

GMS 10.9 Tutorial

Mod-PATH3DU

A particle tracking program for MODFLOW-USG

Objectives

This tutorial gives an overview of GMS's interface for mod-PATH3DU.

Prerequisite Tutorials

MODPATH

Required Components

- GMS Core
- MODFLOW Interface
- MODPATH/MP3DU Interface

Time

• 15–30 minutes

Introduction	2
1.1 Getting Started	2
	3
	3
	4
Saving and Running mod-PATH3DU	
Creating a Forward Tracking mod-PATH3DU Model	7
7.1 Adding Starting Locations	7
	9
0 Conclusion	. 11
	1.1 Getting Started Opening an Existing Model Saving a Native Text Copy

1 Introduction

The mod-PATH3DU model is a particle-tracking program written by Chris Muffles at S.S. Papadopulos & Associates. It is compatible with both structured and unstructured grids, as well as MODFLOW-USG. Given its similarity to MODPATH, it is recommended to become familiar with the MODPATH tutorial before starting this one.

This tutorial begins by opening a model that includes a MODFLOW-USG simulation, saving a native text copy of the model, and running MODFLOW on the saved text file. A new backward tracking mod-PATH3DU model will then be created, with tracking points placed at the well. The new model will be saved, mod-PATH3DU will be run, and the solution will be imported. Lastly, a new forward tracking mod-PATH3DU model with points on the side will be created.

1.1 Getting Started

To start:

- 1. If necessary, launch GMS.
- 2. If GMS is already running, select *File* | **New** to ensure that the program settings are restored to their default state.

2 Opening an Existing Model

The first step is to open a MODFLOW-USG model based on the example problem included with mod-PATH3DU. It is a one-layer Voronoi model, where flow moves from left to right. The cells on the left side are assigned a constant head cells value of "50.0", while the cells on the right side are assigned a constant head value of "49.0". A single CLN well, located in the center of the model, extracts water. Transparent, continuous, color-filled contours of head are enabled for visualization.

- 1. Click **Open** if to bring up the *Open* dialog.
- 2. Select "Project Files (*.gpr)" from the Files of type drop-down.
- 3. Browse to the \VoronoiModel\VoronoiModel folder and select "Voronoi.gpr".
- 4. Click **Open** to import the project and exit the *Open* dialog.

The project should appear similar to Figure 1.

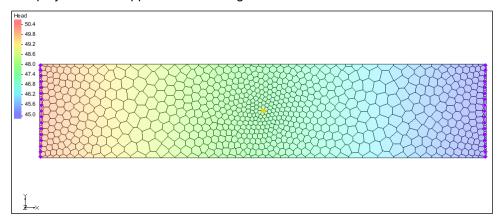


Figure 1 Starting MODFLOW-USG model from mod-PATH3DU examples

To save the project with a new name:

- 5. Select File | Save As... to open the Save As dialog.
- 6. Select "Project Files (*.gpr)" from the Save as type drop-down.
- 7. Enter "mp3du.gpr" as the File name.
- 8. Click **Save** to save the project under the new name and close the *Save As* dialog.

3 Saving a Native Text Copy

Since mod-PATH3DU reads MODFLOW files and uses its own internal version of MODFLOW, it cannot read GMS-formatted MODFLOW files that store array data in HDF5 format. As a result, it is necessary to save a native text copy of the MODFLOW simulation to be used by mod-PATH3DU.

- 1. In the Project Explorer, double-click on the "Global" package to bring up the MODFLOW Global/Basic Package dialog.
- 2. In the MODFLOW version section, turn on Save native text copy.
- 3. Click **OK** to close the MODFLOW Global/Basic Package dialog.
- 4. Save the project so that the text copy of MODFLOW will be saved.

mod-PATH3DU requires a native text version of the MODFLOW model.

4 Running MODFLOW

MODFLOW must be run again to generate a solution for the native text copy of the model. Since the typical approach involves running MODFLOW using the GMS-formatted version of the model, it will be necessary to run MODFLOW differently for this step.

