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ABSTRACT

As facility agriculture advances towards high precision and energy efficiency, plant supplemental lighting strategies are shifting 
from static, preset methods to dynamic, perception-driven approaches. Traditional lighting recipes or empirical supplemental 
lighting methods often result in plant disease issues, energy waste, and photoinhibition. In recent years, hyperspectral imaging 
technology has emerged as a powerful, non-destructive monitoring tool, capable of capturing subtle real-time changes in plant 
photosynthetic pigments, water content, nitrogen levels, and early stress responses. When combined with hyperspectral 
imaging, machine learning enables the extraction of features and the construction of predictive models from vast spectral 
datasets, serving as a core driver for the early detection of plant diseases and informed decision-making. This paper 
systematically reviews recent advances in the integration of hyperspectral technology and machine learning for plant 
supplemental lighting. Furthermore, it emphasizes the critical role of machine learning models in predicting light demand, 
diagnosing stress, and addressing plant diseases.
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INTRODUCTION

With the continuous growth of the global population, the 
increasing scarcity of arable land, and the uncertainties posed by 
climate change, the development of efficient and controllable 
facility agriculture has become an essential pathway to ensuring 
food security and a stable food supply [1]. In facility agriculture, 
light—an essential environmental factor driving photosynthesis 
profoundly influences plant growth through its intensity, quality, 
and photoperiod [2].

However, greenhouses and plant factories still predominantly 
rely on fixed lighting formulas or the empirical judgments of 
producers [3]. This reliance often leads to inefficiencies, such as 
"continuous supplemental lighting despite sufficient light 
intensity" or "unmet light requirements," resulting in significant 
energy waste and economic costs. Such practices can also 
exacerbate issues like photoinhibition [4]. The core challenge in 
achieving precise supplemental lighting lies in the non-
destructive, rapid, and accurate quantification of plants’ real-
time physiological status.

The early and precise detection of plant diseases and abiotic
stresses remains a critical challenge for ensuring global food
security and promoting sustainable agricultural development. In
this context, the integration of hyperspectral imaging technology
with machine learning methods is revolutionizing plant
phenotyping and health monitoring, offering unprecedented
depth of information and advanced analytical capabilities.

At the forefront of early and precise diagnostics, this technology
demonstrates exceptional timeliness. Its detection capabilities
surpass traditional methods, often identifying issues before
visible symptoms appear. For example, in viral disease detection,
achieved quantitative detection of the Tomato spotted wilt virus
as early as four days post-inoculation [5]. For fungal diseases, [6].
successfully detected infections and classified anthracnose
severity during the latent period, before visible symptoms
emerged. Similarly, achieved an early detection rate exceeding
90% for sugarcane smut and mosaic disease [7]. In the domain
of abiotic stress, hyperspectral technology has shown equally
remarkable early warning capabilities: diagnosed phosphorus
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As research advanced, supplementary lighting technology 
evolved from focusing solely on spatial dimensions to exploring 
spectral dimensions. Pioneered the understanding that specific 
light qualities could act as non-chemical stress mitigation 
strategies [19]. Their study confirmed that red light and mixed 
blue-red spectra significantly enhance plant photosynthetic 
resilience by stabilizing the photosystem and increasing the 
electron transfer rate. Building on this, developed a hybrid 
lighting system that integrated movable downward lighting with 
adjustable lateral lighting, effectively addressing canopy shading 
in high-density planting systems. Meanwhile, demonstrated that 
extending the photoperiod significantly promotes plant growth, 
proposing that lighting strategies could enhance yields without 
disrupting ecological balance [20]. Additionally, [21]. established 
a plant factory, as shown in Figure 1. They adopted an 
integrated water and fertilizer system to cultivate crops and used 
machine learning to complete closed-loop control. They 
proposed a spectral space collaborative optimization strategy and 
combined the particle swarm algorithm to layout led, which 
improved the crop yield and energy efficiency of vertical 
agriculture [3].

Despite these advancements, the rapid evolution of technology 
has exposed inherent limitations in current research [22]. For 
instance, observed that while tomato seedlings in artificial light 
factories exhibited slower growth in early stages, grafting 
accelerated their growth, reduced costs, and improved survival 
rates [23]. Most studies, however, remain confined to single 
species, specific growth stages, or isolated environmental factors, 
lacking a comprehensive exploration of universal principles 
applicable across various crops. There is also a limited 
understanding of the complex interactions between the light 
environment and other factors such as temperature, humidity, 
and CO₂ concentration [24].

