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ABSTRACT

As facility agriculture advances towards high precision and energy efficiency, plant supplemental lighting strategies are shifting

from static, preset methods to dynamic, perception-driven approaches. Traditional lighting recipes or empirical supplemental

lighting methods often result in plant disease issues, energy waste, and photoinhibition. In recent years, hyperspectral imaging

technology has emerged as a powerful, non-destructive monitoring tool, capable of capturing subtle real-time changes in plant

photosynthetic pigments, water content, nitrogen levels, and early stress responses. When combined with hyperspectral

imaging, machine learning enables the extraction of features and the construction of predictive models from vast spectral

datasets, serving as a core driver for the early detection of plant diseases and informed decision-making. This paper

systematically reviews recent advances in the integration of hyperspectral technology and machine learning for plant

supplemental lighting. Furthermore, it emphasizes the critical role of machine learning models in predicting light demand,

diagnosing stress, and addressing plant diseases.
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INTRODUCTION

With the continuous growth of the global population, the
increasing scarcity of arable land, and the uncertainties posed by
climate change, the development of efficient and controllable
facility agriculture has become an essential pathway to ensuring
food security and a stable food supply [1]. In facility agriculture,
light—an essential environmental factor driving photosynthesis
profoundly influences plant growth through its intensity, quality,
and photoperiod [2].

However, greenhouses and plant factories still predominantly
rely on fixed lighting formulas or the empirical judgments of
producers [3]. This reliance often leads to inefficiencies, such as
"continuous supplemental lighting despite sufficient light
intensity" or "unmet light requirements," resulting in significant
energy waste and economic costs. Such practices can also
exacerbate issues like photoinhibition [4]. The core challenge in
achieving precise supplemental lighting lies in the non-
destructive, rapid, and accurate quantification of plants’ real-
time physiological status.

The early and precise detection of plant diseases and abiotic
stresses remains a critical challenge for ensuring global food
security and promoting sustainable agricultural development. In
this context, the integration of hyperspectral imaging technology
with machine learning methods is revolutionizing plant
phenotyping and health monitoring, offering unprecedented
depth of information and advanced analytical capabilities.

At the forefront of early and precise diagnostics, this technology
demonstrates exceptional timeliness. Its detection capabilities
surpass traditional methods, often identifying issues before
visible symptoms appear. For example, in viral disease detection,
achieved quantitative detection of the Tomato spotted wilt virus
as early as four days post-inoculation [5]. For fungal diseases, [6].
successfully detected infections and classified anthracnose
severity during the latent period, before visible symptoms
emerged. Similarly, achieved an early detection rate exceeding
90% for sugarcane smut and mosaic disease [7]. In the domain
of abiotic stress, hyperspectral technology has shown equally
remarkable early warning capabilities: diagnosed phosphorus
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deficiency in cucumbers 21 days in advance; achieved precise

early diagnosis of nutrient deficiencies in tomatoes,
outperforming traditional computer vision methods by more
than 10 days; and successfully identified plant stress caused by

methane exposure, with a model accuracy of 98.2%.

More importantly, this technological paradigm is evolving from
qualitative discrimination to precise quantitative analysis. In
terms of growth and appearance quality, utilized hyperspectral
imaging to dynamically monitor the entire growth period of
In the
quantification of biochemical parameters, intelligently estimated
chlorophyll and sugar content, while detected heavy metal lead
content in rapeseed leaves and roots using deep learning and
hyperspectral  technology, extending its applications to
environmental toxicity and food safety. Additionally, accurately
classified varying severity levels of Asian rust by combining
hyperspectral imaging with machine learning algorithms [9].
Similarly, validated the robustness and effectiveness of this
technology across diverse application scenarios, emphasizing its
potential for universal plant health monitoring [10].

tomatoes while visualizing color coordinates [8].

Despite the promising prospects, current research still faces
significant challenges, including model generalization, economic
feasibility, and the complexities of multi-factor coupling. This
paper aims to systematically review the progress in integrating
hyperspectral technology and machine learning within the field
of intelligent plant lighting, analyze the evolution of technical
pathways and key bottlenecks, and forecast future development
trends.

1. The Evolution of Facility Agriculture and Supplementary
Lighting Technology

Photosynthesis is the core process by which plants convert light
energy into chemical energy. By absorbing carbon dioxide and
water, plants synthesize organic matter and release oxygen under
light conditions [11]. This process not only underpins plant
growth and energy accumulation but also plays a critical role in
maintaining the carbon-oxygen balance of the Earth’s ecosystem
[12]. The efficiency of photosynthesis directly influences
biomass accumulation, yield formation, and the stress resistance
of crops [13]. However, early water or nutrient stress can inhibit
photosynthetic activity, leading to significant yield reductions
[14]. Consequently, optimizing the photosynthetic process
through environmental regulation has become a cornerstone of
modern agriculture, particularly in the context of facility
agriculture.

