 3

An individual array element: graph[3]  15

A calculation: age  age + 10

2. Blocks of code
All blocks of code are indented for readability as would be the case in a program, starting from
the left margin. Any structure, such as a loop or decision, starts an indented section. Such
“inner blocks” have a begin and end structure. Certain structures including the start of a loop or
the start of decision stand as the begin, but these will be a line indicating the end of the
structure. These will be explained in examples.

3. Conditions, Boolean, arithmetic and logical operators
The standard set of logical operators is: > ; < ; >= ; <= ; <>
The standard set of Boolean operators is: NOT ; AND ; OR. These are written in upper

case.
The standard set of arithmetic operators is: + ; - ; * ; / ; MOD

Examples:

x < 10

y > 25

z >= 50

k <> 30

 2

These would generally be used in a condition statement such as:

if x < 10

if k <> 30

if z < 15 AND y <> 10

while x <5 OR k > 11

Calculation examples:

b  d * 10

z  d MOD 2

b  b + a

Decisions and loops
The main structures which need to be considered are:

if ….. else statements

for …. loops

while ….. loops

case / switch structure

Examples:

if k < 10

line of code

line of code

line of code

end if

if d > 15

line of code

line of code

else

line of code

line of code

end else

end if

for k  1 to 10, inc by 1

line of code

line of code

line of code

end for

for k  20 to 0, dec by 2

line of code

line of code

end for

 3

while x < 10

line of code

line of code

line of code

end while
(This structure is equivalent in Java and Delphi)

A do …. while loop is an exception to the rule of not having an end! The while statement acts as
the end of the structure.

do

line of code

line of code

line of code

while x < 10
(This structure is equivalent to a “repeat…until” in Delphi)

case age of

 18 : line of code

 20 : line of code

end case

case temperature of

 36 : begin //this structure requires its own begin

 line of code

 line of code

 end

 40 : line of code

end case
(This structure is the equivalent of a switch/case in Java)

Output of values, returning values, method calls
The simplest structures must, once again, be used here to be language independent. Method
names are always followed by a pair of parentheses, whether there are parameters or not.

Examples:

display x

display “This text will appear as output”

display “He is ” + age + “ years old” // + is used as a concatenator

return z

return (a / b)

return name

return “Danger ahead!”

return “Name: ” + nameVariable

 4

thisMethod(a: string) //method header with a parameter

b  thisMethod(“happy”) //method call, assuming b is of type string

String manipulation
Functions such as finding the length of a string, extracting characters from a string pose some
difficulties due to the large variations between languages.

LENGTH / LEN

LEFT

RIGHT

MID

b  length(stringVariable)

name  LEFT(stringVariable,2) //taking the leftmost 2 characters

clear  MID(stringVariable,4,2) //starting at position 4, taking 2 characters

d  characterAt(string,3) //finds a character at position 3

Lastly, any other functions which are very different from language to language, may be written
out as an English equivalent.

Example algorithm
size  4

temp  0

runningAvg  0

for k  0 to size - 1 inc by 1

temp  temp + ageArr[k]

count ++

runningAvg  runningAvg + (temp / count)

if (runningAvg > 60)

display “Error”

end if

end for

display (temp / count)

