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ABSTRACT

Regenerative endodontic procedures (REPs) have emerged as a promising approach to treat immature permanent teeth with
pulpal necrosis by promoting pulp regeneration and root maturation. Nevertheless, the selection of an optimal scaffold
remains a critical challenge. Collagen scaffolds, noted for their biocompatibility and bioactivity, have garnered considerable
increasing attention in the field of dental pulp tissue engineering. However, most commercially available collagen products
currently employed in REPs originate from non-pulp environments, raising concerns about their appropriateness for REPs.
Thus, we review the recent advancements in applying collagen-based scaffolds within REPs. Clinically, their use is associated
with high survival rates and yield favorable outcomes of tooth after REPs, such as pulp vitality recovery, dentin wall thickening
and apical closure in necrotic immature permanent teeth, though root lengthening remains less consistently achieved.
Histologically, the newly formed minem lized tissue from wllagen -based scaffolds within REPs tends to cementum or bonelike

tissue rather than reparative d d\( “cfithe gen 11p nex tlon er discuss how their intrinsic
physicochemical properties of pOre size, porosity, concentration,
stiffness, viscosity and viscoela S ly,W¥e int iuce sineering strategies to optimize

collagen scaffolds for enhanced lelml pe1form<mge int 1ture ‘lppllCAtIOhS on REPs. In conclusion, this review is expected

to significantly advance the development of collagen scaffolds in REPs and facilitate their future clinical translation.

Keywords: Regenerative endodontic procedures; collagen scaffold; pulp-dentin complex; tissue engineering; clinical

outcomes; histological characteristics

INTRODUCTION Recently, regenerative endodontic procedures (REPs) have
emerged as a contemporary alternative, aiming to promote pulp
regeneration and root maturation [4]. Progress in REPs has been
driven by tissue engineering strategies that facilitate targeted

According to data from the World Health Organization
databank covering the years 2000 to 2015, dental caries affects
between 21% and 97.3% of children aged 5 to 12 years [1], often

S , . . o
. o ) ) therapeutic interventions [5]. The rational combination of
resulting in pulpal injury and necrosis [2]. The conventional . . , e , ,
- ) . biomaterials can create optimized microenvironments that are
management of immature permanent teeth with pulpal necrosis ) i , )
i i o T : . conducive to regeneration, thereby supporting functional
and apical periodontitis involves apexification and apical barrier i . '
; ) reconstruction through the use of growth factors and scaffold
techniques [3]. However, these methods do not succeed in i i .
) ) ) . s o design [6]. Nevertheless, selecting an appropriate scaffold
restoring physiological pulpal function or facilitating root . - i ,
i remains a significant challenge, as essential cellular processes
maturation.
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migration, proliferation, and differentiation are
profoundly influenced by the properties of the materials used

(7].

Extensive investigation into scaffolds for REPs has identified
blood clots (BCs), collagen, and autologous platelet concentrates
(APCs), as leading candidates [8]. Therein, collagen, as the
primary component of dental pulp, exhibits
properties akin to those of native pulp tissue [9], thereby
garnering increasing interest in pulp tissue engineering
applications [4-5,10]. In 2008, Jung et al. were among the
pioneers in utilizing collagen matrices in REPs to promote new

such as

viscoelastic

tissue formation within the pulp chamber, particularly when

[11].

Subsequently, a growing number of studies have employed

inadequate bleeding hinders natural clot formation

and growth factors,
highlighting its favorable biocompatibility and potential to
facilitate tissue regeneration in dental pulp [12-15]. A significant

collagen as a carrier for stem cells

advantage of collagen in REPs is its established application in
human medicine, with several commercially available products
such as CollaPlug®, CollaTape®, Bio-Gide®, SynOssTM Putty
and CollaCoteTM produced on a large scale [14-18]. Studies
have reported the formation of pulp-like connective tissues from
collagen scaffolds in  REDPs
[12,19-20]; however, the structural and functional characteristics

within experimental models
of these tissues warrant further investigation. What’s more, it
must be noted that most commercially available collagen

products currently employed in REPs originate from non-pulp

environments, raising legitims omu ns out their
appropriateness for pulp regenera
In this review, we summarize rece zlele)

of collagen based scaffolds for REPs, vuth a foms on tf

clinical outcomes and histological evaluations. Considering the
current limitations of collagen scaffolds in REPs, we further
propose modification strategies
regenerative efficacy. We discuss how to optimize the inherent

aimed at enhancing their
physicochemical properties of collagen that influence pulp
regeneration, porosity,

stiffness, viscosity and viscoelastic properties. Additionally, we

including pore size, concentration,
employ the innovative tissue engineering strategies to tailor
collagen scaffolds, anticipating to provide innovative insights

and solutions for achieving effective regeneration in REPs.

Clinical Application Outcomes of Collagen Scaffolds in
REPs

Since the introduction of collagen scaffolds within REPs in
2008 [11], clinical applications have largely relied on commercial
products, as detailed in Table 1. Numerous clinical studies and
systematic reviews have validated the effectiveness of collagen
scaffold in REPs, with survival rates ranging from 85% to 100%
and success (healed) rates from 80% to 100% over a follow-up
period of 23 months [13,15,21-22]. Similarly, for necrotic
immature teeth, REPs employing BCs or other scaffold
demonstrated survival rates ranging from 95.6% to 100% at
least a 12-month follow-up [22-25]. These outcomes indicate that
collagen scaffolds yield clinical success rates comparable to those
of other scaffold in REPs. Consequently, both the American
Association of Endodontists (AAE) and Chinese expert
consensus guidelines recommend their use in REPs [26-27],
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particularly in cases where adequate blood clot formation is
compromised (Fig. 1A). Nevertheless, the long-term effectiveness
of collagen scaffolds in REPs warrants further validation
through more rigorous clinical studies.