In the early stages of research into plant photosynthesis and
light supplementation, the primary focus was on achieving plant
growth through supplemental lighting [15]. introduced the
concept of optimizing vertical spatial light distribution,
demonstrating that while supplementary overhead lighting
enhances the photosynthesis of inner leaves, additional lighting
from below can further improve photosynthetic capacity under
low-light conditions and significantly delay the senescence of
outer leaves. Similarly [16,17]. optimized LED lamp uniformity
by employing radiation measurements and enhancing light
intensity distribution through the skewness formula and particle
swarm algorithm, achieving more uniform illumination [18].
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As research advanced, supplementary lighting technology
evolved from focusing solely on spatial dimensions to exploring
spectral dimensions. Pioneered the understanding that specific
light qualities could act as non-chemical stress mitigation
strategies [19]. Their study confirmed that red light and mixed
bluered spectra significantly enhance plant photosynthetic
resilience by stabilizing the photosystem and increasing the
electron transfer rate. Building on this, developed a hybrid
lighting system that integrated movable downward lighting with
adjustable lateral lighting, effectively addressing canopy shading
in high-density planting systems. Meanwhile, demonstrated that
extending the photoperiod significantly promotes plant growth,
proposing that lighting strategies could enhance yields without
disrupting ecological balance [20]. Additionally, [21]. established
a plant factory, as shown in Figure 1. They adopted an
integrated water and fertilizer system to cultivate crops and used
machine learning to complete closed-loop control. They
proposed a spectral space collaborative optimization strategy and
combined the particle swarm algorithm to layout led, which
improved the crop vyield and energy efficiency of vertical
agriculture [3].

Despite these advancements, the rapid evolution of technology
has exposed inherent limitations in current research [22]. For
instance, observed that while tomato seedlings in artificial light
factories exhibited slower growth in early stages, grafting
accelerated their growth, reduced costs, and improved survival
rates [23]. Most studies, however, remain confined to single
species, specific growth stages, or isolated environmental factors,
lacking a comprehensive exploration of universal principles
applicable across various crops. There is also a limited
understanding of the complex interactions between the light
environment and other factors such as temperature, humidity,
and CO: concentration [24].

Another critical gap lies in the disconnect between technical
feasibility and economic viability. While innovations such as
dynamic lighting systems and agricultural photovoltaic solutions
aim for energy selfsufficiency, high economic costs and energy
consumption remain significant barriers to market acceptance
[25]. Furthermore, the conversion of physiological indicators
into economic yield outcomes remains unclear. Many studies
focus on endpoints such as biomass or photosynthetic
but empirical research directly linking these
physiological improvements to fruit yield, quality, and economic
benefits is still lacking [26].
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Figure 1: Schematic diagram of an artificial plant factory
integrating water and fertilizer with machine learning

1.1 The
Agriculture

Emergence of New Technologies in Facility

To achieve precise, efficient, and non-destructive monitoring of
photosynthetic physiology, emerging spectral and intelligent
analysis technologies are becoming increasingly prominent.
Heckmann et al. utilized leaf reflectance spectroscopy combined
with machine learning techniques to predict the photosynthetic
capacity of crops [27]. Through a systematic comparison of
various machine learning methods, they identified recursive
squares
regression as the optimal modeling strategy. This approach
achieved a prediction accuracy (R?) of 0.9 for the carbon-to-
nitrogen ratio (CN ratio), enabling high-precision prediction of
photosynthetic ~ parameters within species. The study
demonstrated that this technology is an effective tool for
screening superior plants in simulated breeding, offering a rapid

feature elimination combined with partial least

and non-destructive solution for improving crop photosynthetic
efficiency through genetic enhancement.

Addressing the challenges of energy-intensive systems in plant
factories, where energy consumption is significantly higher than
that of greenhouses, researchers have focused on reducing
economic and environmental costs [28, 29]. optimized lighting
and climate control systems in artificial light plant factories
using deep learning, developing an Al-powered system for a 40-
foot containerized plant factory [29]. Their approach reduced
energy consumption per unit yield from 9.5-10.5 kWh/kg to
6.42-7.26 kWh/kg, achieving a remarkable 32.34% energy
efficiency improvement. This system outperformed traditional
methods in all tested cities, demonstrating significant energy
savings and supporting sustainable food production. In another
study, Zou et al. examined the effects of different light
intensities on tomato seedling growth in plant factories. They
found that a light intensity of 240 pmol-m™2-s7! was optimal for
tomato seedling cultivation, providing an energy-efficient
alternative to greenhouse conditions [30].