Another critical gap lies in the disconnect between technical 
feasibility and economic viability. While innovations such as 
dynamic lighting systems and agricultural photovoltaic solutions 
aim for energy self-sufficiency, high economic costs and energy 
consumption remain significant barriers to market acceptance 
[25]. Furthermore, the conversion of physiological indicators 
into economic yield outcomes remains unclear. Many studies 
focus on endpoints such as biomass or photosynthetic 
parameters, but empirical research directly linking these 
physiological improvements to fruit yield, quality, and economic 
benefits is still lacking [26].
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deficiency in cucumbers 21 days in advance; achieved precise 
early diagnosis of nutrient deficiencies in tomatoes, 
outperforming traditional computer vision methods by more 
than 10 days; and successfully identified plant stress caused by 
methane exposure, with a model accuracy of 98.2%.

More importantly, this technological paradigm is evolving from 
qualitative discrimination to precise quantitative analysis. In 
terms of growth and appearance quality, utilized hyperspectral 
imaging to dynamically monitor the entire growth period of 
tomatoes while visualizing color coordinates [8]. In the 
quantification of biochemical parameters, intelligently estimated 
chlorophyll and sugar content, while detected heavy metal lead 
content in rapeseed leaves and roots using deep learning and 
hyperspectral technology, extending its applications to 
environmental toxicity and food safety. Additionally, accurately 
classified varying severity levels of Asian rust by combining 
hyperspectral imaging with machine learning algorithms [9]. 
Similarly, validated the robustness and effectiveness of this 
technology across diverse application scenarios, emphasizing its 
potential for universal plant health monitoring [10].

Despite the promising prospects, current research still faces 
significant challenges, including model generalization, economic 
feasibility, and the complexities of multi-factor coupling. This 
paper aims to systematically review the progress in integrating 
hyperspectral technology and machine learning within the field 
of intelligent plant lighting, analyze the evolution of technical 
pathways and key bottlenecks, and forecast future development 
trends.

1. The Evolution of Facility Agriculture and Supplementary
Lighting Technology

Photosynthesis is the core process by which plants convert light 
energy into chemical energy. By absorbing carbon dioxide and 
water, plants synthesize organic matter and release oxygen under 
light conditions [11]. This process not only underpins plant 
growth and energy accumulation but also plays a critical role in 
maintaining the carbon-oxygen balance of the Earth’s ecosystem 
[12]. The efficiency of photosynthesis directly influences 
biomass accumulation, yield formation, and the stress resistance 
of crops [13]. However, early water or nutrient stress can inhibit 
photosynthetic activity, leading to significant yield reductions 
[14]. Consequently, optimizing the photosynthetic process 
through environmental regulation has become a cornerstone of 
modern agriculture, particularly in the context of facility 
agriculture.

In the early stages of research into plant photosynthesis and 
light supplementation, the primary focus was on achieving plant 
growth through supplemental lighting [15]. introduced the 
concept of optimizing vertical spatial light distribution, 
demonstrating that while supplementary overhead lighting 
enhances the photosynthesis of inner leaves, additional lighting 
from below can further improve photosynthetic capacity under 
low-light conditions and significantly delay the senescence of 
outer leaves. Similarly [16,17]. optimized LED lamp uniformity 
by employing radiation measurements and enhancing light 
intensity distribution through the skewness formula and particle 
swarm algorithm, achieving more uniform illumination [18].
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Whether for energy conservation or efficiency improvement, the 
optimization of supplementary lighting strategies depends on a 
precise understanding of the internal physiological state of 
plants [32]. Hyperspectral technology has emerged as a crucial 
bridge between plant physiological state monitoring and external 
decision-making in supplementary lighting strategies [8]. Its core 
advantage lies in its ability to simultaneously capture spectral 
information across hundreds to thousands of continuous bands 
per pixel without contact or damage to plants [33]. This 
capability to reveal the internal physiological status of plants, 
combined with rapid data acquisition, makes hyperspectral 
technology an advanced tool for optimizing plant lighting 
strategies and advancing precision agriculture [34].