The success of REPs is not solely defined by the resolution of
clinical signs and the evidence of radiographic healing; it also
encompasses the potential to promote continued root
development and apical closure. A previous study has
highlighted the significant role of collagen scaffolds in
promoting the thickening of dentinal walls during REPs [28].
Similarly, Jiang et al. also found that the Bio-Gide® collagen
membrane significantly increased thickness in the
middle third of the root after REPs compared to BCs [29]. An
increase in root thickness from 3.0 mm to 5.0 mm enhances

dentin wall

fracture resistance by 70% [30]. Thus, these findings underscore
the importance of root thickness in improving the mechanical
properties of dental structures.

One randomized controlled clinical trial reported that REPs
utilizing collagen scaffolds were found to induce apical foramen
closure in 47% of teeth; this process began as early as 6 months
postoperatively, with closure achieved in the vast majority (96%)
of cases by 24 months [22].
suggested that platelet-rich fibrin (PRF) might possess superior
capacity scaffolds, as
evidenced by increased apical closure, dentin thickness, and root

Interestingly, another study

regenerative compared to collagen
lengthening [31], potentially due to its higher concentration of

growth actors However, a meta-analysis concluded that no

sig ce
sca @
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enhancing dentin wall thigknesx [14, 22]. Key prognostic factors
o duration, and
disease etiology significantly influence the outcome of root

Sts mg BCs and other exogenous

lopment outcomes [32], implying
n scaffolds could be specific to

such as the tooth's developmental stage, follow-up

development [15, 33]. According to the clinical considerations
for REPs revised by AAE in 2023 [26],
thickness of the root canal walls is typically observed 12 to 24

an increase in the

months following treatment. However, it is worth noting that
the study, with a maximum follow-up of only 12 months, might
be insufficient to fully capture this outcome [31]. Consequently,
the long-term stability and potential changes in outcomes over
an extended period remain an open question.

the rate of
positive responses to the cold test and/or electric pulp testing

Regarding the pulp vitality recovery after REPs,

(EPT) on necrotic immature permanent teeth ranges from
14.5% to 33.3% [25, 34]. For REPs utilizing collagen scaffolds in
such teeth, the reported positive response rate ranges from 32%
to 55%, observed as early as 3 months postoperatively [35], with
the majority occurring within 24 months [13, 15, 22]. These
findings suggest that the use of collagen scaffolds within REPs
may be associated with a higher rate of pulp vitality recovery,
which aligns with the results reported by Jiang et al [22]. In
contrast, several studies using collagen matrices in REPs for
teeth reported no pulp sensibility
responses throughout the follow-up period [36-38]. Several
factors may explain these negative outcomes [39]: 1) the
inherent difficulty in obtaining reliable pulp testing scores in

immature permanent

pediatric patients; 2) potential interference from a thick,
multilayered coronal seal placed over the scaffold; and 3) the
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absence of well-organized dentin tubules in newly regenerated
and mineralized root canal tissues. Unlike natural dentin, where
sensitivity is mediated by hydrodynamic activity associated with
A-B sensory fibers [40], the regenerated tissue lacks this structural
basis  for sensitivity. Thus, the
hypotheses may collectively account for the generally lower rate

normal aforementioned
of positive sensitivity responses observed in REPs, underscoring
the need for cautious interpretation of pulp sensibility test
results in this context.

Root canal calcification is a frequently reported complication
following REPs, and its incidence ranges from 30.7% to 62.1%
with an average follow-up period of 12 to 24 months [14, 41-44].
For REPs utilizing collagen scaffolds, Lin et al. reported that the
calcification rate was 37.6%, with most cases detected at the 6-
month recall [45]. Despite extended follow-up durations ranging
from 15 to 33 months, the calcification rate remained stable at
approximately 47% in REPs with collagen scaffolds [22],
indicating that not all treated teeth develop calcification, even
with follow-ups as long as 78 months [14]. However, Jiang et al.
found no significant correlation between root canal calcification
and factors such as tooth type, etiology, preoperative diagnosis,
apical lesion status, initial root development stage, intracanal
bleeding quality, or scaffold type [14]. It is noteworthy that
induced apical bleeding—a procedural step common to most
REPs prior to the placement of PRF, collagen, or other scaffolds
—may introduce periodontal and bone marrow-derived stem cells
into the root canal space [46]. Biological evidence suggests that
these cells can promote the formgag
like mineralized tissues in the ca
scaffold type was not identifie
potential contribution of the initia
be entirely excluded and merits further validation in prospective
studies.

Brand Name

of bon

tementum—
_s to calcification mry
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In summary, despite the fact that most commercially available
collagen products are mainly applied in non-pulp environments
(Table 1), their use in REPs have demonstrated considerable
promise, achieved high survival/success rates and pulp vitality
recovery, as well as promoting dentinal wall thickening and
apical closure in necrotic immature teeth. However, some
researchers concerned that the limitations such as rapid
degradation and low mechanical strength may affect the
performance of collagen-based scaffolds in REPs [47]. Several
histological studies of REPs with collagen scaffold on human
teeth have reported no detectable collagen residues as early as
5.5 months posttreatment [48-50]. In cases using SynOss™
Putty a composite containing both collagen and hydroxyapatite
scaffold particles at 7.5
though without ewdence of remaining
(51].

initiation to complete degradation of collagen scaffold remains

histologic sections revealed residual
months after REPs,
collagenous material While the precise timeline from
unclear from the currently reported clinical cases in REPs, no
available studies have indicated that collagen degrades too
rate  of current
commercial collagen-based scaffolds is adequate for REDPs.

rapidly, suggesting that the degradation
Similarly, none of the clinical studies or cases reported failures
attributable to poor mechanical properties, indicating that the
mechanical performance of existing commercial collagen
scaffolds appears sufficient for REPs a view consistent with that
of Moussa et al [52]. Theekaku et al. reported a failure rate of
10% (13/120 teeth) in REPs with using collagen, with primary

causes including persistent

‘Proo

with prospective longterm clinical studies to validate sensory

coronal and/or root
_ondary traumal5. Thus, future

infection,

ping multi-functionally enhanced
we anti-bacterial abilities, coupled

recovery and minimize mineralization risks [53].