While reducing energy consumption is critical, achieving high
photosynthetic efficiency and productivity remains a key
priority. compared the effects of three
photoperiods on tomato seedlings in artificial light plant

substrates and
factories and developed a growth prediction model using
machine learning [31]. Their findings revealed that bagged
coconut coir under a 20-hour photoperiod increased seedling
fresh weight by 54.9%. Furthermore, the 20-hour photoperiod
boosted fresh weight by 205.2% compared to a 12-hour
photoperiod. The Gradient Boosted Decision Tree (GBDT)
growth prediction model achieved the highest accuracy (R? =
0.972). Economic analysis indicated that adopting a combined
photoperiod strategy of 12-20 hours could save more than 20%
in energy costs and enable an annual production of 21.47
batches, significantly reducing energy consumption while
increasing profits.

2. Hyperspectral Non-Destructive Monitoring of Plant Virus
Damage
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Whether for energy conservation or efficiency improvement, the
optimization of supplementary lighting strategies depends on a
precise understanding of the internal physiological state of
plants [32]. Hyperspectral technology has emerged as a crucial
bridge between plant physiological state monitoring and external
decision-making in supplementary lighting strategies [8]. Its core
advantage lies in its ability to simultaneously capture spectral
information across hundreds to thousands of continuous bands
per pixel without contact or damage to plants [33]. This
capability to reveal the internal physiological status of plants,
combined with rapid data acquisition, makes hyperspectral
technology an advanced tool for optimizing plant lighting
strategies and advancing precision agriculture [34].

The core value of hyperspectral technology lies in its integration
of morphological imaging with detailed spectral analysis [35]. As
shown in Figure 2, the application of hyperspectral technology
in plant monitoring has been continuously developing with the
advancement of technology. Early research primarily focused on
developing linear inversion models to estimate pigments such as
chlorophyll using visible-near infrared spectroscopy [36]. For
example, employed the CARS-PLSR algorithm to visualize
SPAD values in pumpkin leaves, achieving a prediction accuracy
(R?) of 0.9187 [36]. With technological
hyperspectral applications have expanded to include early
diagnoses of water stress. developed a compact hyperspectral
system that achieved classification accuracy exceeding 90% four

advancements,

days before droughtinduced stress in lettuce, demonstrating
exceptional early warning capabilities [37, 38].

Recent research has further advanced the understanding of
photosynthetic functions. In 2023, Han et al. demonstrated that
spectral data processed wusing firstorder differentiation
combined with the LightGBM algorithm could accurately
predict leaf photosynthetic rate (Pn) with R? > 0.97. The
photochemical reflectance index (PRI, e.g., 531 nm) was found
to significantly correlate with the xanthophyll cycle induced by
supplementary lighting (r = 0.89-0.94), making it an effective
indicator for quantifying light energy use efficiency [39]. In
2024, hyperspectral imaging technology combined with
chemometric methods to achieve non-destructive detection of
sunflower seed viability and moisture content [36].
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Figure 2: A development trajectory diagram of hyperspectral
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non-destructive monitoring of plant health

2.1 Hyperspectral Monitoring of Plant Health to Detect
Diseases
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Hyperspectral technology has proven to be an effective tool for
monitoring viral diseases in plant factories. For example, Justus
et al. analyzed the progression of beet leaf spot using time-series
imaging. When
spectrometers, the correlation coefficient of the calibration

hyperspectral compared to non-imaging
board measurements exceeded 0.99. By training a convolutional
neural network on the collected data for disease pixel
classification, they achieved 62% accuracy in estimating the
severity of brown spot, effectively tracking disease progression

over time.

Beyond disease monitoring, hyperspectral technology can also be
utilized to detect plant drought stress, enabling timely human
intervention to ensure normal plant growth. Qin et al
developed a compact hyperspectral plant health monitoring
system that controlled 12 lettuce plants under normal watering
and a drought treatment with 100 ml less water [38].
Hyperspectral images were continuously collected over 13 days,
starting from the first day of stress. Their system achieved
classification rates exceeding 90% within the first four days of
stress, demonstrating its capability to provide early warnings of
drought stress before visible symptoms appear.

