Beyond EGFR and ALK: Targeting ROS1, RET, and BRAF in Advanced Lung Cancers

Alexander Drilon MD
Clinical Director, Developmental Therapeutics
Assistant Attending Physician, Thoracic Oncology Service
Memorial Sloan Kettering Cancer Center
833 tumor samples from patients with lung adenocarcinoma sequenced on MSK-IMPACT™

FDA-approved therapies
- EGFR mutations: erlotinib, gefitinib, afatinib, osimertinib
- ALK fusions: crizotinib, alectinib, ceritinib
- ROS1 fusions: crizotinib

Refer to:
- NCCN Guidelines Version 2.2017 Non-Small Cell Lung Cancer
- Emerging targeted agents for patients with genetic alterations

• Recurrent gene rearrangements
 – ROS_1 rearrangements
 – RET rearrangements

• Mutations
 – $BRAF^{V600E}$
ROS₁-Rearranged Lung Cancers
ROS1-rearranged lung cancers

- **ROS1 rearrangements**
 - Late 1980s: identified in GBM
 - 2007: identified in NSCLC
 - HCC78 cell line (SCL34A2-ROS1)
 - tumor biopsy (CD74-ROS1)
 - Multiple partners:
 - *TPM3*-ROS1 t(1;6)
 - *SDC4*-ROS1 t(6;20)
 - *SLC34A2*-ROS1 t(4;6)
 - *CD74*-ROS1 t(5;6)
 - *EZR*-ROS1 inv(6)
 - *LRIG3*-ROS1 t(6;12)

Rikova et al, Cell 2007; Bergethon et al JCO 2012
ROS1-rearranged lung cancers

- **ROS1-rearranged lung cancers**
 - 1-2% of NSCLCs
 - young never or former light smokers
 - Adenocarcinomas

- **Diagnosis**
 - IHC
 - FISH
 - DNA-based NGS
 - RNA sequencing
 - Plasma assays

Bergethon et al JCO 2012; Rimkunas et al CCR 2012; FISH image courtesy of Lu Wang, MSKCC
Crizotinib in ROS1-rearranged lung cancers

Shaw et al. NEJM 2014

Multicenter phase 1 expansion cohort
Crizotinib 250 mg twice daily
Primary endpoint: overall response

overall response 72% [95% CI 58-84]
33 responses in 50 ROS1-rearranged patients

Shaw et al. NEJM 2014
Crizotinib in \textit{ROS1}-rearranged lung cancers

\textbf{Median DoR 17.6 mos} [95\% CI 14.5-NR]

\textbf{Median PFS 19.2 mos} [95\% CI 14.4-NR]

\textbf{See First-line therapy options}
\textit{Adenocarcinoma (NSCL-24)}
\textit{Squamous cell carcinoma (NSCL-25)}
or
\textit{PD-L1 expression positive (\geq 25\%)}
\textbf{See First-Line Therapy (NSCL-23)}

\textbf{Shaw et al NEJM 2014 ; NCCN Guidelines NSCLC Version 2.2017, 10/26/16}
Ceritinib in *ROS1*-rearranged lung cancers

Korean phase 2 trial
Ceritinib 750 mg daily

Primary endpoint: overall response

<table>
<thead>
<tr>
<th></th>
<th>All (n=32)</th>
<th>Crizotinib-naïve (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response</td>
<td>67%</td>
<td>62%</td>
</tr>
<tr>
<td>CR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Median PFS</td>
<td>10 months</td>
<td>20.7 months</td>
</tr>
<tr>
<td></td>
<td>(95% CI 2.5-17.4)</td>
<td>(95% CI 4.7-NR)</td>
</tr>
<tr>
<td>Median DoR</td>
<td>18.4 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(95% CI 8.0-18.4)</td>
<td></td>
</tr>
<tr>
<td>Intracranial response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CR/PR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 of 5 evaluable patients with brain metastases at baseline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cabozantinib in ROS_1-rearranged lung cancers

ALK inhibition does not always equate to ROS_1 inhibitor

Drilon et al, Clin Cancer Res 2015; Davare et al PNAS 2015
• \textit{ROS1} rearrangements
 – Actionable drivers that can be identified in the clinic
 – Crizotinib is FDA-approved
 – Acquired resistance to crizotinib can be mediated by the acquisition of \textit{ROS1} mutations
 – Other active drugs: ceritinib, cabozantinib, lorlatinib
 • not all ALK inhibitors are \textit{ROS1} inhibitors!!
RET-Rearranged Lung Cancers
RET-rearranged lung cancers