Character Main Composition |Source Main Uses in Clinical Outcomes
Dentistry in REPs
CollaPlug® Collagen sponge High-purity Type I | Bovine Hemostasis, oral Radiographic
collagen wound protection periapical healing,
and repair, and root development
small bone defect in root length and
support dentin wall
thickness, pulp
vitality recovery [21]
CollaCote™ Collagen sponge High-purity Type I | Bovine Hemostasis, oral Radiographic
collagen wound protection periapical healing,
and repair root development
especially in
increased root
length and dental
wall thickness,
apical closure [24]
CollaTape® Collagen High-purity Type I | Bovine GTR, oral wound Radiographic
sponge collagen repair and protection | periapical healing,
root development,
pulp vitality
recovery [16]
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Bio-Gide® Crosslinked Type

I/1II collagen

Bilayer
membrane

Radiographic
periapical
healing, root

Porcine

GTR, GBR

development
especially in
increased wall
thickness, pulp
vitality
recovery [22]

SynOss™
Putty

Type I collagen and
hydroxyapatite

Bone graft
substitute

composite

Table 1: Commercially available collagen products applied in

REPs

Abbreviations: GTR: guided tissue regeneration; GBR:
guided bone regeneration; REPs: regenerative endodontic
procedures

Characteristics of the Formed Mineralized Tissue in REPs
with Collagen Scaffolds

The properties and quantity of mineralized tissue within the
root canal are closely related to the prognosis of REPs.Although
clinical and imaging studies d Ons
outcomes of REPs utilizing collagén
functional characteristics of the n

in the root canal warrant further investigations.

the newly formed
mineralized tissues in the root canal after REPs can be primarily
classified into four types: reparative dentin, cementum-ike
tissue, bone- like tissue, and periapical hard tissue [54] (Fig. 1C-
F). Currently,
the root canal following REPs are cementum-like tissue and

Based on the formation mechanisms,

the predominant mineralized tissues observed in

bone-like tissue [54-55], suggesting that the microenvironment
within the root canal postsurgery is more favorable for the
differentiation and

proliferation of periodontal ligament

mesenchymal stem cells [48, 56].

tissue, also known dentin-associated
(DAMT), is through the
differentiation of stem cells within the periapical tissues,
following the apical blood supply [57-58]. DAMT manifests as
mineralized tissue with a relatively uniform thickness, which

Cementum-like as

mineralized  tissue formed

may or may not contain embedded cells within the mineralized
matrix (Fig. 1D). The boundary between cementum-like tissue
and canal dentin can be clearly identified by the absence of
dentinal tubules in the former55. The bond between DAMT
and the dentin wall is not particularly robust; certain regions are
detached from the wall, while others are anchored to the dentin
wall via Sharpey's fiber- like tissue20, [48,55] (Fig. 1D-b).
Longitudinal sections of teeth treated with CollaPlug® after
REPs demonstrated that the newly formed mineralized tissue on

t favorable
eiss

REPs, GBR and

alveolar ridge

Radiographic
periapical healing,
partial or complete

Bovine

preservation
root mineralization

(51]

the canal walls comprised both cellular and acellular cementum-
like tissue, as well as bonelike tissue [48]. Furthermore, the
canal dentin appeared to connect directly to the cementum-like
tissue, with collagen bundles inserted into both the cementum-
like and bone-like tissue at right angles, resembling Sharpey’s
fibers [48]. Some researchers have proposed that specific
demineralization treatments of dentin, as increased
ethylenediaminetetraacetic acid (EDTA) irrigation, could create
a hairlike protrusion structure on the dentin surface, thereby

such

enhancing the attachment strength of newly mineralized tissue

to the root walls [54-55]. Add1t10nally, other researchers have
hat DAMT

fol w-up Berice

thus far prov1de 1nsuff1uem evidence to conclusively validate

this assertion. Elnawam et al. have found that in the REPs for
necrotic mature canine teeth, cementum-like tissue deposition

to deposit over time until the

|. However, the relatively short
al and clinical studies conducted

was detected on internal canal walls of most samples in the BCs
group and bovine dental pulp derived extracellular matrix (P-
ECM) hydrogels group [19]. However, intracanal hard tissue
detected was significantly higher in the BCs groups compared to
the ECM group [19]. Similarly, another study also established
a model of REPs for necrotic mature canine teeth and found
that, there was no regenerated mineralized tissue on the root
canal dentin in most roots in the BCs and CollaPlug® groups
and all roots of the amnion-chorion membrane (ACM) group,
although the amount of regenerated fibrous tissue and the
perfused blood vessels in the root canals was greater in the
membrane groups than in the BCs group [20]. This might be
due to the retained growth factors and ECM components within
the collagen scaffold that could influence the chemotaxis and
commitment of surrounding stem cells [60].

Unlike DAMT, bone-like tissue, also referred to as bony islands
(BI), is situated within the inner lumen, independent of the
dentin wall [54]. tissue manifests as islands of mineralized
matrix that harbor numerous embedded cells, blood vessels, and
bone marrow-like tissues [55] (Fig. 1E). A histological study
revealed that bonelike tissue comprised osteocytelike
andosteoblast-like cells, which contributed to the formation of
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mineralized tissue islands within the central portion of the canal
space [48]. In certain specimens, it was observed that BI
potentially originated from the bone marrow in the periapical
area 61(Fig. 1F-c) and occasionally appeared to connect with
DAMT [51] (Fig. 1E-a). Additionally, several areas of fusion and
calciotraumatic lines could be observed between BI and
DAMTS51 (Fig. 1Eb). Another case exhibited periodontal
ligament (PDL)like tissue, albeit very loose, located between the
BI and the DAMT, resembling the naturally occurring structure
on the outer root wall [19]. It is conceivable that PDL cells
migrating along the dentin walls and cells from the bone
marrow compete for space within the root canal lumen, with
different cell types potentially being directed towards their
preferred microenvironments to form their respective tissues.