In addition, hyperspectral technology has the ability to quantify
plant photosynthesis. Chlorophyll concentration, a direct
indicator of photosynthetic capacity, can be effectively measured
By the
reflectance characteristics of leaves in the visible-to-near-infrared
range (380-1030 nm), chlorophyll prediction models can be
established [40]. confirmed experimentally that a higher
proportion of red light led to increased chlorophyll content and
photosynthetic rates in cucumber seedlings [3]. Zhao Yanru et al.
proposed a methodology for creating a visual distribution map
of the relative chlorophyll content (SPAD value) in pumpkin
leaves. This was achieved through hyperspectral imaging
combined with the Competitive Adaptive Reweighted Sampling
(CARS) algorithm and Partial Least Squares Regression (PLSR),
yielding a prediction accuracy of R? = 0.918.

using hyperspectral imaging. analyzing spectral

The advantages of hyperspectral imaging in plant health
detection are increasingly evident. Hyperspectral imaging
captures the spectral characteristics of plants within the 350-

750 nm visible light range, particularly in two highly correlated
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regions: 350-450 nm and 600-750 nm. This enables non-
of dynamic changes in leaf
and the fraction of absorbed
radiation  (FAPAR)
[39]. Furthermore,
subtle in
physiological parameters such as chlorophyll content, water

destructive  monitoring

(Pn)
active
lighting
imaging

photosynthetic rate
photosynthetically
supplementary

under
conditions
hyperspectral can detect variations
stress, and early disease symptoms. Its resolution significantly

surpasses that of traditional multispectral technology [41].

Research has demonstrated the potential of hyperspectral data
combined with machine learning algorithms for accurate
physiological predictions. For instance, firstorder derivative
processed spectral data combined with the LightGBM algorithm
(learning rate = 0.053 and 479 iterations) achieved accurate
inversion of leaf Pn (R?2 > 0.97). In contrast, the Random Forest
model (87 decision trees and 68 node variables) exhibited
superior predictive performance for canopy FAPAR (RPD > 1.4).
This discrepancy reflects the higher representation capability of
spectral information at the canopy scale for quantifying light use

efficiency [42].

Compared to traditional point measurement devices, such as
SPAD meters, hyperspectral imaging offers significant
advantages. By reducing information redundancy in full-band
analysis through feature band selection, hyperspectral imaging
lowers the cost per measurement by over 80%, while enabling
continuous monitoring at the acrelevel field scale [43]. This
makes it an invaluable tool for precision agriculture and large-
scale plant health monitoring.

In conclusion, current research consistently indicates that the
application value of hyperspectral imaging in plant factories and
precision agriculture is constantly emerging. Whether it is viral
diseases, early drought stress, or the quantitative estimation of
photosynthetic ~ parameters and  chlorophyll
hyperspectral technology has demonstrated accuracy and
timeliness far exceeding traditional detection methods. Its
advantages and application scope are shown in Table 1.

content,

Table 1: Application cases of hyperspectrum in Plant Diseases
and health

Monitoring

Researcher Application Study Object Core Methods Key Performance / | Research Value &
Direction Metrics Advantages
& Models
Justus et al. Viral Disease Beet Leaf Spot Time-series Correlation with Enables effective

tracking and
quantitative

calibration panel >
0.99; Brown spot
severity estimation

hyperspectral
imaging; CNN for
disease pixel assessment of disease

classification accuracy: 62% progression.

Qin et al. Lettuce Drought

Stress

Drought Stress Early
Warning

Provides early
warning before
visible symptoms
appear, facilitating
timely human
intervention.

Classification rate >
90% within the first
4 days of stress

Compact
hyperspectral system;
Continuous imaging

for 13 days
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Cucumber/Pumpkin
Leaf Chlorophyll

Zhao Yanru et al. | Photosynthesis

Quantification

VIS-NIR spectral
analysis (380-1030
nm); CARS-PLSR

modeling

Chlorophyll SPAD
prediction accuracy:

RC =0.918

Quantifies the
relationship between
chlorophyll content
and light quality
(e.g., red light ratio);
enables visual
distribution

mapping.

Photosynthetic
Physiology
Monitoring

Han et al. Leaf Pn & Canopy

FAPAR

Leaf Pn inversion R? | Enables non-
> 0.97; Canopy
FAPAR prediction

RPD > 1.4

Spectral feature
analysis (350-750
nm); LightGBM &
Random Forest
algorithms

destructive, dynamic
monitoring of Pn
and FAPAR;
accuracy significantly
surpasses traditional
point-measurement
devices.

General Technical | Various Physiological

Advantages

Huang et al.
Parameters

Full-band data

analysis & feature

Cost per Overcomes

measurement

reduced by > 80%

information
band selection redundancy;
supports
continuous, large-
scale (acre-level) field
monitoring;
resolution far
exceeds multispectral

technology.

3. Machine Learning in Intelligent Decision-Making

Machine Learning (ML), a core branch of Artificial Intelligence,
aims to enable computer systems to autonomously learn patterns
or regularities from data through algorithms, allowing them to
make predictions or decisions without relying on explicit
programming. The core concept of ML lies in feature extraction,
model construction, and continuous performance optimization.
It has found widespread applications in fields such as image
classification, spectral analysis, and agricultural monitoring [44].

