Mantle Cell Lymphoma: Paradigm Shift?

Andre Goy, MD
Chairman, John Theurer Cancer, Hackensack, NJ
Lydia Pfund Chair for Lymphoma
Chief Science Officer, Director of Research and Innovation for RCCA
Professor of Medicine, Georgetown University, DC

agoy@hackensackUMC.org
Disclosure

- **Heterogeneity:**
 * clinical presentation
 * biological diversity
 * population: (age / comorbidities)

- **No consensus / frontline therapy** (→ 12 options NCCN)

- **Chemosresistance** over time ++ (genetic instability)

- **Significant progress:** med OS 2.5y mid 90’s to 5-7y currently (for pts in trials mostly?)

- **Progress actually relative:**
 * High-risk pts still do poorly regardless
 * Real world registry: med OS still 2 to 3y!
Distinguish Distinct MCL “Subtypes” in the Clinic

<table>
<thead>
<tr>
<th>“Subtype MCL”</th>
<th>Features</th>
<th>Comment</th>
</tr>
</thead>
</table>
| True iMCL ≈ 10% pts | - Non nodal presentation
- Splenomegaly
- High(er) WBC
- Fewer symptoms
- SOX11 –ve /
- Somatic mutated
- Distinct GEP | SLOW course (“mimics CLL”
Likely manage differently ++
Genetically “more stable”(ATM not mutated)→ but can transform over time (del 17p) |
| Indolent MCL @presentation ≈ 30% pts | - Low(er) MIPI /low-bulk
- No clear (yet) biological distinctive features ++ | Med time / 1st therapy 1y
No clear defining criteria
No evidence they should be managed differently ++ |
| Classic MCL (cMCL) 60% pts | - All others | Manage based on “age/fit” context |
Impact of DIT-HDT Frontline (Median PFS)

- DIT/HDT
 * Typically associated with much higher CR rate (>80%)
 * which translates into median PFS well in excess of 6-7y

CR rate > 85%

CR rate > 30-35%
REAL World Impact of ASCT and Rituximab

- 167 MCL pts NCCN database frontline R-chemo - NOT on trial

3y PFS: 18% vs 58%

- 1400 pts Denmark and Sweden registry data (trials or not)

3y OS: 62% in grp 2006-2010 vs 47% before 2000-2005 (p < 0.01)

When pooling DI-HDT pts / R-CHOP >> OS (p=0.02)

Both AraC and rituximab use \(\Rightarrow\) improved outcome
Impact of DIT-HDT Frontline

- Current standard in younger pts anthracyclines / HD-AraC chemoimmunotherapy w/ (wo) HDT-ASCT consolidation

230 pts / arm

- AraC containing arm: higher % and earlier CR / molecular CR

<table>
<thead>
<tr>
<th>Resp post induction</th>
<th>R-CHOP/R-DHAP</th>
<th>R-CHOP</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-CRu</td>
<td>55%</td>
<td>40%</td>
<td>p=0.0028</td>
</tr>
<tr>
<td>Mol CR</td>
<td>83%</td>
<td>51%</td>
<td>p < 0.0001</td>
</tr>
</tbody>
</table>

R-CHOP

- CR-CRu: 55% vs 40% (p=0.0028)
- Mol CR: 83% vs 51% (p < 0.0001)

R-DHAP

- CR-CRu: 82% vs 73% (p = 0.04)
- Mol CR: 87% vs 73% (p = 0.01)

EU trial

TTF= PEP

Hermine, Lancet 2016
Depth of Remission ie Molecular CR is Highly Predictive of Outcome

1. **MRD –ve (molecular CR) post induction improved remission duration**
 - **Pooled** arms R-CHOP → ASCT/R-CHOP/RDHAP → ASCT
 - Also true in elderly pts group

2. Impact of MRD –ve status was independent of:
 - CR/PR
 - MIPI status
 - and regimen

3. **Impact of molecular CR (MRD –ve) confirmed outside trials (75 pts CR → ASCT)**
 - 5y OS 82% vs med OS of 3y in MRD+ve pts