The core value of hyperspectral technology lies in its integration 
of morphological imaging with detailed spectral analysis [35]. As 
shown in Figure 2, the application of hyperspectral technology 
in plant monitoring has been continuously developing with the 
advancement of technology. Early research primarily focused on 
developing linear inversion models to estimate pigments such as 
chlorophyll using visible-near infrared spectroscopy [36]. For 
example, employed the CARS-PLSR algorithm to visualize 
SPAD values in pumpkin leaves, achieving a prediction accuracy 
(R²) of 0.9187 [36]. With technological advancements, 
hyperspectral applications have expanded to include early 
diagnoses of water stress. developed a compact hyperspectral 
system that achieved classification accuracy exceeding 90% four 
days before drought-induced stress in lettuce, demonstrating 
exceptional early warning capabilities [37, 38].

Recent research has further advanced the understanding of 
photosynthetic functions. In 2023, Han et al. demonstrated that 
spectral data processed using first-order differentiation 
combined with the LightGBM algorithm could accurately 
predict leaf photosynthetic rate (Pn) with R² > 0.97. The 
photochemical reflectance index (PRI, e.g., 531 nm) was found 
to significantly correlate with the xanthophyll cycle induced by 
supplementary lighting (r = 0.89–0.94), making it an effective 
indicator for quantifying light energy use efficiency [39]. In 
2024, hyperspectral imaging technology combined with 
chemometric methods to achieve non-destructive detection of 
sunflower seed viability and moisture content [36].

Figure 2: A development trajectory diagram of hyperspectral
non-destructive monitoring of plant health

2.1 Hyperspectral Monitoring of Plant Health to Detect
Diseases
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Figure 1: Schematic diagram of an artificial plant factory 
integrating water and fertilizer with machine learning

1.1 The Emergence of New Technologies in Facility 
Agriculture

To achieve precise, efficient, and non-destructive monitoring of 
photosynthetic physiology, emerging spectral and intelligent 
analysis technologies are becoming increasingly prominent. 
Heckmann et al. utilized leaf reflectance spectroscopy combined 
with machine learning techniques to predict the photosynthetic 
capacity of crops [27]. Through a systematic comparison of 
various machine learning methods, they identified recursive 
feature elimination combined with partial least squares 
regression as the optimal modeling strategy. This approach 
achieved a prediction accuracy (R²) of 0.9 for the carbon-to-
nitrogen ratio (CN ratio), enabling high-precision prediction of 
photosynthetic parameters within species. The study 
demonstrated that this technology is an effective tool for 
screening superior plants in simulated breeding, offering a rapid 
and non-destructive solution for improving crop photosynthetic 
efficiency through genetic enhancement.

Addressing the challenges of energy-intensive systems in plant 
factories, where energy consumption is significantly higher than 
that of greenhouses, researchers have focused on reducing 
economic and environmental costs [28, 29]. optimized lighting 
and climate control systems in artificial light plant factories 
using deep learning, developing an AI-powered system for a 40-
foot containerized plant factory [29]. Their approach reduced 
energy consumption per unit yield from 9.5–10.5 kWh/kg to 
6.42–7.26 kWh/kg, achieving a remarkable 32.34% energy 
efficiency improvement. This system outperformed traditional 
methods in all tested cities, demonstrating significant energy 
savings and supporting sustainable food production. In another 
study, Zou et al. examined the effects of different light 
intensities on tomato seedling growth in plant factories. They 
found that a light intensity of 240 μmol·m⁻²·s⁻¹ was optimal for 
tomato seedling cultivation, providing an energy-efficient 
alternative to greenhouse conditions [30].

While reducing energy consumption is critical, achieving high 
photosynthetic efficiency and productivity remains a key 
priority. compared the effects of three substrates and 
photoperiods on tomato seedlings in artificial light plant 
factories and developed a growth prediction model using 
machine learning [31]. Their findings revealed that bagged 
coconut coir under a 20-hour photoperiod increased seedling 
fresh weight by 54.9%. Furthermore, the 20-hour photoperiod 
boosted fresh weight by 205.2% compared to a 12-hour 
photoperiod. The Gradient Boosted Decision Tree (GBDT) 
growth prediction model achieved the highest accuracy (R² = 
0.972). Economic analysis indicated that adopting a combined 
photoperiod strategy of 12–20 hours could save more than 20%
in energy costs and enable an annual production of 21.47 
batches, significantly reducing energy consumption while 
increasing profits.

2. Hyperspectral Non-Destructive Monitoring of Plant Virus
Damage
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regions: 350–450 nm and 600–750 nm. This enables non-
destructive monitoring of dynamic changes in leaf 
photosynthetic rate (Pn) and the fraction of absorbed 
photosynthetically active radiation (FAPAR) under 
supplementary lighting conditions [39]. Furthermore, 
hyperspectral imaging can detect subtle variations in 
physiological parameters such as chlorophyll content, water 
stress, and early disease symptoms. Its resolution significantly 
surpasses that of traditional multispectral technology [41].