3.1 The Algorithmic Evolution from Traditional Models
to Deep Networks

The key to processing plant physiological data lies in
dimensionality reduction and feature extraction. In 2016,
SHOGO et al. demonstrated the use of machine learning to
predict plant growth with high accuracy based on chlorophyll
fluorescence and plant physiological indicators  [45].
Subsequently, algorithms such as Partial Least Squares
Regression (PLSR) and Support Vector Machine (SVM) have
been widely applied in plant science. For instance, in 2017, [27].
utilized Recursive Feature Elimination combined with PLSR

(RFE-PLSR) to predict photosynthetic capacity [27].

In 2020, used key plant growth indicators such as plant height,
leaf density, respiration rate, photosynthetic rate, and crop yield
to study the effects of environmental factors, including lighting,
temperature, humidity, CO: concentration, and nutrient
solution concentration, in plant factories. By employing deep
learning techniques, they established and optimized plant
growth models to promote growth and increase yield. Similarly,

developed estimation models for greenhouse lettuce growth
parameters using both deep learning and traditional machine
learning techniques, including Convolutional Neural Networks
(CNN), Support Vector Regression (SVR), Random Forests
(RF), and Logistic Regression (LR). The study revealed that the
deep learningbased CNN model
machine learning models, achieving group estimation accuracies
exceeding 90%.

outperformed shallow

In 2022, created a comprehensive image database documenting
the entire growth process of rapeseed [46]. They applied a deep
learning method (EPSA-YOLO-V5s) to identify non-viable
rapeseed plants during the early and middle growth stages,
addressing issues of energy and space waste caused by cultivating

This breakthrough

potential of deep learning to optimize

seedless rapeseed during production.
highlighted the

agricultural resource usage.

In 2025, explored approaches to accelerate photosynthesis using
machine learning [47]. By integrating genetic algorithms, they
successfully reverse-engineered and developed a "cooling canopy
film" to enhance photosynthesis. This innovative film employs
spectral screening to selectively transmit the 400-500 nm (blue
light) and 600-700 nm (red light) bands
photosynthesis, while efficiently reflecting the majority of the
remaining solar spectrum—particularly the near-infrared heat

essential for

portion. This advancement significantly improved light use
efficiency while reducing heat stress, offering a promising
solution for sustainable agriculture.

In conclusion, in recent years, data-driven methods centered on
machine learning and deep learning have become the key
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technical paths for processing plant physiological information
and optimizing intelligent production. Traditional methods such
as PLSR and SVM still play significant roles in feature extraction,
and modeling of small
Meanwhile, strategies
elimination further enhance the model's predictive ability
for photosynthetic
parameters. Meanwhile, deep learning models, with their

variable selection, and medium-

sized samples. like recursive feature

key physiological indicators such as

powerful expression capabilities for high-dimensional, nonlinear
physiological and image data, have significantly outperformed

OPEN 8 ACCESS Freely available online

shallow models in tasks such as crop growth estimation,
phenotypic recognition, and early differentiation of good and
bad seedlings, gradually becoming the mainstream approach in
plant factory and facility agriculture research. Overall, these
studies have demonstrated the great potential and diverse
application  scenarios in plant
production.  Their technological
advancements are shown in Table 2.

of data-driven methods

main  features  and

Table 2: Research Progress of Machine Learning in Plant
Growth

Year Researcher Research object Key algorithm Application Research Findings

objective

2016 SHOGO et al. Chlorophyll Neural network Predict plant growth |Developed an
fluorescence and automatic system
plant indicators

2017 Heckmann et al. Leaf reflection RFE-PLSR Predict The REE-PLSR
spectrum photosynthetic model performed

capacity best (R2 = 0.9).

2020 ZHENG et al. Environmental Deep learning Promote growth and | Convolutional
factors and plant increase yield Neural Networks can
growth status increase population

estimation accuracy
to over 90%.

2020 XU Dan et al. Greenhouse lettuce |CNN, SVR. RF. |Predict plant growth |Reduced waste in
images or data LR rapeseed production.

2022 ZHANG et al. Images of the entire |EPSA-YOLO-V5s Accurately identify | Designed and
growth process of unsurvived plants fabricated films to
rapeseed enhance the

photosynthetic rate.

2025 Li et al. Spectral Neural network Promote Increased accuracy
requirements of photosynthesis to over 90%,
photosynthesis reducing waste in

rapeseed production.