the threelevel criteria  for

According to REPs
established by the AAE, some researchers have proposed that,

outcome

considering the current immaturity of REPs techniques, the
presence of cementum-like tissue within the root canal could
already satisfy the first and second-level criteria and achieve a
favorable prognosis [45]. Literature indicate that the prognosis
of cementum-like tissue is superior to that of bone-like tissue
[62]. However, the
formation of

most desirable outcome remains the
dentin [54]. Studies
collagen scaffolds could promote the formation of reparative
dentin (Fig. 1C). Abdelsalam et al. found that, compared to the

BCs group, the BCs and collagen group exhibited clearly

reparative indicate that

defined distinct cellular elements and new dentin formation at

the pulpal side of the tin |1
decellularized extracellular matri r
dECM), along with periapic 1

lrthermore,

i
(PLDSCs), was implanted into the iubultanuuls area of ry

mice, resulting in an ideal pulplike matrix characterized by a
relatively dense eosin-stained matrix with numerous ordered
nuclei and a predentin-like structure adjacent to the tooth
section  [63]. Immunohistochemical  staining  further
demonstrated that PLDSCs within PL-dECM exhibited higher
protein expression levels of dentin Sialophosphoprotein (DSPP),
dentin matrix protein 1 (DMP-1),
growth factor (VEGF) [63]. Another study employing both
hematoxylin-eosin staining and immunostaining revealed that

and vascular endothelial

the neotissues formed represented dentin-like tissue in teeth
treated with CollaPlug® in REPs [49]. The newly formed dentin
appeared organized and tubular, representing a primary dentin
phenotype. Moreover, the newly formed dentin was continuous
with native dentin and was lined with mature, secretory
odontoblast-like cells [49]. This finding is unique and novel, as
previous studies investigating the nature of neotissues observed a
reparative dentin phenotype that differs from native dentin in

terms of volume and density [64-65].

Besides, it is interesting that only collagen scaffolds do not
appear to promote pulp regeneration. A study indicated that the
use of SynOssTM Putty without blood resulted in the formation
of periapical lesions without any tissue regeneration in human
immature teeth [51]. Furthermore, this study investigated the
efficacy of collagen scaffolds with varying degrees of blood draw
[51]. In teeth treated with SynOssTM Putty and blood,

histological examination revealed the formation of intracanal

OPEN 8 ACCESS Freely available online

mineralized tissue around the scaffold particles, which solidified
with newly formed cementum-like tissue on the dentinal walls.
In contrast, teeth treated with SynOssTM Putty and minimal
bleeding (limited to the apical third) exhibited newly formed
tissues only in the apical area, and the remaining root canal
spaces were filled with disintegrating SynOssTM Putty particles.
These results suggest that collagen scaffolds within REPs
necessitate the accompaniment of apex blood draw to promote
pulp regeneration. Platelets in BCs contain and secrete active
growth factors and a variety of serum proteins, including fibrin,
fibronectin, and vitronectin, which serve as cell adhesion
Additionally,

compared to peripheral blood, blood from periapical tissues

molecules for odontoblastic differentiation.
contains a significantly higher concentration of mesenchymal
stem cell markers, with an increase of up to 600 times [66].
Thus, blood plays a crucial role in the formation of new tissue

within the root canal space.

For the changes to the periapical and periodontal tissues,
histological studies have indicated that the apical development
appeared to be an extension or growth of the cementum/DAMT
structure [12, 51, 55] (Fig. 1F), facilitating apex closure or the
reconstruction of normal apex anatomy. This newly formed
tissue is continuous with the PDL at the apex, where the
scaffold material is absent [12, 48, 51]. Additionally, PDL-like
fibers are inserted into the cementum-like and bone-like tissue at
right angles as Sharpey’s fibers [48]. Evidence from a study
demonstrated the presence of cementocytes within the apical
ap and apical closurgth cementum-like tissue in the
B 4 T npeontrast, the BCs group exhibited
spiiiadic @kge \% rafions alongside heavily pigmented
basophilic condensation of fibrous tissues [12]. The inability to
achieve complete sealing of the apex is frequently associated with
BI55, [67] (Fig. 1F-c), and the presence of BI may contribute to
the higher failure rate of REPs compared to apexification in
immature permanent teeth [45].

In summary, the formation of reparative dentin predominantly
takes place in the middle third of the root, whereas the apical
region is frequently characterized by cementum-like and bone-
like tissues. This phenomenon may be attributed to the fact that
the fate of recruited stem cells is contingent upon the
regenerative cues present in the vicinity of the attached cells,
which promote differentiation into specific cell lineages. In the
investigation of collagen scaffolds that promote reparative
dentin formation, the odontoblastic differentiation of the
attached stem cells is likely influenced by both spatial cues from
the dentin surface and biological signals emanating from the
collagen scaffold. However, although clinical and imaging
studies have demonstrated favorable outcomes, histological
investigations of REPs with collagen scaffold have indicated a
process of repair rather than regeneration of the pulp-dentin
complex.
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Figure 1: Clinical diagram and histological evaluation of

regenerative endodontic procedures (REPs) using collagen

scaffold.