Research has demonstrated the potential of hyperspectral data 
combined with machine learning algorithms for accurate 
physiological predictions. For instance, first-order derivative 
processed spectral data combined with the LightGBM algorithm 
(learning rate = 0.053 and 479 iterations) achieved accurate 
inversion of leaf Pn (R² > 0.97). In contrast, the Random Forest 
model (87 decision trees and 68 node variables) exhibited 
superior predictive performance for canopy FAPAR (RPD > 1.4). 
This discrepancy reflects the higher representation capability of 
spectral information at the canopy scale for quantifying light use 
efficiency [42].

Compared to traditional point measurement devices, such as 
SPAD meters, hyperspectral imaging offers significant 
advantages. By reducing information redundancy in full-band 
analysis through feature band selection, hyperspectral imaging 
lowers the cost per measurement by over 80%, while enabling 
continuous monitoring at the acre-level field scale [43]. This 
makes it an invaluable tool for precision agriculture and large-
scale plant health monitoring.

In conclusion, current research consistently indicates that the 
application value of hyperspectral imaging in plant factories and 
precision agriculture is constantly emerging. Whether it is viral 
diseases, early drought stress, or the quantitative estimation of 
photosynthetic parameters and chlorophyll content, 
hyperspectral technology has demonstrated accuracy and 
timeliness far exceeding traditional detection methods. Its 
advantages and application scope are shown in Table 1.

Table 1: Application cases of hyperspectrum in Plant Diseases 
and health

Researcher Application
Direction

Study Object Core Methods Key Performance /
Metrics

Research Value &
Advantages

& Models

Justus et al. Viral Disease
Monitoring

Beet Leaf Spot Time-series
hyperspectral
imaging; CNN for
disease pixel
classification

Correlation with
calibration panel >
0.99; Brown spot
severity estimation
accuracy: 62%

Enables effective
tracking and
quantitative
assessment of disease
progression.

Qin et al. Drought Stress Early
Warning

Lettuce Drought
Stress

Compact
hyperspectral system;
Continuous imaging
for 13 days

Classification rate >
90% within the first
4 days of stress

Provides early
warning before
visible symptoms
appear, facilitating
timely human
intervention.

Zou J, Shi M

Hyperspectral technology has proven to be an effective tool for 
monitoring viral diseases in plant factories. For example, Justus 
et al. analyzed the progression of beet leaf spot using time-series 
hyperspectral imaging. When compared to non-imaging 
spectrometers, the correlation coefficient of the calibration 
board measurements exceeded 0.99. By training a convolutional 
neural network on the collected data for disease pixel 
classification, they achieved 62% accuracy in estimating the 
severity of brown spot, effectively tracking disease progression 
over time.

Beyond disease monitoring, hyperspectral technology can also be 
utilized to detect plant drought stress, enabling timely human 
intervention to ensure normal plant growth. Qin et al. 
developed a compact hyperspectral plant health monitoring 
system that controlled 12 lettuce plants under normal watering 
and a drought treatment with 100 ml less water [38]. 
Hyperspectral images were continuously collected over 13 days, 
starting from the first day of stress. Their system achieved 
classification rates exceeding 90% within the first four days of 
stress, demonstrating its capability to provide early warnings of 
drought stress before visible symptoms appear.

In addition, hyperspectral technology has the ability to quantify 
plant photosynthesis. Chlorophyll concentration, a direct 
indicator of photosynthetic capacity, can be effectively measured 
using hyperspectral imaging. By analyzing the spectral 
reflectance characteristics of leaves in the visible-to-near-infrared 
range (380–1030 nm), chlorophyll prediction models can be 
established [40]. confirmed experimentally that a higher 
proportion of red light led to increased chlorophyll content and 
photosynthetic rates in cucumber seedlings [3]. Zhao Yanru et al. 
proposed a methodology for creating a visual distribution map 
of the relative chlorophyll content (SPAD value) in pumpkin 
leaves. This was achieved through hyperspectral imaging 
combined with the Competitive Adaptive Reweighted Sampling 
(CARS) algorithm and Partial Least Squares Regression (PLSR), 
yielding a prediction accuracy of R² = 0.918.