Hermine, ASH 2012 abst # 151; Lancet 2016
Pott, Blood 2010; Cowan, BBMT 2016
Remaining Challenges

- Med age at diagnosis mid to late 60’s /early 70’s

- Selection of pts for DIT/HDT approaches: age and PS

- High-risk pts still do poorly:

MIPI/NORDIC-2

Ki67

Cytology /blastoid

Geisler, Blood 2010
Hoster, April 2016
MIPI / Ki67 / p53 status

MIPI combined w/ Ki67

- L, median not reached
- LI, median = 7.8
- HI, median = 5.6
- H, median = 1.7

P < 0.001

Years From Registration

Probability

EU 2 best arms of rand trials
<65y R-CHOP/R-DHAP → ASCT
> 65y R-CHOP → Maint R

Del 17p

- not del, median = 7.0
- del, median = 3.0
p = 0.0051

Years from trial entry

Numbers At Risk

OS

R-HyperCVAD / JTCC

R-CHOP-DHAP → ASCT

TP53: experimental

EU trial – R-CHOP-DHAP → ASCT

p53 / ATM del (NGS)

Hoster, April 2016
Delfau-Larue, Blood 2015
Wang, ASH 2014
MCL: Role of Maintenance Therapy

1. Maintenance rituximab benefit 1st shown in elderly: EU trial: R-CHOP vs FCR → maint Rtx vs IFN (560 pts)

 Median remission duration
 75 ms w/ Rtx
 vs 27 ms w/ IFN

 4y OS 87% vs 63%, p = 0.005

 45% reduction progression

2. Recent data suggest maintenance Rtx also benefits younger pts post HDT

 LYM trial:
 4-R-DHAP → ASCT → Rand Maint vs Obs.

Kluin-Nelemans, NEJM Aug 2012
Le Gouill, ASH 2014 abst # 124
Maintenance Therapy – Might be REGIMEN Dependent

– MAINTAIN Trial:
 - Frontline B-R ➔ Rand maint Rtx x 2y vs Obs.
 - ORR 85% w/ 27% CR
 - Maint R had no impact

No benefit of MR post FCR in EU trial

Lymphopenia post FCR and BR (below)

Table 1. White blood cell counts before and after induction therapy

<table>
<thead>
<tr>
<th>WBC counts (n = 947)</th>
<th>Before BR Median (cells/µL)</th>
<th>After BR Median (cells/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocytes</td>
<td>6,600</td>
<td>3,800</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>3,900</td>
<td>2,400</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>1,500</td>
<td>500</td>
</tr>
<tr>
<td>CD4+ cells</td>
<td>555</td>
<td>118</td>
</tr>
<tr>
<td>CD8+ cells</td>
<td>316</td>
<td>198</td>
</tr>
<tr>
<td>CD4+/CD8+ ratio</td>
<td>1.76</td>
<td>0.6</td>
</tr>
</tbody>
</table>

BR = bendamustine, rituximab; WBC = white blood cells

Rummel, ASCO 2016, abst # 7503
Kluin-Nelemans, NEJM 2012
Relapsed / Refractory MCL

- As in frontline NO consensus / heterogeneous population +++ (variety prior RX)

- Standard chemo (R-chemo) has (limited) benefit
 * BR 2nd line: ORR 70-80% with $\frac{1}{2}$ CR
 * Med PFS 16-20ms

- HDT-ASCT not proven to be beneficial in r/r setting

Czuczman, Annals Hematol, 2015
Tam, Blood 2009
R/R MCL - Allogeneic Transplantation

MDACC

- OS
- CPFS

FHCRC

- Unrelated (n = 17)
- Related (n = 16)
- MRD
- URD

EBMT

- LGNHL (n = 52)
- HD (n = 52)
- MCL (n = 22)