1. Select MODFLOW | Advanced | Run MODFLOW Dialog... to bring up the Run MODFLOW dialog.

- 2. In the MODFLOW version section, turn on USG.
- 3. Click Name file ito bring up the Open dialog.
- 4. Navigate to the mp3du_MODFLOW-Voronoi folder.
- 5. Select "mp3du.mfn" and click **Open** to exit the *Open* dialog.

The dialog should appear similar to Figure 2.

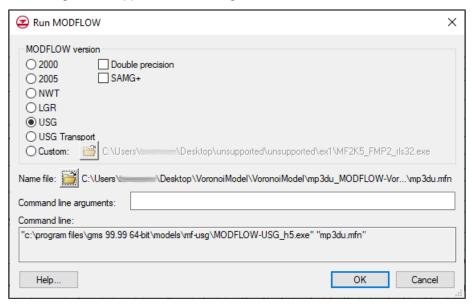


Figure 2 Run MODFLOW dialog

- 6. Click **OK** to exit the *Run MODFLOW* dialog and bring up a command prompt window
- 7. When MODFLOW finishes running, close the command window by pressing any key.

The MODFLOW | Advanced | Run MODFLOW Dialog... menu command allows MODFLOW to be run using any version of MODFLOW on any specified file name.

5 Creating a Backward Tracking mod-PATH3DU Model

The next step is to create the mod-PATH3DU model.

- 1. In the Project Explorer, right-click the "Voronoi" item and select **New mod-PATH3DU...** to create a new "Voronoi" mod-PATH3DU model.
- 2. Right-click the " Voronoi" simulation and select Rename.
- 3. Enter "backward" and press Enter to set the new name.

5.1 Adding Starting Locations

1. Right-click " backward" and select **Create Particles at Wells...** to bring up the *Generate Particles at Wells* dialog.

2. Click **OK** to accept the defaults and close the *Generate Particles at Wells* dialog.

Starting locations can be generated at wells using the **Create Particles at Wells...** command.

When using MODPATH, GMS would typically save and run MODPATH automatically, importing the pathlines. However, since GMS does not automatically run mod-PATH3DU, this must be done manually. The process for running mod-PATH3DU will be covered in the next section.

mod-PATH3DU does not run automatically, unlike MODPATH.

3. **Zoom** Q in to the cell containing the well.

Notice the ring of starting locations created around the well (Figure 3).

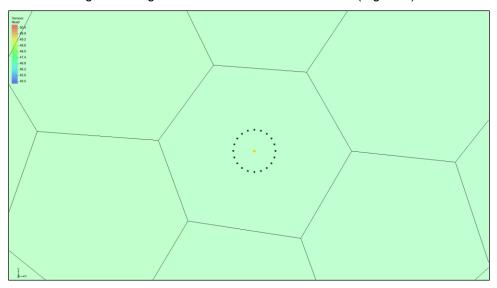


Figure 3 Ring of starting locations created around the well

4. Frame the project to return to the previous view.

5.2 Changing to Backward Tracking

With starting locations at the well, the next task is creating a backward tracking simulation.

- 1. Right-click " backward" and select **Options...** to bring up the *mod-PATH3DU Options* dialog.
- 2. Select "Options" from the list on the left.
- 3. From the DIRECTION drop-down, select "Backward" (Figure 4).
- 4. Click **OK** to exit the *mod-PATH3DU Options* dialog.

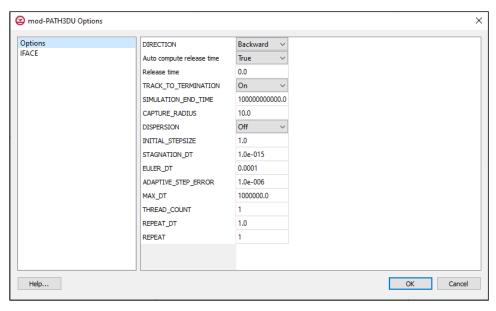


Figure 4 Selecting the direction

6 Saving and Running mod-PATH3DU

Before running mod-PATH3DU, the changes must be saved.