The advantages of hyperspectral imaging in plant health 
detection are increasingly evident. Hyperspectral imaging 
captures the spectral characteristics of plants within the 350–
750 nm visible light range, particularly in two highly correlated
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Zhao Yanru et al. Photosynthesis
Quantification

Cucumber/Pumpkin
Leaf Chlorophyll

VIS-NIR spectral
analysis (380-1030
nm); CARS-PLSR
modeling

Chlorophyll SPAD
prediction accuracy:
RC = 0.918

Quantifies the
relationship between
chlorophyll content
and light quality
(e.g., red light ratio);
enables visual
distribution
mapping.

Han et al. Photosynthetic
Physiology
Monitoring

Leaf Pn & Canopy
FAPAR

Spectral feature
analysis (350-750
nm); LightGBM &
Random Forest
algorithms

Leaf Pn inversion R²
> 0.97; Canopy
FAPAR prediction
RPD > 1.4

Enables non-
destructive, dynamic
monitoring of Pn
and FAPAR;
accuracy significantly
surpasses traditional
point-measurement
devices.

Huang et al. General Technical
Advantages

Various Physiological
Parameters

Full-band data
analysis & feature
band selection

Cost per
measurement
reduced by > 80%

Overcomes
information
redundancy;
supports
continuous, large-
scale (acre-level) field
monitoring;
resolution far
exceeds multispectral
technology.

3. Machine Learning in Intelligent Decision-Making

Machine Learning (ML), a core branch of Artificial Intelligence, 
aims to enable computer systems to autonomously learn patterns 
or regularities from data through algorithms, allowing them to 
make predictions or decisions without relying on explicit 
programming. The core concept of ML lies in feature extraction, 
model construction, and continuous performance optimization. 
It has found widespread applications in fields such as image 
classification, spectral analysis, and agricultural monitoring [44].

3.1 The Algorithmic Evolution from Traditional Models 
to Deep Networks

The key to processing plant physiological data lies in 
dimensionality reduction and feature extraction. In 2016, 
SHOGO et al. demonstrated the use of machine learning to 
predict plant growth with high accuracy based on chlorophyll 
fluorescence and plant physiological indicators [45]. 
Subsequently, algorithms such as Partial Least Squares 
Regression (PLSR) and Support Vector Machine (SVM) have 
been widely applied in plant science. For instance, in 2017, [27]. 
utilized Recursive Feature Elimination combined with PLSR 
(RFE-PLSR) to predict photosynthetic capacity [27].

In 2020, used key plant growth indicators such as plant height, 
leaf density, respiration rate, photosynthetic rate, and crop yield 
to study the effects of environmental factors, including lighting, 
temperature, humidity, CO₂ concentration, and nutrient 
solution concentration, in plant factories. By employing deep 
learning techniques, they established and optimized plant 
growth models to promote growth and increase yield. Similarly, 

developed estimation models for greenhouse lettuce growth 
parameters using both deep learning and traditional machine 
learning techniques, including Convolutional Neural Networks 
(CNN), Support Vector Regression (SVR), Random Forests 
(RF), and Logistic Regression (LR). The study revealed that the 
deep learning-based CNN model outperformed shallow 
machine learning models, achieving group estimation accuracies 
exceeding 90%.

In 2022, created a comprehensive image database documenting 
the entire growth process of rapeseed [46]. They applied a deep 
learning method (EPSA-YOLO-V5s) to identify non-viable 
rapeseed plants during the early and middle growth stages, 
addressing issues of energy and space waste caused by cultivating 
seedless rapeseed during production. This breakthrough 
highlighted the potential of deep learning to optimize 
agricultural resource usage.

In 2025, explored approaches to accelerate photosynthesis using 
machine learning [47]. By integrating genetic algorithms, they 
successfully reverse-engineered and developed a "cooling canopy 
film" to enhance photosynthesis. This innovative film employs 
spectral screening to selectively transmit the 400–500 nm (blue 
light) and 600–700 nm (red light) bands essential for 
photosynthesis, while efficiently reflecting the majority of the 
remaining solar spectrum—particularly the near-infrared heat 
portion. This advancement significantly improved light use 
efficiency while reducing heat stress, offering a promising 
solution for sustainable agriculture.