IBMTR

Only potentially curative modality

Issues: median age, NRM 25-35% and cGVH > 50%

Khour, JCO 2003; Robinson, Dec 2002; Maris, Blood Dec 2004 Hamadani, BBMT, April 2013
R/R MCL – Targeted Therapies

- 3 approved new drugs in r/r MCL in the US (Bortezomib, Lenalidomide, Ibrutinib) and 3 in EU (Temsirolimus, Lenalidomide, Ibrutinib)

- Frequently used with rituximab

- Show durable responses even in chemorefractory pts

- None provides a cure – (bridge to allo? /cell therapy?)

- Provide platform to build up on current regimens
MCL – Proteasome inhibitors- Bortezomib

Several phase II: showed an ORR 30-50% in r/r MCL

- PINNACLE Ph II confirmatory trial
 - 134 pts (1-3 prior RX)
 - ORR 33%, CR 8%
 - Med DOR 10ms
 (>28 ms in pts CR-CRu)
 (off therapy / max 1y RX)

- Combinations: with B-R based regimens (B-R, BR-Dex, RIBVD)
 showed CR rate up to 75% → basis for E1411 ongoing

Ruan, JCO 2011; Till, B Jnl Hematol 2016;
Furtado, Br Jnl Haematol, 2015
Kahl, Br J Haematol Oct 2011;
Chang, Blood 2014
MCL – LYM-3002: Frontline R-CHOP vs R-CBzHP

243 pts / arm - ineligible for HDT-ASCT / 6 to 8 cycles (R-CHOP vs VR-CAP)

<table>
<thead>
<tr>
<th></th>
<th>R-CHOP</th>
<th>VR-CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>90%</td>
<td>92%</td>
</tr>
<tr>
<td>CR rate (0.007)</td>
<td>42%</td>
<td>53%</td>
</tr>
<tr>
<td>Med DOR CR</td>
<td>18 ms</td>
<td>42 ms</td>
</tr>
</tbody>
</table>

59% improvement of PFS (PEP) (12 vs 24.7 ms) → 1st frontline novel regimen FDA approved 2014

Well tolerated / sensory NP gr ≥ 3 = 4% vs 7%

Robak, NEJM 2015
Lenalidomide in r/r MCL

Initial phase II: showed an ORR in 35-40% range in r/r MCL

EMERGE confirmatory trial:
- 134 pts / med nb prior RX 4 (2-10)
- Failed alkylating agents, anthracyclines, rituximab and bortezomib
- >½ refractory to last RX
- ORR 28% with 8% CR (IRC)
- Med TTR 2ms

Med DOR 16.6 ms

Activity across subgroups including failures to BTZ and refractory pts

Most common AE (≥ 5% grade 3/4) was myelosuppression, consistent with the known safety profile for lenalidomide in MM

Witzig, Annals Oncol July 2011
Goy, JCO Oct 2013
Witzig ASCO 2013 abst # 8533
Goy, Br J Haematol, Aug 2015
Lenalidomide in r/r MCL – Next Step

- **SPRINT Trial (EU):**
 * Len 25 mg/day vs Investig. choice)
 * in r/rMCL: ORR 40% vs 11%
 * > PFS and DOR in favor Len

- **Combination w/lenalidomide:**
 * Len+R (R2):
 - Dose esc (10 to 25 mg) D1–21/28 + R 375 x 4
 - 52 pts btw Ph I and II
 - MTD 20mg (myelotoxicity)
 - ORR 56% / 36% CR
 - Med DOR 18.9 ms

- **Other combinations:**
 - w/Dex+R, R2-Ib, Len + B-R (toxicity ++) and as maintenance post therapy
 - R-CHOP/R-HAD vs R-CHOP → 2y maint R2 / vs R
Lenalidomide + Rituximab (R2) in Frontline MCL

- **Study design:**
 * Up to 25mg post 1st cycle if tolerated
 * Treatment until POD
 * 38 pts (multicenter)
 * 1/3 each low, interm, high MIPI