- **RET rearrangements**
 - Papillary thyroid CAs
 - 2011: identified in NSCLCs
 - Multiple partners:
 - KIF5B-RET
 - CCDC6-RET
 - NCOA4-RET
 - TRIM33-RET
 - KIAA1468-RET
 - CUX1-RET

- **Diagnosis**
 - FISH, DNA-based NGS, RNA sequencing, Plasma assays (IHC - not useful)

RET-rearranged lung cancers

- **Incidence**
 - 1-2% in unselected NSCLCs
 - mutually exclusive with other major lung cancer drivers

- **Clinical Features**
 - common in young (≤60 years), never/former light smokers with lung adenocarcinomas

- **Pathologic Features**
 - described largely in lung adenocarcinomas
 - solid subtype in ~2/3 of cases
 - >10% signet ring cells ~1/3 of cases

<table>
<thead>
<tr>
<th>RET Fusions</th>
<th>Never-Smokers Pan-Negative Lung AdenoCAs</th>
<th>Pan-Negative NSCLCs</th>
<th>Unselected NSCLCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>95% CI [3-27%]</td>
<td>Lipson et al5 Nature 2012</td>
<td>Wang et al6 CCR 2012</td>
</tr>
<tr>
<td></td>
<td>n = 5/34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcomes of RET-Rearranged Lung Cancers with Pemetrexed-Based Chemotherapy

<table>
<thead>
<tr>
<th>Patients</th>
<th>ORR (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET-rearranged</td>
<td>45% (n = 5/11)</td>
</tr>
<tr>
<td>ROS1-rearranged</td>
<td>78% (n = 7/9)</td>
</tr>
<tr>
<td>ALK-rearranged</td>
<td>50% (n = 14/28)</td>
</tr>
<tr>
<td>KRAS-mutant</td>
<td>26% (n = 9/35)</td>
</tr>
</tbody>
</table>

P value: 0.02

- Durable clinical benefits were observed with pemetrexed-based chemotherapy in RET-rearranged lung cancers.

RET-rearranged lung cancers

- **RET Inhibitors**
 - all currently available drugs are multikinase inhibitors
 - cabozantinib
 - vandetanib
 - ponatinib
 - lenvatinib
 - sunitinib
 - sorafenib
 - alectinib

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET</td>
<td>1.8</td>
</tr>
<tr>
<td>VEGFR2</td>
<td>0.035</td>
</tr>
<tr>
<td>RET</td>
<td>5.2</td>
</tr>
<tr>
<td>KIT</td>
<td>4.6</td>
</tr>
<tr>
<td>AXL</td>
<td>7.0</td>
</tr>
<tr>
<td>TIE2</td>
<td>14</td>
</tr>
<tr>
<td>FLT3</td>
<td>14</td>
</tr>
</tbody>
</table>

Cabozantinib in \textit{RET}-rearranged lung cancers

\begin{tabular}{|c|c|}
\hline
\textbf{Best Response} & \textbf{\% (n)} \\
\hline
PR & 28\% (7/25) \\
SD & 72\% (18/25) \\
\textbf{ORR 28\%, 95\% CI 12–49} & \\
\hline
\end{tabular}

Median PFS 5.5 months
(95\% CI: 3.8 to 8.4)

Median DoR 4.7 months
(IQR 3.1–8.4)

Median OS 9.9 months
(95\% CI: 8.1 to NR)

Drilon et al. Lancet Oncology 2016

Memorial Sloan Kettering Cancer Center
Global RET-Rearranged Lung Cancer Registry

- **132 patients** with RET-rearranged lung cancer from Europe, the USA, and Asia were identified
 - **41 patients** were treated with single-agent RET TKI therapy outside the context of a clinical trial

Best response* (n=35)

<table>
<thead>
<tr>
<th></th>
<th>CR</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
<th>NE</th>
<th>Missing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabozantinib</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Alectinib</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nintedanib</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ponatinib</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*unconfirmed and locally assessed by RECIST1.1

- **Rate of any response to therapy**
 - **Cabozantinib**: 31% (4/13)
 - **Vandetanib**: 18% (2/11)
 - **Sunitinib**: 22% (2/9)