In conclusion, in recent years, data-driven methods centered on 
machine learning and deep learning have become the key 
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shallow models in tasks such as crop growth estimation, 
phenotypic recognition, and early differentiation of good and 
bad seedlings, gradually becoming the mainstream approach in 
plant factory and facility agriculture research. Overall, these 
studies have demonstrated the great potential and diverse 
application scenarios of data-driven methods in plant 
production. Their main features and technological 
advancements are shown in Table 2.

Table 2: Research Progress of Machine Learning in Plant 
Growth

Year Researcher Research object Key algorithm Application
objective

Research Findings

2016 SHOGO et al. Chlorophyll
fluorescence and
plant indicators

Neural network Predict plant growth Developed an
automatic system

2017 Heckmann et al. Leaf reflection
spectrum

RFE-PLSR Predict
photosynthetic
capacity

The REE-PLSR
model performed
best (R² = 0.9).

2020 ZHENG et al. Environmental
factors and plant
growth status

Deep learning Promote growth and
increase yield

Convolutional
Neural Networks can
increase population
estimation accuracy
to over 90%.

2020 XU Dan et al. Greenhouse lettuce
images or data

CNN、SVR、RF、
LR

Predict plant growth Reduced waste in
rapeseed production.

2022 ZHANG et al. Images of the entire
growth process of
rapeseed

EPSA-YOLO-V5s Accurately identify
unsurvived plants

Designed and
fabricated films to
enhance the
photosynthetic rate.

2025 Li et al. Spectral
requirements of
photosynthesis

Neural network Promote
photosynthesis

Increased accuracy
to over 90%,
reducing waste in
rapeseed production.

3.2 The Implementation of a Closed-Loop Control System

At the perceptual level, machine learning has significantly 
improved the speed and depth of collecting plant spectral 
information. For instance, Zeng et al. demonstrated that by 
training a lightweight convolutional neural network, spectral 
information could be rapidly reconstructed from compressed, 
mixed-encoded LED measurement data, increasing imaging and 
reconstruction speeds by over 180 times [48]. Furthermore, by 
employing models such as discriminant analysis, accurate early 
warnings with over 90% accuracy were achieved four days before 
the onset of drought stress based on vegetation spectral features. 
These insights enabled LED systems to automatically switch to 
blue-green light to promote growth during the vegetative stage 
and to red light to enhance maturity during the flowering and 
fruiting stages. This intelligent closed-loop system of 
"perception–decision–regulation" significantly enhances the 
efficiency of light energy utilization and plant productivity [50].

In addition to indirect perception based on spectral data, 
integrating direct plant physiological signals can make decision-

making models more precise and better aligned with energy-
saving goals. For instance, Afagh et al. monitored stem sap flow 
dynamics using electrochemical impedance sensors and 
conducted comparative studies leveraging machine learning 
methods to derive sensor coefficients for measuring 
photosynthetic photon flux density (PPFD) [50]. Their findings 
showed that decision tree and random forest models achieved 
mean absolute percentage errors of 0.01%–0.88% on the red 
and blue channels, respectively. Additionally, linear regression 
models were used to identify periods of optimal light efficiency. 
This approach enabled light-adaptive regulation, resulting in 
energy savings of 25%–30% and shortening the plant growth 
cycle.

Zou et al. further contributed to this field by demonstrating how 
an optimized red-to-blue light ratio of R8B2 could accelerate the 
growth of butter lettuce and improve its quality. By optimizing 
the lighting layout through advanced algorithms, they were able 
to enhance the uniformity of light distribution, thereby 
maximizing the efficiency of the supplemental lighting system.

Zou J, Shi M

technical paths for processing plant physiological information 
and optimizing intelligent production. Traditional methods such 
as PLSR and SVM still play significant roles in feature extraction, 
variable selection, and modeling of small and medium-
sized samples. Meanwhile, strategies like recursive feature 
elimination further enhance the model's predictive ability 
for key physiological indicators such as photosynthetic 
parameters. Meanwhile, deep learning models, with their 
powerful expression capabilities for high-dimensional, nonlinear 
physiological and image data, have significantly outperformed 
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Figure 3: Closed-loop diagram of the intelligent supplementary 
lighting system

To achieve the aforementioned adaptive control, precise plant 
image recognition is a crucial preliminary step, and this is a 
domain where machine learning excels. As shown in Figure 3, 
after Hyperspectral collects a large amount of data, it uses 
machine learning to build a model, train the dataset, and make 
predictions based on it, thereby achieving closed-loop control. 
Sajad et al. developed a machine vision-based plant image 
segmentation system designed for automatic plant recognition 
under varying lighting conditions [51]. They employed a hybrid 
artificial neural network combined with a harmony search 
algorithm to optimize the classification of multiple color space 
features, achieving a segmentation accuracy of up to 99.69%
with an average processing time of only 0.37 seconds per image. 
This fast and accurate image recognition capability provides 
critical technical support for the subsequent implementation of 
adaptive lighting control.

