First-line Treatment of Chronic Lymphocytic Leukemia

09 November 2016

William G. Wierda M.D., Ph.D.
Professor of Medicine
Department of Leukemia
Division of Cancer Medicine
U.T. M.D. Anderson Cancer Center
Houston, TX USA
I never considered a difference of opinion in politics, in religion, in philosophy, as cause for withdrawing from a friend.

-Thomas Jefferson
Untreated, high-risk - watch and wait

First-line therapy
- Del(17p) - Ibrutinib
- Fit CIT-eligible – FCR / BR
- Elderly – chlorambucil+CD20 mAb

Salvage treatments for active disease, incl del(17p)
- BTK-inhibitor (ibrutinib)
- PI3-K-inhibitor (idelalisib) + rituximab
- Rel / Ref del(17p) - venetoclax
- Richter’s trans. – intensive CIT then allo-SCT
CLL10 STUDY: FCR VS BR IN FRONT-LINE

Design

Patients with untreated, active CLL without del(17p) and good physical fitness (CIRS ≤ 6, creatinine clearance ≥ 70 ml/min)

Randomization

FCR
- Fludarabine 25 mg/m² i.v., days 1-3
- Cyclophosphamide 250 mg/m², days 1-3
- Rituximab 375 mg/m² i.v. day 0, cycle 1
- Rituximab 500 mg/m² i.v. day 1, cycle 2-6

BR
- Bendamustine 90mg/m² day 1-2
- Rituximab 375 mg/m² day 0, cycle 1
- Rituximab 500 mg/m² day 1, cycle 2-6

Non-Inferiority of BR in comparison to FCR for PFS:
- HR (λ BR/FCR) less than 1.388

Eichhorst et al., ASH 2014, Abstract 19
CLL10 STUDY: FCR VS BR IN FRONT-LINE

PFS in IGHV matched population (n=398: FCR = 201; BR = 197)

Median PFS
FCR NR
BR 43.1 months

$P = 0.005$
$HR = 1.565 = > 1.388$

NO difference in overall survival

Eichhorst et al., ASH 2014, Abstract 19
CLL10 STUDY: FCR VS BR IN FRONT-LINE

Progression-free survival by age group

Patients ≤ 65 years: \(P < 0.001 \)
- FCR 53.6 months
- BR 38.5 months

Patients > 65 years: \(P = 0.170 \)
- FCR not reached
- BR 48.5 months

Eichhorst et al., ASH 2014, Abstract 19
CLL10 STUDY: FCR VS BR IN FRONT-LINE

Infections CTC 3-4 in detail

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>FCR (% of pt)</th>
<th>BR (% of pt)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Infections</td>
<td>39.1</td>
<td>26.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Infections during therapy only</td>
<td>22.6</td>
<td>17.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Infections during first 5 months after therapy</td>
<td>11.8</td>
<td>3.6</td>
<td><0.001</td>
</tr>
<tr>
<td>All infections in patients ≤ 65 years</td>
<td>35.2</td>
<td>27.5</td>
<td>0.1</td>
</tr>
<tr>
<td>All infections in patients > 65 years</td>
<td>47.7</td>
<td>20.6</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Eichhorst et al., ASH 2014, Abstract 19
FCR300: Progression-free & Overall Survival

Median follow up time
All - 9.8 yrs
Alive - 11.5 yrs

MDACC Data, IWCLL 2013, Cologne
FCR300: PFS by IGHV Mutation Status

Challenges with First-line Chemoimmunotherapy

- Myelosuppression and risk for infection
- Immune deficiency and risk for infection
- Risk for secondary MDS and AML
- Risk for Richter’s transformation
Ibrutinib 420mg/d cont.
F - 25mg/m² x3
C - 250mg/m² x3
G - 1gm D1,8,15; then D1

C3 Response
CT
BM

C6 Response
CT
BM

<CR or MRD-positive @ C3
Ibrutinib + obinutuzumab – 6mo

CR, MRD-negative @ C3
Ibrutinib -6mo

MRD-positive @ 1yr
Continue Ibrutinib

C12 Response
CT
BM
First-line Therapy – *IGHV*-UM, Older or Unfit

- Fit, *IGHV*-UM can achieve MRD-negative CR with FCR, but virtually all relapse
- New agents / combinations needed for cure
 - Treatment-free interval and avoid resistance
- Delay / avoid chemotherapy
- Better MRD assay needed – DNA; cfDNA
- Consolidation concept
 - Venetoclax; others
- Predictive markers needed
CLL11: Treatment comparisons

- **Randomize 2:1:2**
 - **G-Clb vs. Clb**
 - Obinutuzumab + chlorambucil x 6 cycles
 - **R-Clb vs. Clb**
 - Chlorambucil x 6 cycles (control arm)
 - Rituximab + chlorambucil x 6 cycles
 - **G-Clb vs. R-Clb**
 - Obinutuzumab + chlorambucil x 6 cycles
 - Chlorambucil x 6 cycles (control arm)
 - Rituximab + chlorambucil x 6 cycles