- 1. Save the project. This will include the mod-PATH3DU input files.
- 2. Right-click " backward" and select **Run mod-PATH3DU** to bring up the *MP3DU* model wrapper dialog (Figure 5).

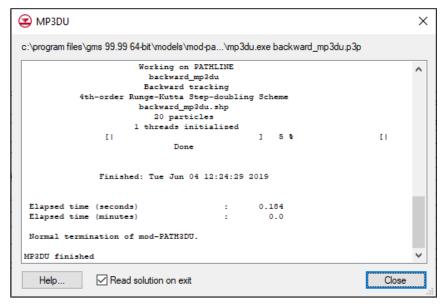


Figure 5 mod-PATH3DU model wrapper

When mod-PATH3DU finishes, the line "Normal termination of mod-PATH3DU." should appear near the bottom of the *MP3DU* model wrapper dialog.

3. When mod-PATH3DU finishes, make sure *Read solution on exit* is turned on and click **Close** to exit the *MP3DU* model wrapper dialog.

GMS will import the pathline solution file and display the pathlines. The result should appear similar to Figure 6.

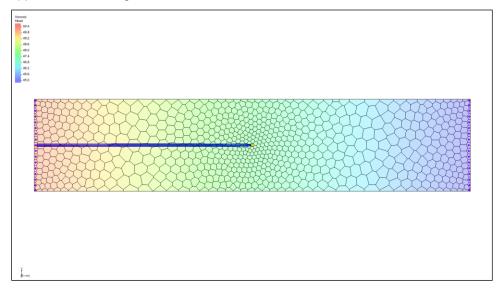


Figure 6 Pathline solution showing pathlines tracking backward from the well

- 4. If desired, **Zoom** \bigcirc in and examine the pathlines.
- 5. Click the **Save** macro to save the project with the solution.

7 Creating a Forward Tracking mod-PATH3DU Model

To create a new mod-PATH3DU model with starting locations along the left edge of the model that track forward:

- 1. In the Project Explorer, right-click "Voronoi" and select **New mod-PATH3DU**... to create a new "Voronoi" mod-PATH3DU model.
- 2. Right-click " Voronoi" and select Rename.
- 3. Enter "forward" and press *Enter* to set the new name.

Multiple mod-PATH3DU simulations can exist in GMS at the same time.

7.1 Adding Starting Locations

- 1. **Zoom** in on the left side of the UGrid.
- 2. Using the **Select Cells** tool, hold down the *Shift* key and select the five cells along the left side of the grid, in the area where the existing pathlines are located (Figure 7).

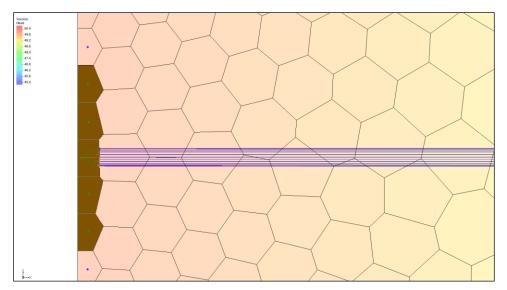


Figure 7 Selected cells on the left side of the UGrid

- 3. Right-click on any of the selected cells and select **Create mod-PATH3DU Particles...** to bring up the *Generate Particles* dialog.
- 4. Under Number of particles, adjust the slider to "4".
- 5. Click **OK** to close the *Generate Particles* dialog.

Each cell now contains up to four starting locations (Figure 8).

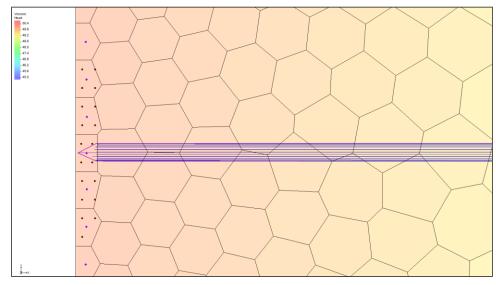


Figure 8 Starting locations in the selected cells

6. If desired, **Zoom** \bigcirc in and see how GMS arranged the starting locations.

Because Voronoi cells are irregularly shaped, some cells may end up with fewer particles. This occurs because GMS generates particles in a square pattern based on the cell extents as a guide, and then eliminates particles that fall outside the cell borders.