3.2 The Implementation of a Closed-Loop Control System

At the perceptual level, machine learning has significantly
improved the speed and depth of collecting plant spectral
information. For instance, Zeng et al. demonstrated that by
training a lightweight convolutional neural network, spectral
information could be rapidly reconstructed from compressed,
mixed-encoded LED measurement data, increasing imaging and
reconstruction speeds by over 180 times [48]. Furthermore, by
employing models such as discriminant analysis, accurate early
warnings with over 90% accuracy were achieved four days before
the onset of drought stress based on vegetation spectral features.
These insights enabled LED systems to automatically switch to
blue-green light to promote growth during the vegetative stage
and to red light to enhance maturity during the flowering and
fruiting stages. This intelligent closed-loop system of
"perception-decision-regulation" significantly enhances the
efficiency of light energy utilization and plant productivity [50].

In addition to indirect perception based on spectral data,
integrating direct plant physiological signals can make decision-

making models more precise and better aligned with energy-
saving goals. For instance, Afagh et al. monitored stem sap flow
dynamics using electrochemical impedance sensors and
conducted comparative studies leveraging machine learning
methods to derive sensor coefficients for measuring
photosynthetic photon flux density (PPFD) [50]. Their findings
showed that decision tree and random forest models achieved
mean absolute percentage errors of 0.01%-0.88% on the red
and blue channels, respectively. Additionally, linear regression
models were used to identify periods of optimal light efficiency.
This approach enabled light-adaptive regulation, resulting in
energy savings of 25%-30% and shortening the plant growth

cycle.

Zou et al. further contributed to this field by demonstrating how
an optimized red-to-blue light ratio of R8B2 could accelerate the
growth of butter lettuce and improve its quality. By optimizing
the lighting layout through advanced algorithms, they were able
to enhance the uniformity of light distribution, thereby
maximizing the efficiency of the supplemental lighting system.
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Figure 3: Closed-loop diagram of the intelligent supplementary
lighting system

To achieve the aforementioned adaptive control, precise plant
image recognition is a crucial preliminary step, and this is a
domain where machine learning excels. As shown in Figure 3,
after Hyperspectral collects a large amount of data, it uses
machine learning to build a model, train the dataset, and make
predictions based on it, thereby achieving closed-loop control.
Sajad et al. developed a machine vision-based plant image
segmentation system designed for automatic plant recognition
under varying lighting conditions [51]. They employed a hybrid
artificial neural network combined with a harmony search
algorithm to optimize the classification of multiple color space
features, achieving a segmentation accuracy of up to 99.69%
with an average processing time of only 0.37 seconds per image.
This fast and accurate image recognition capability provides
critical technical support for the subsequent implementation of
adaptive lighting control.

In terms of optimizing supplementary lighting strategies, the
effect of supplemental lighting is quantified by altering the
spectral the
photomorphogenesis process. demonstrated that under uniform
light, a red-to-blue light ratio of R8B2 enabled Spanish lettuce to
achieve optimal growth and vyield [17]. Furthermore, the

response characteristics involved in plant

photochemical reflectance index (PRI) at specific wavelengths
(e.g., 531 nm) was found to be significantly correlated with the
xanthophyll cycle induced by supplementary lighting (r = 0.89-
0.94). Additionally, changes in reflectance within the 600-690
range directly reflected the regulatory effects of
supplemental lighting on the chlorophyll a/b ratio [52].

nm

Machine learning models have successfully deciphered the
coupling mechanism between supplemental light intensity and
nitrogen use efficiency by integrating nonlinear relationships
across multispectral dimensions. Specifically, when the spectral
peak of supplemental light was located in the 450 nm blue light
region, each 100 pmol'm™'s™! increase in light intensity
improved nitrogen assimilation efficiency by 12.7%. This
conclusion was validated through Gaussian Process Regression
(GPR) analysis of principal component variables derived from
reflectance (PCA_CRDR_R)
[53]. These findings provide a physiological basis for optimizing

continuum-removed derivative

supplemental lighting strategies. For instance, employing a red-
to-blue light ratio of 6:4 during the reproductive growth stage of

OPEN 8 ACCESS Freely available online

cotton increased the photosynthetic carbon assimilation rate by
23% while reducing nitrogen fertilizer application by 15% [54].

Moreover, the ratio of red-to-blue light has varying effects on
plant growth. Zou et al. found that higher red-to-blue light ratios
promote vertical growth, whereas lower ratios are more
beneficial for root development and tillering. These variations
underline the importance of tailoring light strategies to specific
growth stages and crop requirements.

In summary, these applications clearly delineate a technological
pathway, illustrated in Figure 3, where machine learning—by
enabling rapid spectral reconstruction, multi-source signal
fusion, and precise image recognition—constructs models that
serve as the core technology driving the realization of intelligent
lighting systems. However, the actual effectiveness and economic
benefits of these optimization strategies still require systematic
evaluation for validation.