Currently no significant difference in overall survival

Median observation time: G-Clb, 18.8 months; R-Clb, 18.6 months
Type 1 error controlled through closed test procedure; P value of the global test was <0.0001
Independent Review Committee-assessed progression-free survival (PFS) was consistent with investigator-assessed PFS

CLL11: Overall survival *(Obinutuzumab)*

![Graph showing overall survival over time with median observation times for G-Clb and Clb, and the total number of deaths.](image)

- Median observation time: G-Clb, 23.2 months; Clb, 20.4 months
- No multiplicity adjustment was done for secondary endpoints
- Total number of deaths: G-Clb, 22 (9%); Clb, 24 (20%)

COMPLEMENT 1: Study Design

Patients with previously untreated CLL
- Considered inappropriate for F-based therapy
- Active disease (NCI-WG IWCLL 2008)
- ≥18 years
- ECOG ≤ 2
- N=444 (planned)

Design
- Randomise 1:1
- Minimum 3 cycles, until best response or PD, maximum 12 cycles
- No cross over allowed

Follow up:
1 Month post last dose, Month 3, q3mo thereafter

O: cycle 1 d1 300 mg, d8 1000 mg, Cycle 2-12 d1 1000 mg every 28 days

CHL: 10 mg/m² d1-7 every 28 days

Dose rationale: evidence of highest ORR and longest PFS with low toxicity compared to any other CHL monotherapy regimen

Hillmen et al. ASH 2013, Abstract 528.
Progression-free Survival
as assessed by an Independent Review Committee
(median [months])

- **CHL**
 - mPFS: 13.1
 - (95% CI: 10.6, 13.8)

- **O+CHL**
 - mPFS: 22.4
 - (95% CI: 19.0, 25.2)

HR 0.57, p<0.001

Median follow-up: 28.9 months

Currently no difference in overall survival

Hillmen et al. ASH 2013, Abstract 528.
Targeting of BCR signaling in CLL

- BCR-associated kinases are targets of new drugs in clinical development
 - Btk (Bruton’s tyrosine kinase) inhibitors: Ibrutinib, CC-292, ACP-196
 - PI3 kinase inhibitors: Isoform-Selective Inhibitor of PI3-Kinases\(^1\), Idelalisib, IPI-145, TGR-1202
 - Syk (spleen tyrosine kinase) inhibitors: GS-9973, Fostamatinib, PRT-2070\(^2\)

From: Nat Rev Immunol 2:945

Patients (N=269)
- Treatment-naïve CLL/SLL with active disease
- Age ≥65 years
- For patients 65-69 years, comorbidity that may preclude FCR
- del17p excluded
- Warfarin use excluded

Randomize 1:1

Phase 3, open-label, multicenter, international study

Primary endpoint: PFS as evaluated by IRC (2008 iwCLL criteria)

Secondary endpoints: OS, ORR, hematologic improvement, safety

*Patients with IRC-confirmed PD enrolled into extension Study 1116 for follow-up and second-line treatment per investigator’s choice (including ibrutinib for patients progressing on chlorambucil with iwCLL indication for treatment).
84% reduction in risk of progression or death with ibrutinib

18-month PFS rate: 90% with ibrutinib vs. 52% with chlorambucil

Median follow-up: 18.4 months

Tedeschi A et al. ASH 2015, Abstract 495.
- Median PFS in del11q subgroup: NR with ibrutinib vs. 9 months with chlorambucil (HR=0.02, P<0.0001)
- Median PFS in unmutated IGHV subgroup: NR with ibrutinib vs. 9 months with chlorambucil (HR=0.06, P<0.0001)
- Ibrutinib: 18-month PFS 92% in IGHV mutated, 95% in unmutated subgroup

Tedeschi A et al. ASH 2015, Abstract 495.
84% reduction in risk of death with ibrutinib

24-month OS rate: 98% with ibrutinib and 85% with chlorambucil

3 deaths on ibrutinib arm vs. 17 deaths on chlorambucil arm

Tedeschi A et al. ASH 2015, Abstract 495.
ORR at 8 months: 82% with ibrutinib vs. 30% with chlorambucil
ORR with ibrutinib higher than with chlorambucil at all time points
Weaknesses of RESONATE-2 and Challenges with First-line Ibrutinib

Chlorambucil is an unreasonable comparator as standard of care
Follow up time is short
Population limited to age >65yrs
Ibrutinib approved for relapsed / refractory CLL

Challenges with first-line ibrutinib therapy
- Ibrutinib therapy is continuous and costly
- Associated toxicities, increased in elderly
- Long-term side-effects unknown
- Compliance challenge
CLL Treatment Directions

- Untreated, high-risk – early intervention
- First-line therapy
 - Del(17p) – Ibrutinib-based
 - Fit CIT-eligible – IGHV-Mutated
 - FCR-based with maintenance or Tx for MRD
 - Fit-IGHV-Unmutated & Older
 - BCR- / Bcl-2-inhibitor – sequencing and combinations
- Treatment (consolidation) for persistent disease on BTK-inhibitor (1st and later)
- Salvage therapy for active disease
- Richter’s transformation work-up and “novel treatments” program