In terms of optimizing supplementary lighting strategies, the 
effect of supplemental lighting is quantified by altering the 
spectral response characteristics involved in the plant 
photomorphogenesis process. demonstrated that under uniform 
light, a red-to-blue light ratio of R8B2 enabled Spanish lettuce to 
achieve optimal growth and yield [17]. Furthermore, the 
photochemical reflectance index (PRI) at specific wavelengths 
(e.g., 531 nm) was found to be significantly correlated with the 
xanthophyll cycle induced by supplementary lighting (r = 0.89–
0.94). Additionally, changes in reflectance within the 600–690 
nm range directly reflected the regulatory effects of 
supplemental lighting on the chlorophyll a/b ratio [52].

Machine learning models have successfully deciphered the 
coupling mechanism between supplemental light intensity and 
nitrogen use efficiency by integrating nonlinear relationships 
across multispectral dimensions. Specifically, when the spectral 
peak of supplemental light was located in the 450 nm blue light 
region, each 100 μmol·m⁻²·s⁻¹ increase in light intensity 
improved nitrogen assimilation efficiency by 12.7%. This 
conclusion was validated through Gaussian Process Regression 
(GPR) analysis of principal component variables derived from 
continuum-removed derivative reflectance (PCA_CRDR_R)
[53]. These findings provide a physiological basis for optimizing 
supplemental lighting strategies. For instance, employing a red-
to-blue light ratio of 6:4 during the reproductive growth stage of

cotton increased the photosynthetic carbon assimilation rate by 
23% while reducing nitrogen fertilizer application by 15% [54].

Moreover, the ratio of red-to-blue light has varying effects on 
plant growth. Zou et al. found that higher red-to-blue light ratios 
promote vertical growth, whereas lower ratios are more 
beneficial for root development and tillering.These variations 
underline the importance of tailoring light strategies to specific 
growth stages and crop requirements.

In summary, these applications clearly delineate a technological 
pathway, illustrated in Figure 3, where machine learning—by 
enabling rapid spectral reconstruction, multi-source signal 
fusion, and precise image recognition—constructs models that 
serve as the core technology driving the realization of intelligent 
lighting systems. However, the actual effectiveness and economic 
benefits of these optimization strategies still require systematic 
evaluation for validation.

4. Technical and Economic Analysis and Application
Challenges

Machine learning provides innovative solutions for balancing 
the benefits and costs of supplemental lighting through data-
driven modeling and dynamic decision-making. For instance, by 
analyzing the correlation between leaf spectral characteristics 
and photosynthetic efficiency using Convolutional Neural 
Networks (CNN), differentiated supplemental lighting strategies 
have been developed, reducing energy consumption by 20%–
25% compared to traditional fixed lighting schemes [33]. In 
cucumber greenhouse experiments, the Random Forest (RF) 
model, which integrates light intensity, spectral composition, 
and plant phenotypic data, improved supplemental lighting 
efficiency by 15% while reducing electricity costs associated with 
ineffective lighting.

Reinforcement learning frameworks further optimize yield 
targets while adhering to energy consumption constraints 
through reward function design. A case study in Dutch tomato 
greenhouses demonstrated that this method reduced energy 
consumption per unit yield by 18% [40]. Similarly, in Gerbera 
cultivation, the XGBoost model, constructed using drone-
collected multispectral data, recommended dynamically 
adjusting the red-to-blue light ratio, shortening the growth 
period by 7 days while maintaining the flowering rate and 
increasing the total seasonal profit by 12%. This approach also 
reduced hardware costs, making intelligent lighting systems 
more accessible to small farms [56].