- **Toxicity:**
 * 50% Gr 3-4 neutropenia
 * 29% rash
 * 11% flare

- **Impressive activity:**
 * ORR 87% / 61% CR (ITT)
 * Med time to CR 11 ms
 * 2y PFS 85%

Very promising / provides foundation to explore / build up non-chemo options in MCL
Ruan, NEJM 2015
Ibrutinib (PCI-32765): Ph II in r/r MCL

1st in class BTKi
560 mg po daily \rightarrow POD or toxicity
111 pts - med 3 prior RX (1-5)
86\% interim / high-risk MIPI, 63 BTZ naïve / 48 BTZ failure
45\% refractory last RX

<table>
<thead>
<tr>
<th>Efficacy, n (%)</th>
<th>No BTZ (n = 63)</th>
<th>Prior BTZ (n = 48)</th>
<th>All Patients (N = 111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, n (%)</td>
<td>43 (68)</td>
<td>32 (67)</td>
<td>75 (68)</td>
</tr>
<tr>
<td>CR, n (%)</td>
<td>12 (19%)</td>
<td>11 (23%)</td>
<td>23 (21%)</td>
</tr>
<tr>
<td>Med DOR, mo</td>
<td>15.8</td>
<td>NR</td>
<td>17.5</td>
</tr>
<tr>
<td>Med PFS, mo</td>
<td>7.4</td>
<td>16.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Med OS, mo</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Wang, NEJM, Aug 2013
Ibrutinib (PCI-32765): Ph II in r/r MCL

Well tolerated

Transient (recirculation lymphocytosis)

- Less frequent than in CLL
- Occurs in 1/3 pts
- At mid of 8 weeks of RX
- Seems to correlate with BM involvement

Hematologic AEs*
- Neutropenia
- Thrombocytopenia
- Anemia
- Diarrhea
- Fatigue
- Nausea
- Dyspnea
- Constipation
- Upper respiratory infection
- Peripheral edema
- Vomiting
- Decreased appetite
- Cough
- Abdominal pain
- Pyrexia
- Arthralgia
- Constipation
- Rash
- Hyperuricemia
- Myalgia
- Urinary tract infection
- Back pain
- Sinusitis

Nonhematologic AEs*

<table>
<thead>
<tr>
<th>Grade 1-2</th>
<th>Grade 3-4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Anemia</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Nausea</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Constipation</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Cough</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Constipation</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Rash</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Hyperuricemia</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Myalgia</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Severe</td>
<td>Minor</td>
</tr>
<tr>
<td>Back pain</td>
<td>Moderate</td>
<td>Minor</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Severe</td>
<td>Minor</td>
</tr>
</tbody>
</table>

*AEs were updated with an estimated median follow-up of 26.7 months.

Wang, Blood, 2015
Furtado, BJH, 2015
Ibrutinib (PCI-32765): AFIB and Bleeding

- **AFIB:**
 * Due to off-target inhibition of other kinases (TEC) → leading to decreased PI3K-AKT pathway in atrial and ventricular tissue
 * Occurs in 3.5% to 7% subjects (from pooled CLL, MCL, WM studies)
 * Conservative management of AFIB while holding Ibrutinib
 * Leads to interruption of RX in about 1/2 pts

- **Bleeding:**
 * Off-target effect on collagen and VWF-mediated platelet activation
 * Rare organ bleeding / subdural
 * Caution w/ anti-coagulants
 * Stop ibrutinib pre and post procedure (3-7 days depending procedure)

McMullen, Blood 2014
Leong, Blood 2016
Levade, Blood 2014
Ibrutinib (PCI-32765): Ph II in r/r MCL

Updated follow-up 26 ms

Med DOR 17.5 ms

Activity across subgroups including prior BTZ / refractory pts or del 17p / p53 +ve