(A) REPs performed with a pure collagen scaffold for an
immature tooth 8 with intrusive luxation and diagnosed as
symptomatic apical periodontitis approximately 4 months after
injury. The tooth showed continued root canal space narrowing
48 months after treatment. (a-b) Periapical radiographs of tooth
8 after injury and 4-month postinjury. (c-e) Clinical image of
tooth 8 involved access opening, irrigation, and medication of

the root canal. (f) Clinical image of inducing apical bleeding

into the canal space. (g-h) Clinical nnage of p cing a p1ece of
resorbable collagen sponge over, Ic ]) .
image of incrementally pl‘lcmv a ok 1

paste over the collagen sponge. &

—p) Permplcal rfldmgr'lphs of
tooth 8 after treatment, 6-month, 12- month, 24-month and 48-
month follow-up. Reprinted with permission from Ref [4] (B)
HE staining of the dentin-pulp interface in a healthy tooth.

access cavity with resin compome

Dentin (De) with tubules running parallel to each other;
predentin (Pr) with uniform thickness; palisading odontoblast
layer (Od); cell-free zone (Cf); cellrich zone (Cr) (original
magnification x400). Reprinted with permission from Ref [68]
(C) Reparative dentin. Mature, secretory odontoblasts lining
newly formed dentin (arrows). Reprinted with
permission from Ref [49] (D) Cementum-like tissue. (a) deep
layer of acellular cementum-like tissue (black arrows) covered by

tubular

cellular cementum-like tissue (yellow arrows). (b) Sharpey’sfibres-
like projections inserted into a cementum-ike layer (yellow
arrows). Reprinted with permission from Ref [61]. (E) bone-like
tissue. (a) The newly formed intracanal mineralized tissue that is
transitioning toward full calcification is intermixed with scaffold
particles and connective tissue. (b) The areas of solidification
between dentinal walls, DAMT, and the newlyformed intracanal
mineralized tissue with calciotraumatic lines in between.
Reprinted with permission from Ref [51] (F) periapical hard
tissue. (a-b) The apical foramen was sealed by cementum-like
tissue; (c) the apical foramen was closed by bone-like tissue.
Reprinted with permission from Ref [61].

Physicochemical Properties of Collagen Modulating the
Formation of the Pulp-Dentin Complex

OPEN a ACCESS Freely available online

The proliferation and differentiation of stem cells (such as
dental pulp DPSCs)
microenvironment serve as an indispensable link in the
formation of the pulpal- dentin complex [69-70]. Understanding
the relevant physicochemical properties of biomaterials is crucial

stem  cells, within a  specific

for optimizing the survival microenvironment of stem cells,
thereby maximizing the efficacy of cell-based therapies. Collagen
scaffolds, primarily composed of type I collagen, are regarded as
effective substitutes for the extracellular matrix (ECM) due to
their porous physicochemical structure and preserved sequences
capable of binding to specific cell recognition sites, such as the
RGD (Arg-Gly-Asp) sequence [70-71].

regeneration,

During dental pulp
integrins  on stem cells mediate cell-collagen
adhesion to form focal adhesions, which subsequently connect
with the intracellular cytoskeletal protein vinculin to establish a
mechanism capable of transmitting mechanochemical signals
across the cell membrane through conformational changes. This
establishes a  dynamic linkage capable of sensing
microenvironmental rigidity variations and modulating the
expression of stem cell markers [72]. Meanwhile, the porous
physicochemical structure of collagen scaffolds provides essential
spatial accommodation for stem cell adhesion and proliferation
[71-72]. Collagen scaffolds are considered promising carriers for
stem cells and growth factors in dental pulp regeneration,
biocompatibility and

demonstrating favorable regenerative

potential that hold signific'mt promise for future applications

[73-76].

Nevertheless, influence of their intrinsic

henncﬂ properuesf eoenemtlve outcomes remains

itating further investigation to
stafilda

Pore size is often the primary consideration among wvarious

clinical translation.

physicochemical parameters due to its direct influence on cell
vascularization. Multiple
superior
regenerative outcomes where pore size was maintained within an

infiltration, nutrient diffusion, and

investigative groups have consistently reported

optimal window of 60-90 pm, particularly for mesenchymal
stem cells (MSCs) with
instance, Qianli Zhang et al. prepared collagen scaffolds with

an average diameter of 30 um [77]. For
varying average pore sizes (approximately 20 pym, 65 pm, and
145 ym) and demonstrated that the group of 65 ym induced the
highest levels of odontogenicrelated gene (DSPP, DMP-1) and
protein (DMP-1) expression
(hDPCs),
vascularized tissue formation [78]. Similarly, HengamehBakhtiar
et al. reported that ECM scaffolds with a pore size of 7804 + 16
pm exhibited superior physicochemical properties, with higher

in human dental pulp cells

simultaneously ~promoting mineralization and

mineralization nodule formation and calcium deposition
compared to other pore size groups, and more significantly
supported the migration behavior of human dental pulp stem

cells (hDPSCs) [79].
scaffolds is critical for achieving pulp regeneration, highlighting

Furthermore, the porosity of collagen

its significance in scaffold-based pulp regeneration strategies.
Generally, higher porosity facilitates vascularization and nutrient
transport. However, excessively high porosity often significantly
reduces the mechanical strength of collagen scaffolds, potentially
failing to maintain the stability of the pulp cavity structure and
thus hindering pulp regeneration. Currently, collagen scaffolds
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used in pulp therapy typically have a porosity controlled at
around 95.6% [80].

The pivotal role of collagen scaffold concentration in steering
the regenerative process toward functional dentin-pulp complex
formation has been well-documented. An in vitro study revealed
that at concentrations below 1%, collagen scaffolds exhibited
severe contraction (up to 40%); increasing to 2% markedly
reduced shrinkage while enhancing both cellular distribution
and odontogenic differentiation within simulated root canals.
Nevertheless, an increase in concentration up to 3% limits the
capacities of cells for migration and proliferation, which
adversely affects their survival [81]. Another study by Hengameh
Bakhtiar et al.
membrane (HAM) scaffolds at 3.00 mg/ml displayed enhanced
degradation and migration of
hDPSCs [79].
Subsequent animal studies demonstrated that lyophilized ECM
scaffolds at a concentration of 3.00 mg/ml exhibited optimal
performance, showing the highest viability and proliferation
rates

reported that decellularized human amniotic
significantly promoted the

compared to lower-concentration variants

of human bone marrow mesenchymal stem cells
(hBMMSCs) along with marked upregulation of dentinogenic
as DMP-1 and collagen 1 [82].
consensus has been reached regarding a well-defined optimal
further
This discrepancy could be due to
for the