4. Technical and Economic Analysis and Application

Challenges

Machine learning provides innovative solutions for balancing
the benefits and costs of supplemental lighting through data-
driven modeling and dynamic decision-making. For instance, by
analyzing the correlation between leaf spectral characteristics
and photosynthetic efficiency using Convolutional Neural
Networks (CNN), differentiated supplemental lighting strategies
have been developed, reducing energy consumption by 20%-
25% compared to traditional fixed lighting schemes [33]. In
cucumber greenhouse experiments, the Random Forest (RF)
model, which integrates light intensity, spectral composition,
and plant phenotypic data, improved supplemental lighting
efficiency by 15% while reducing electricity costs associated with
ineffective lighting.

Reinforcement learning frameworks further optimize vyield
targets while adhering to energy consumption constraints
through reward function design. A case study in Dutch tomato
greenhouses demonstrated that this method reduced energy
consumption per unit yield by 18% [40]. Similarly, in Gerbera
cultivation, the XGBoost model, constructed using drone-
collected multispectral ~data, recommended dynamically
adjusting the red-to-blue light ratio, shortening the growth
period by 7 days while maintaining the flowering rate and
increasing the total seasonal profit by 12%. This approach also
reduced hardware costs, making intelligent lighting systems
more accessible to small farms [56].

Economic evaluation models reveal that hyperspectral-machine
learning systems deployed on drone platforms have cost
advantages for largescale applications exceeding 500 mu.
Compared to traditional methods involving manual sampling
and laboratory analysis, this technology reduces the cost of
single nutrient diagnosis from ¥12.8/plant to ¥0.3/plant,
shortening the investment return period to just 2.3 years [50].
developed a windmill vertical tillage system for efficient
strawberry cultivation under low-light conditions, which was
optimized using the Particle Swarm Optimization (PSO)
algorithm. The algorithm-driven lighting layout significantly
the asexual and reproductive

improved reproduction
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performance of vertically cultivated strawberries while

maintaining high energy efficiency [57].

One particularly noteworthy advancement is in the deployment
of prediction models. By employing transfer learning strategies,
prediction models such as the XGBoost regularization model
maintained 83.2% accuracy under varying supplementary
lighting conditions in field environments. This generalization
capability significantly reduces the marginal cost of technology
promotion. Practical applications, such as variablerate LED
lighting in apple orchard management, demonstrated that this
technology increased the soluble solid content of fruits by 19%
while reducing energy consumption costs by 31%, thereby
validating its dual value in "precision control and energy
efficiency optimization" [44].

Zou et al. also designed an automatic lighting detection device
to study the influence of different red and blue light intensities
on two lettuce varieties in vertical farms. Their results showed
that butter lettuce achieved optimal yields under a light intensity
of 300 umol/m?2/s, while Spanish green lettuce achieved similar
productivity under a lower light intensity of 200 pmol/m?/s,
making it more energy-efficient. The ongoing challenge lies in
identifying the balance point to achieve high crop yields at
minimal cost [57].

5. Discussion and Outlook

This article systematically reviews the research progress of
hyperspectral technology and machine learning in the field of
plant supplemental lighting. The review highlights that through
non-destructive detection and data collection enabled by
hyperspectral technology, machine learning facilitates intelligent
decision-making, enabling dynamic and precise supplemental
lighting. These advancements address the core issues of high
energy consumption and low efficiency in current facility
agriculture. Hyperspectral technology offers both depth and
breadth for understanding the photophysiological state of
plants, while machine learning empowers the extraction of
effective features from massive spectral data, the construction of
predictive models, and the provision of decision-making
capabilities.

However, despite the significant potential demonstrated by
laboratory research and pilot projects, transitioning this
technology from concept to large-scale commercialization still
faces numerous challenges.

5.1 Bottlenecks and Critical
Current Technological Convergence

Thinking in

While hyperspectral imaging generates extremely rich data, this
also constitutes one of its primary bottlenecks [58]. The high
cost of hyperspectral equipment, the complexity of data
processing, and the computational resources required to handle
massive datasets remain in stark contrast to the real-time, low-
cost, and high-throughput demands of agricultural applications
[59]. Although research on lightweight CNN models and similar
approaches has made strides in accelerating data processing, for
closed-loop supplemental lighting systems requiring minute-level
or even second-level responses, the latency and cost of current
technologies remain significant obstacles.
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Figure 4: Flowchart of the integration of hyperspectral and
machine learning technologies

Future research needs to prioritize the development of low-cost,
high-robustness dedicated spectral sensors and ultra-efficient
algorithms capable of running on edge computing devices.
While many current models, such as those based on random
forests or deep learning, achieve high accuracy (R? > 0.9) on
specific datasets, they are often regarded as "black boxes." This
lack of interpretability limits their acceptance by plant
physiologists and agronomists, as it is difficult to understand or
trust the model’s recommendations—such as why increasing the
proportion of blue light might be preferable to red light at a
particular moment.