Wang, Blood 2015
Ibrutinib vs Temsirolimus Ph III in r/r MCL

Ibrutinib (N = 139) 560 mg daily vs Temsirolimus (N = 141) 75 mg on Cycle 1, Days 1, 8, 15 (except 1st cycle at 175 mg)
Med nb prior RX 2.0 (1-9) / crossover after POD to Ib

2y PFS 41% versus 7%

ORR 72% vs 40%
19% CR vs 2%

PEP: PFS

Dreyling, Lancet Feb 2016
Ibrutinib (PCI-32765): Resistance / POD

- **POD post ibrutinib**
 * POD post lb CLL / “Richter transformation”
 * Series of 114 MCL pts w/ POD on lb / 15 sites
 * Med nb prior RX 3 (0-10)
 * Median time on ibrutinib 4.7 ms
 * Med OS after **POD 2.9 ms**

- **Biomarkers of resistance:**
 * **Primary resistance**: mutations affecting CAR11/NF-kB signaling or PIM1 and ERBB4 kinase genes / complex karyotypes
 * **Secondary resistance**: binding site mut. BTKC481S and downstream mut. PLCγ2 as in CLL

Martin, Blood 2016; Balasubramanian, Blood 2014
Ibrutinib (PCI-32765): Next Steps

- **Combination w/ R:**
 * 50 pts: Ibr + R 4 weekly then day 1/cycle
 * Med 3 prior RX
 * ORR 88% and 44% CR
 → piloted pre R-HyperCVAD++

- **Other combinations w/ ibrutinib:**
 * +R2; +bortezomib or carfilzomib
 * + BR (Ph Ib / 16/17 MCL resp 13 CR)
 * BR+/- Ib (SHINE) or BR vs Ib (UK)
 * Ib + Venetoclax +/- Obinutuzumab
 * Ib + checkpoint inhibitors

- **Triangle study**
 EU (R-CHOP-DHAP→ASCT w/w/o Ib → ASCT or Ib maint)

Wang, Lancet Oncol 2016; Maddocks, Blood 2015s
Other Novel Agents in r/r MCL

- **2nd generation PI:**
 Carfilzomib, Oprozomib, Ixazomib

- **2nd generation BTKi: (more selective)**
 ACP-196 (acalabrutinib), Ph II & BR+/−ACP196 completed, P), ONO- ONO/GS-4059, BGB-3111

- **Idelalisib (PI3Kδ inhibitor):**
 * 40 pts pts med 4 (1-14) prior RX
 * ORR 40% (16/40) / 2 CR (5%)

- **Temsirolimus:**
 * mTORC1 inhibitor (rapa derivative)
 * Original ph II ORR (33-41%) / DOR 6.9 ms
 * Ph III vs invest choice (EU) / ORR 22% vs 2%
 * Other comb ongoing w/ Temsirolimus

Kahl, Blood 2014; Wittig, JCO 2005; Hess, JCO 2009
Other Novel Agents in r/r MCL

- **Venetoclax (ABT199):**
 * ORR 75% in r/r MCL CR 21%
 * Comb ongoing:
 - VNTX + Rituximab
 - BR+ VNTX
 - Obinutuzumab + Ib + VNTX

- **Immunotherapy:**
 * BITE Ab (Blinatumomab): 5/7 pts responded
 * PD1 blockade and CPI (anecdotal so far)
 * CAR-T cells: ph I/II ZUMA-1 / anti-CD19 CAR T-cell ongoing
MCL Management Summary

- Rare disease but strong focus / clinical research (4 drugs in 10y)

- Novel therapies offering new options:
 * Durable responses in r/r pts
 * Combination with standard regimens: concomitant or as consolidation / maintenance

- Maintenance role likely to continue to increase
 (US study: rand in CR pts maint vs ASCT)

- MRD becoming a new endpoint (MRD –ve → >> outcome)
Encourage participation in trials!
Thank You!

Agoy@HackensackUMC.org jtcancercenter.org