e influence of other

markers such However, no

concentration range, underscoring the need for
systematic investigation.
differences in the evaluation criteria established

experiments, or alternatively, to

th
physicochemical properties of the en scaff

As a key microenvironmental
scaffolds is known to modulate
differentiation fate of MSCs. One research team engineered two
distinct collagen hydrogels with contrasting stiffness profiles a
soft formulation (Col?, 735 Pa) and a rigid one (Col!® ;| 8,142
Pa). The softer hydrogel preferentially directed DPSCs toward an
endothelial lineage, as evidenced by upregulated expression of
von Willebrand factor (vWF) and CD31. In contrast, the stiffer
matrix enhanced odontogenic differentiation,
of DSPP and RUNX2 [83].
strategically approximate the mechanical properties of native
pulp (500-1,000 Pa) and (5,000-10,000 Pa),
respectively, the that
physicochemical cues can guide stem cell fate toward specific

marked by
elevated levels These values
predentin

supporting concept biomimetic

tissue regeneration pathways [83].

The viscosity of collagen scaffolds represents a critical design
parameter for clinical translation in pulp regenerative therapy. A
comparative in vitro study by V. Rosa et al. revealed significant
temporal differences in odontogenic differentiation when stem
cells from human exfoliated deciduous teeth (SHED) were
cultured in Puramatrix™ versus recombinant human type I
collagen (rhCollagen): the Puramatrix™ group exhibited
odontoblast markers within 7 days, while the rhCollagen group
required 14 days, which attributed to rhCollagen's higher
viscosity potentially hindering SHED migration and delaying the
diffusion of dentin-derived morphogenetic signals [84]. These
findings directly inform scaffold design strategies: optimizing
viscosity parameters can enhance cell motility and accelerate
bioactive signal propagation.

aalley:

OPEN 8 ACCESS Freely available online

Collagens from different sources exert varying effects on pulp
regeneration due to differences in their structure, purity, and
bioactivity. Currently, collagens applied in dental pulp
regeneration are primarily derived from bovine or porcine skin
and tendon tissues. These naturally sourced collagens retain
intact spatial structures and biological information, providing a
highly biomimetic microenvironment for cells [85]. The
advantages of animal-derived collagens lie in their mature
extraction processes and relatively low cost. However, significant
differences exist in antigenicity and biocompatibility among
collagens from different species. Bovine-derived collagens (such
as commercial products like CollaPlug® and CollaTape®) are
the most widely used in dental pulp revascularization procedures,
while porcine-derived collagens have garnered attention due to
their higher structural similarity to human collagen. At the
molecular level, the differences among collagens from various
sources are primarily reflected in their capacity as cellular
Studies demonstrated  that
mammalian collagens exhibit significantly stronger binding
with
hydroxyproline (Hyp) content showing a positive correlation
with binding capacity [86]. The GFOGER sequence (Gly-Phe-
Hyp-Gly-Glu-Arg) in type I collagen serves as the key motif for
specific binding to integrin a2B1 [87]. This binding triggers
downstream osteogenesis-related signaling pathways (such as

information  carriers. have

affinity to integrin 2Bl compared to fish collagens,

focal adhesion kinase [FAK], mitogen-activated protein kinase
[MAPK], and runtrelated transcription factor 2 [RUNX2J),
thereb acgelerfitmg the og This specific

> differences in the efficacy of
! b
es. Mored i

scaffolds are closely relatul to pulp regeneration (Fig.2). Through

2ogenic

process.
der rved with collagens from diverse

sou oelastic  properties of collagen

experimental measurements and analyses, CevatErisken et al.

demonstrated that the dynamic properties of collagen gels,
including storage modulus, loss modulus, and tan 3§,

approximated those of natural pulp tissue, although their
compressive properties fell significantly short9. Based on these
findings, the study proposed that collagen scaffolds and other
regenerative materials should more accurately replicate both the
of natural pulp by
modulating gelation agents and their concentrations, in order to

dynamic and compressive properties

enhance regenerative efficacy.

In conclusion, the physicochemical properties of collagen
scaffold are essential in modulating the formation of the pulp-
dentin complex. An ideal collagen scaffold for pulp regeneration
should possess a pore size of approximately 60-90 pm and a
porosity of around 95%. studies suggest that
mimicking the hardness, viscosity, and viscoelasticity of native
dental pulp tissue enhances pulp regeneration, underscoring the
importance of "biomimicry of materials" as a critical area for
exploration. Additionally, the degradation rate of the scaffold
should synchronize with the rate of new pulp tissue formation.
However, current research has limitations. On the one hand, the
between different physicochemical properties
remain unclear. The efficacy of collagen scaffolds in promoting
pulp regeneration stems from the synergistic effects of multiple
physicochemical properties; thus, a systematic consideration of

Furthermore,

interactions
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multiple  physicochemical indicators is necessary when
evaluating the potential of collagen scaffolds. On the other
hand, the optimal concentration range of collagen scaffolds and
data on pulp rates further
investigation. Such research would guide the construction of

tissue regeneration require
collagen scaffolds with appropriately synchronized degradation
rates, ultimately improving clinical efficacy. Furthermore, to
enhance regeneration outcomes, the physicochemical properties
of collagen scaffolds can be enhanced through the following
approaches to improve pulp regeneration outcomes: 1)
optimizing extraction and fabrication processes; 2) modifying
collagen  scaffolds treatment or chemical
functionalization; and 3) incorporating other materials into
pure collagen to Ultimately,
development in tissue engineering for pulp regeneration has

via surface

form composite scaffolds.
garnered increasing attention. By utilizing collagen scaffolds as
carrier vehicles, this approach holds significant promise for

transcending the inherent limitations of the scaffolds themselves

high-viscoelastic

-~ IGalley P

pifferent sourceg

low
viscosity 5
1 high
viscosity

high stiffness

Figure 2: Schematic diagram illustrating the physicochemical
properties (e.o.,
viscosity and different sources) of collagen scaffolds influencing

pore size and porosity, concentration, stiffness,
the regeneration of the pulp-dentin complex.