A more critical issue lies in model generalization. Models
crop varieties, growth stages, and
environmental conditions often fail to perform well when

trained on specific
applied to other varieties or greenhouse environments. This lack
of universality significantly limits their practical applications.
with
photophysiological mechanisms, along with cross-species and

Moving forward, integrating explainable Al plant
cross-environment transfer learning strategies, will be essential to

overcoming these challenges.

Additionally, much of the current research focuses on "light" as a
single factor, even though plant growth is influenced by a
light,
temperature, water, nutrients, and CO2 [60]. Intelligent systems
capable of synergistically regulating supplementary lighting,
heating, irrigation, and fertilization are still in their infancy [61].

complex interplay of multiple factors, including

Neglecting the coupling effects between these factors can lead to
suboptimal or even ineffective supplementary lighting strategies
in realworld production. As shown in Figure 4, developing a
multimodal fusion learning framework based on "plant digital
twins" is a critical step toward achieving truly intelligent
management and control [61].

6. Future Development Direction

Based on the above discussion, future supplemental lighting
systems will no longer rely on fixed red-to-blue ratios or
photoperiods. Instead, they will utilize a "dynamic light
that adjusts light intensity, spectrum, and
photoperiod dynamically according to the plant’s real-time

spectrum”
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physiological needs, growth stages, and production goals. This
shift will enable "on-demand lighting" to optimize plant growth
and resource efficiency [62].

To meet real-time requirements, future trends point toward
deploying trained lightweight models on edge computing
devices. This strategy will allow data collection, analysis, and
decision-making to occur directly within greenhouses or plant
factories, eliminating the dependence on cloud computing and
enabling real-time closed-loop control of the lighting [63, 64].

From an economic perspective, future efforts should focus on
reducing the initial investment threshold for small farms.
Modular system designs, open-source algorithms, and low-power
hardware can make these technologies more accessible and

affordable [65, 66]. Additionally, conducting detailed lifecycle

economic benefit will attract industrial capital

investment and accelerate the commercialization of these
technologies [67].

analyses

In summary, the integration of hyperspectral technology and
machine learning is transforming plant lighting technology in
unprecedented ways [68]. However, to fully realize its potential,
breakthroughs are needed to address core challenges such as the
data paradox, the "black box" nature of models, and the
complexities of multifactor coupling. By advancing inclusivity,
scalability, and integration, this technology can achieve its
ultimate goal: enabling high yield, high quality, low carbon, and
sustainable development in facility agriculture [69].

the of supplemental lighting,
hyperspectral sensing, and machine learning has the potential to

In summary, convergence
transform controlled-environment agriculture from experience-
driven management to intelligent, plant-centered decision-
making. Realizing this potential will require a shift toward
integrated, interpretable, and economically viable solutions that
align technological innovation with practical production needs

[70-80].
CONCLUSION

This critically synthesizes
supplemental lighting optimization, hyperspectral sensing, and
machine-learning-based  decision support
environment agriculture. Rather than treating these components
as isolated technologies, the their
convergence as a paradigm shift from experience-driven lighting
management toward intelligent, plant-centered, and data-driven
control systems.

review recent advances in

for controlled-

manuscript frames

The analysis reveals that while spectrum-specific and dynamic
lighting strategies have demonstrated clear benefits for crop
growth, quality, and energy efficiency, most existing approaches
remain  fundamentally static and empirically
Hyperspectral sensing provides a powerful means to capture real-
time plant physiological status, yet its full potential is often
constrained by data dimensionality, computational demands,
and limited integration with lighting control. Machine learning
enables effective extraction of actionable information from
spectral data, but trade-offs between predictive
accuracy, interpretability, and generalization continue to limit
large-scale deployment.

derived.

complex

OPEN 8 ACCESS Freely available online

By systematically examining these challenges, this review
identifies four central bottlenecks: the reliance on predefined
lighting strategies rather than plant-driven control, the conflict
between sensing accuracy and real-time applicability, the tension
between model performance and interpretability, and the
limited transferability of models across crops and environments.
Addressing these issues requires a shift from componentlevel
optimization toward system-level integration, where sensing,

modeling, and control operate within a closed-loop framework.

Looking forward, future research should prioritize dynamic and
demand-driven  lighting
solutions, interpretable and transferable modeling approaches,

strategies, costeffective  sensing
and comprehensive economic and sustainability assessments.
Progress along these directions will be essential for translating
robust, and

commercially viable lighting management systems.

laboratory-scale  innovations  into scalable,

Overall, this review provides a structured and critical perspective
on the evolving landscape of intelligent lighting control in
controlled-environment agriculture, offering both a synthesis of
current knowledge and a roadmap for future research and
practical implementation.
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