Multikinase inhibitors in RET-rearranged lung cancers

Multicenter phase 2 trial
Primary endpoint: response
Lenvatinib ORR 16%

Korean phase 2 trial
Primary endpoint: response
Vandetanib ORR 18%

Japanese phase 2 trial
Primary endpoint: response
Vandetanib ORR 53%

Multikinase inhibitors in RET-rearranged lung cancers

<table>
<thead>
<tr>
<th>Multikinase inhibitor with anti-RET activity</th>
<th>Dose Reduction Rate</th>
<th>HTN (any grade)</th>
<th>Rash (any grade)</th>
<th>Diarrhea (any grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabozantinib</td>
<td>69%</td>
<td>16%</td>
<td>44% (PPE)</td>
<td>63%</td>
</tr>
<tr>
<td>Vandetanib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean phase 2</td>
<td>22%</td>
<td>89%</td>
<td>72%</td>
<td>44%</td>
</tr>
<tr>
<td>Japanese phase 2</td>
<td>53%</td>
<td>84%</td>
<td>63%</td>
<td>79%</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>64%</td>
<td>68%</td>
<td>not reported</td>
<td>60%</td>
</tr>
</tbody>
</table>

• **RET rearrangements**
 - Actionable drivers that can be identified in the clinic
 - No FDA-approved therapies thus far
 - Active drugs: cabozantinib, vandetanib, lenvatinib, in addition to other multikinase inhibitors
 • Response rates comparable to other driver-positive lung cancers (i.e. *BRAF* V600E-mutant lung cancers)
 • Tolerability in the face of chronic dosing is an important concern
 - May require better drugs (i.e. RET-specific inhibitors) or combination therapy
BRAF V600E-Mutant Lung Cancers
BRAF-Mutant Lung Cancers

- **Incidence**
 - 1-4% of NSCLCs
 - 2% of lung adenocarcinomas

- **Features**
 - former/current smokers
 - *V600E*-mutant: more likely to be light/never smokers
 - mutually exclusive with other oncogenic drivers in most cases

Lung Cancer Mutation Consortium
(n = 733 lung adenocarcinomas)

MSKCC
(n=63 BRAF-mutant lung adenocarcinomas)
Prognosis

- V600E mutations confer improved survival (compared to non-V600E mutations)

Stage IIIB-IV (BRAF V600 vs. EGFR: p=0.25; BRAF V600 vs. KRAS: p=.12; EGFR vs. KRAS: p < 0.001)

Litvak and Riely, et al JTO 2014
Multicenter phase 2 basket study
Vemurafenib 960 mg twice daily
Primary endpoint: response at week 8

overall response 42% [95% CI 20-67]
8 PRs of 19 $BRAF_{V600E}$-mutant patients

Hyman, et al. NEJM 2016
Multicenter single-arm phase 2 study
Dabrafenib 150mg twice daily
Primary endpoint: overall response

overall response 33% [95% CI 23–45]
26 PRs of 78 BRAFV600E-mutant patients

Dabrafenib + Trametinib in *BRAF* V600E-Mutant Lung Cancers

Multicenter single-arm phase 2 study
Dabrafenib 150mg twice daily + Trametinib 2 mg daily
Primary endpoint: overall response

overall response 63.2% [95% CI 49.3-75.6]
36 PRs of 57 *BRAF* V600E-mutant patients

Dabrafenib+Trametinib in \textit{BRAFV600E}-Mutant Lung Cancers

Median PFS 9.7 months (95% CI 6.9–19.6)

Dabrafenib+Trametinib in *BRAF V600E*-Mutant Lung Cancers

Median duration of treatment 10.6 months (IQR 4.2–12.2 months)
Targeted Therapy in *BRAF* V600E-Mutant Lung Cancers

<table>
<thead>
<tr>
<th></th>
<th>ORR</th>
<th>Median PFS</th>
<th>Median OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vemurafenib</td>
<td>42% [95% CI 20-67]</td>
<td>7.3 months (95% CI 3.5-10.8)</td>
<td>Not reached</td>
</tr>
<tr>
<td>Dabrafenib</td>
<td>33% [95% CI 23-45]</td>
<td>5.5 months (95% CI 3.4-7.3)</td>
<td>12.7 months (95% CI 7.3-16.9)</td>
</tr>
<tr>
<td>Dabrafenib + Trametinib</td>
<td>63% [95% CI 49.3-75.6]</td>
<td>9.7 months (95% CI 6.9-19.6)</td>
<td>Not reached</td>
</tr>
</tbody>
</table>
Summary

• **BRAF mutations**
 – Actionable drivers that can be identified in the clinic

 – Active drugs for *BRAF V600E*: vemurafenib, dabrafenib, dabrafenib and trametinib

 – Dabrafenib + Trametinib with breakthrough designation by the FDA
• **Recurrent gene rearrangements**

 – *ROS1* rearrangements
 • Crizotinib, Ceritinib, Cabozantinib

 – *RET* rearrangements
 • Cabozantinib, Vandetanib, Lenvatinib

• **Mutations**

 – *BRAF V600E*
 • Vemurafenib, Dabrafenib, Dabrafenib + Trametinib