Tissue Engineering Strategies for Precision Regeneration

with Collagen Scaffolds

Regeneration of the pulp-dentin complex involves a cascade of
biological events, including bioactive molecule activity, stem cell
recruitment, angiogenesis, and neurogenesis, that remain
difficult to achieve using current REPs [88]. Dental pulp tissue
engineering, based on the "cell- scaffold-biomolecule" triad,
provides a theoretical and practical framework for shifting from
dependent  "repair" toward  controllable  "true
regeneration” [89].

clot-

Collagen scaffolds function both as reservoirs and sustained-
release carriers of bioactive molecules, and as matrices that
encapsulate stem cells to enhance pulp regeneration. Studies
indicate that incorporating stem cells or biomolecules into

collagen scaffolds represents a promising approach to achieve

OPEN 8 ACCESS Freely available online

genuine regeneration of the pulp-dentin complex83, [90-91]. A
comparative experiment demonstrated that the combined use of
hDPSCs, type I collagen scaffolds, and DMPI1 significantly
promoted differentiation into odontoblastlike cells, collagen
matrix deposition, and angiogenesis, compared with collagen-
based scaffolds alone [90]. Similarly, another in vivo mouse
experiment showed that collagen scaffolds loaded with VEGF
and bone morphogenetic protein 2 (BMP2) stimulated DPSCs to
odontoblasts, and
successfully generated blood-perfused vascular networks and

differentiate into endothelial cells and
mineralized dentin tissue [83]. Further, collagen combined with
oranulocyte colonystimulating factor (G-CSF) and laponite
promoted abundant new blood vessel formation and reparative
dentin deposition through specifically recruiting and inducing

SCAPs to cells [91].

addition to the biomolecules mentioned above, other critical

differentiate into odontoblastlike
signaling molecules, including Wnt, transforming growth factor-
B (TGF-B), EctodysplasinA (EDA), Sonic Hedgehog (SHH), and
members of the MAPK family, also play crucial roles in dental
pulp regeneration [92], and were summarized in Table 2. It is
worth nothing that microRNAs exert multiple regulatory roles in
dental pulp-dentin regeneration. Future approaches combining
collagen scaffolds with stem cells and specific miRNAs such as

miR-378 miR-26b/miR-126-3p,

synergistic effects, enabling advanced functional regeneration of

inhibitors or may achieve

the pulp-dentin complex [93].

Stem cells constitute one of the three essential elements in tissue
ng Cells utilized fj ulp regeneration can originate

( amd non-odontogenic sources. Non-

od tog_,e ldfembryonic stem cells, neural crest

stem cells, BMMSCS, adipose- derived MSCs (AD-MSCs), and
umbilical cord MSCs (UC-MSCs) [94]. Odontogenic stem cells,
including DPSCs, SHEDs, and stem cells from apical papilla
(SCAPs), exhibit multilineage differentiation abilities, making
them key candidates for pulp-dentin complex regeneration.
DPSCs typical of MSCs [95], and

demonstrate lower immunogenicity and higher proliferation

display characteristics
rates compared with other MSCs, highlighting their potential
[96-97]. recently
demonstrated that injection of allogeneic DPSCs significantly

for regenerative applications Liu et al
promotes periodontal regeneration in a clinical trial, indicating
the maturation and clinical relevance of DPSC-based therapies

[98]. SCAPs, derived from

proliferation and differentiation capacities,

developing roots, possess robust
facilitating apex

closure and root development. Compared with DPSCs,

SCAPs higher activity and  greater
dentinogenic potential [99]. Although SCAPs remain functional
in normal or reversibly inflamed pulp tissues, irreversible
pulpitis decreases cell viability, and necrosis results in tissue
disintegration [68]. Furthermore, study demonstrates that
SHED:s are stem cells characterized by strong proliferative ability,
multilineage differentiation (particularly advantageous for
synergistic neural and vascular regeneration), and notable
immunomodulatory properties, making them suitable for
functional pulp-dentin regeneration [74]. Despite their critical
in REPs, ethical concerns and limitations regarding
differentiation potential remain issues for stem cells [100].

exhibit telomerase

role
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Recently, cell-free therapies have emerged, utilizing exosomes
derived from odontogenic stem cells. These exosomes carry
bioactive components, such as miRNAs, proteins, and lipids,
inherited from parent cells, effectively mimicking stem-cell
paracrine effects. Animal experiments have demonstrated that
exosome treatments enhance reparative dentin bridge formation
and support regeneration of vascularized pulp-dentin tissues,
including structures resembling dentinal tubules and
odontoblastlike cells [93, 101]. This approach promotes dental
pulp regeneration while addressing ethical, safety, and
preservation challenges associated with traditional cell-based
transplantation.

Although research involving collagen scaffolds combined with
stem cells and growth factors has demonstrated regeneration of
vascularized and innervated pulp-ike tissues [102-103], there
remains a lack of systematic approaches for reconstructing
neural networks, reliable in vivo/in vitro experimental models,
and methods for functional nerve assessment. Re-innervation
plays a crucial role in pulp healing, whereas denervation
impedes dentin formation [104-105]. These findings highlight
the critical importance of neural regeneration for restoring the
neurovascular function. However, limited neural regeneration
success in regenerative pulp models, unlike pulp injury models,
may result from the absence of a functional stem cell niche
capable of secreting necessary neurotrophic factors. In rat
experiments, collagen scaffolds combined rBMSCs, VEGF and

fibroblast growth factor 2 (FGF2) m(reased the expression of

BMP2

BMP4

BMPs BMP7

BMP9

neuron-specific markers (S-100, 9.5) and ilitated the de
formation of neuron-ike cells f@ind™r ml Et n gy a
Signaling Factor

OPEN a ACCESS Freely available online

regenerated tissue [102-103]. MSCs, such as DPSCs, can undergo
neural differentiation, adopting Schwann cell-like phenotypes
and expressing elevated levels of neural markers including paired
box gene 6 (PAX6), Nestin, and B-III- tubulin, which support
neurogenesis [106-107]. This strategy represents an emerging
direction in peripheral nerve injury (PNI) repair [108]. However,
the mechanisms underlying neurogenic processes after REPs
remain poorly characterized, potentially explaining the low
success rates of pulp vitality restoration. Thus, re-establishing
neural structures is an essential goal in regenerative endodontics.
In summary, regeneration of the pulp-dentin complex is a
sophisticated spatiotemporal process.