Starting locations can be created inside cells by selecting cells and using the **Create mod-PATH3DU Particles...** command.

8 Saving and Running mod-PATH3DU

Before running mod-PATH3DU again, it is recommended to save the project.

- 1. **Save** \blacksquare the project.
- Right-click " forward" and select Run mod-PATH3DU to bring up the MP3DU model wrapper dialog.
- 3. When mod-PATH3DU finishes, make sure *Read solution on exit* is turned on and click **Close** to exit the *MP3DU* model wrapper dialog.

GMS then imports the pathline solution file and displays the path lines (Figure 9).

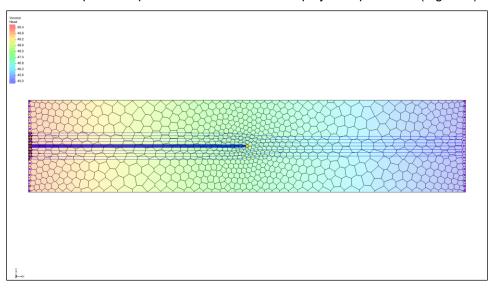


Figure 9 Pathline solution showing pathlines tracking backward from the well

- 4. If desired, **Zoom** \bigcirc in and examine the pathlines.
- 5. **Save** the project with the solution.

9 Examining the Solution

To take a closer look at the pathlines:

- 1. In the Project Explorer, turn off the " backward" simulation.
- 2. **Zoom** $\mathbb{Q}^{\frac{1}{2}}$ in on the well (Figure 10).

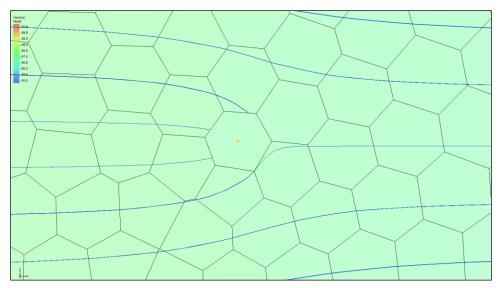


Figure 10 Forward tracking pathlines around the well

- 3. Frame (1) the project.
- 4. Click **Display Options T** to bring up the *Display Options* dialog.
- 5. Select "UGrid: Voronoi [Active]" from the list on the left.
- 6. Turn on Define UGrid specific options.
- 7. Under the Particles tab, turn on Direction arrows.

A number of other display options related to starting locations and pathlines are available here.

8. Click **OK** to close the *Display Options* dialog.

Flow direction is now shown (Figure 11).

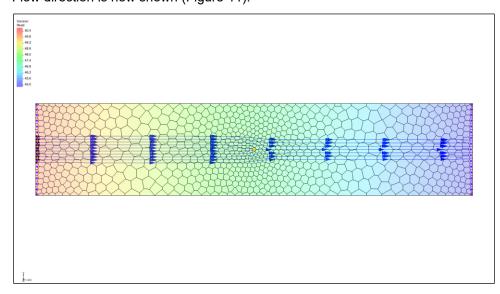


Figure 11 Flow direction arrows are visible

10 Conclusion

This concludes the "mod-PATH3DU" tutorial. The following key concepts were discussed and demonstrated:

- GMS includes an interface to mod-PATH3DU
- mod-PATH3DU requires a native text version of the MODFLOW model
- The MODFLOW | Advanced | Run MODFLOW Dialog... menu command can be used to run MODFLOW with any version of MODFLOW on any specified file
- Starting locations can be generated at wells using the Create Particles at Wells... command
- mod-PATH3DU does not run automatically like MODPATH
- Multiple mod-PATH3DU simulations can exist in GMS simultaneously
- Starting locations can be created inside cells by selecting cells and using the Create mod-PATH3DU Particles... command