Pulp tissue engineering using collagen-based scaffolds offers a
promising approach for precise regeneration rather than mere
tissue repair in REPs. Future developments in advanced collagen
scaffolds that enable spatiotemporally controlled release of
crucial biomolecules could better replicate the native ECM
[109]. Furthermore, exploiting the paracrine capabilities of stem
cells via cell- free therapies, such as exosomes or engineered
extracellular vesicles containing pro-regenerative miRNAs and
growth factors, may resolve challenges associated with cell
sourcing, storage, and immunogenicity. However, foundational
research on pulp regeneration remains limited, particularly
regarding neuro-immune-vascular interactions within the pulp
This gap in the
innovative design of novel collagen scaffolds for REPs.

microenvironment. knowledge restricts

Achieving fully functional, innervated and vascularized pulp-

interdisciplinary collaboration

regeneration requir
I rbn igsp b ifllmwists, and clinicians.
e

Promotes odontoblastic differentiation of
DPSCs [110] and facilitates dentin
formation; promotes pulp angiogenesis via
VEGEF-A production in differentiated
odontoblasts [111].

ive Function

Enhances odontoblast differentiation
capacity [112].

Promotes the transformation of DPSCs to
a mineralized phenotype [113]

Promotes the differentiation and secretory
function of dental pulp stem cells; it
enhances cell proliferation and
intercellular connections in HERS,
thereby facilitating the formation of root
dentin and the closure of the apical

foramen [114].

TGEB1

Guides cell migration, proliferation and
differentiation; stimulates
odontoblast-like cells to secrete DSPP
[115-116]

TGEP TGF-B2

Upregulates odontogenic markers (DSPP,
DMP1) and suppresses osteogenic marker

bone sialoprotein in SCAPs [117]

TGEB3

Promotes odontoblastic differentiation

[118]
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TGE-B3

Promotes odontoblastic differentiation

(118]

FGFs FGF2

Regulates all stages of tooth development
[119], repair, and regeneration [120],
including migration, proliferation,
stemness maintenance of mesenchymal
stem cells, dentin formation, angiogenesis,
and neurogenesis [121].

VEGF

IGF IGF-1

miRNA

EGF

NGF

dentin-pulp complex

Abbreviations: BMP: bone morphogenetic protein; DPSCs:
dental pulp stem cells; HERS: Hertwig's epithelial root sheath;
TGE-B: beta; DSPP:
sialophosphoprotein; DMP1: dentin matrix protein 1; SCAPs:

transforming growth factor dentin
stem cells from the apical papilla; FGF: fibroblast growth factor;
VEGE: vascular endothelial growth factor; IGF-1: insulin-like
growth factor-1; miRNA: microRNA; EGF: epidermal growth

factor; NGF: nerve growth factor.

CONCLUSION

Collagen scaffolds represent a highly promising biomaterial for
advancing the field of regenerative endodontics. Their inherent
biocompatibility, biodegradability, and ability to mimic the
native  extracellular = matrix  provide a  conducive
microenvironment for the recruitment, proliferation,
differentiation of stem cells, which is essential for the
regeneration of the pulp-dentin complex. Evidence from clinical
studies demonstrates that collagen scaffolds can support high
survival rates and promote desirable outcomes such as pulp
vitality recovery, dentin wall thickening and apical closure in
necrotic immature permanent teeth, although it is not
particularly adept at facilitating canal length. However, the
translation of collagen-based strategies into predictable clinical
protocols  faces challenges. The formation of
heterogeneous mineralized tissues primarily cementum-like and

bone-like tissues rather than genuine dentin

and

several

reparative

Table 2: Key signaling moleculesG latl ley

Induces endothelial differentiation of stem
cells and regulates tooth development and
dentin formation [122].

Promotes proliferation and differentiation
of DPSCs and SCAPs [123], and induces
their transformation to a mineralized
phenotype [124].

Regulates expression of key odontogenic
differentiation markers; promotes
neurogenesis; enhances endothelial
differentiation and supports vascular
regeneration [93].

Enhances neurogenic differentiation of

DPSCs [125] and SCAPs [126].

Promotes neurite outgrowth and neural
cell survival; critical for the maintenance
of sympathetic and sensory neurons

(12712

higlightsEtOn s

in repair rather than true physiological regeneration. Most

sing collagen scaffolds often result

collagen scaffolds in current clinical or experimental use are
repurposed from periodontal or implant dentistry, not designed
for pulp regeneration. Hence, future work is supposed to focus
on developing collagen scaffolds specifically tailored to this goal.
This includes developing composite materials to enhance
mechanical properties and control degradation kinetics, and
meticulously optimizing key physicochemical parameters (e.g.,
pore size, stiffness, viscosity) to create a truly biomimetic

microenvironment, integrating dental tissue engineering
approaches, including seeding stem cells or incorporating

bioactive molecules (e.g., miRNAs), may further guide authentic
pulp Additionally, advancing cellfree
strategies employing engineered
extracellular vesicles loaded with proregenerative miRNAs and

tissue regeneration.

such as exosomes  Or
growth factors could harness the paracrine potential of stem
cells while overcoming challenges related to cell sourcing,
storage, and immunogenicity. By addressing these challenges
through interdisciplinary collaboration, collagen-based scaffolds
hold immense potential to overcome the limitations of current
regenerative endodontic procedures and ultimately achieve the
goal of fully functional, vascularized, and innervated pulp-dentin
complex regeneration.
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