Economic evaluation models reveal that hyperspectral-machine 
learning systems deployed on drone platforms have cost 
advantages for large-scale applications exceeding 500 mu. 
Compared to traditional methods involving manual sampling 
and laboratory analysis, this technology reduces the cost of 
single nutrient diagnosis from ¥12.8/plant to ¥0.3/plant, 
shortening the investment return period to just 2.3 years [50]. 
developed a windmill vertical tillage system for efficient 
strawberry cultivation under low-light conditions, which was 
optimized using the Particle Swarm Optimization (PSO) 
algorithm. The algorithm-driven lighting layout significantly 
improved the asexual reproduction and reproductive
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Figure 4: Flowchart of the integration of hyperspectral and 
machine learning technologies

Future research needs to prioritize the development of low-cost, 
high-robustness dedicated spectral sensors and ultra-efficient 
algorithms capable of running on edge computing devices. 
While many current models, such as those based on random 
forests or deep learning, achieve high accuracy (R² > 0.9) on 
specific datasets, they are often regarded as "black boxes." This 
lack of interpretability limits their acceptance by plant 
physiologists and agronomists, as it is difficult to understand or 
trust the model’s recommendations—such as why increasing the 
proportion of blue light might be preferable to red light at a 
particular moment.

A more critical issue lies in model generalization. Models 
trained on specific crop varieties, growth stages, and 
environmental conditions often fail to perform well when 
applied to other varieties or greenhouse environments. This lack 
of universality significantly limits their practical applications. 
Moving forward, integrating explainable AI with plant 
photophysiological mechanisms, along with cross-species and 
cross-environment transfer learning strategies, will be essential to 
overcoming these challenges.

Additionally, much of the current research focuses on "light" as a 
single factor, even though plant growth is influenced by a 
complex interplay of multiple factors, including light, 
temperature, water, nutrients, and CO₂ [60]. Intelligent systems 
capable of synergistically regulating supplementary lighting, 
heating, irrigation, and fertilization are still in their infancy [61]. 
Neglecting the coupling effects between these factors can lead to 
suboptimal or even ineffective supplementary lighting strategies 
in real-world production. As shown in Figure 4, developing a 
multimodal fusion learning framework based on "plant digital 
twins" is a critical step toward achieving truly intelligent 
management and control [61].

6. Future Development Direction

Based on the above discussion, future supplemental lighting 
systems will no longer rely on fixed red-to-blue ratios or 
photoperiods. Instead, they will utilize a "dynamic light 
spectrum" that adjusts light intensity, spectrum, and 
photoperiod dynamically according to the plant’s real-time
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performance of vertically cultivated strawberries while 
maintaining high energy efficiency [57].

One particularly noteworthy advancement is in the deployment 
of prediction models. By employing transfer learning strategies, 
prediction models such as the XGBoost regularization model 
maintained 83.2% accuracy under varying supplementary 
lighting conditions in field environments. This generalization 
capability significantly reduces the marginal cost of technology 
promotion. Practical applications, such as variable-rate LED 
lighting in apple orchard management, demonstrated that this 
technology increased the soluble solid content of fruits by 19%
while reducing energy consumption costs by 31%, thereby 
validating its dual value in "precision control and energy 
efficiency optimization" [44].

Zou et al. also designed an automatic lighting detection device 
to study the influence of different red and blue light intensities 
on two lettuce varieties in vertical farms. Their results showed 
that butter lettuce achieved optimal yields under a light intensity 
of 300 μmol/m²/s, while Spanish green lettuce achieved similar 
productivity under a lower light intensity of 200 μmol/m²/s, 
making it more energy-efficient. The ongoing challenge lies in 
identifying the balance point to achieve high crop yields at 
minimal cost [57].

5. Discussion and Outlook

This article systematically reviews the research progress of 
hyperspectral technology and machine learning in the field of 
plant supplemental lighting. The review highlights that through 
non-destructive detection and data collection enabled by 
hyperspectral technology, machine learning facilitates intelligent 
decision-making, enabling dynamic and precise supplemental 
lighting. These advancements address the core issues of high 
energy consumption and low efficiency in current facility 
agriculture. Hyperspectral technology offers both depth and 
breadth for understanding the photophysiological state of 
plants, while machine learning empowers the extraction of 
effective features from massive spectral data, the construction of 
predictive models, and the provision of decision-making 
capabilities.

However, despite the significant potential demonstrated by 
laboratory research and pilot projects, transitioning this 
technology from concept to large-scale commercialization still 
faces numerous challenges.

5.1 Bottlenecks and Critical Thinking in 
Current Technological Convergence

While hyperspectral imaging generates extremely rich data, this 
also constitutes one of its primary bottlenecks [58]. The high 
cost of hyperspectral equipment, the complexity of data 
processing, and the computational resources required to handle 
massive datasets remain in stark contrast to the real-time, low-
cost, and high-throughput demands of agricultural applications 
[59]. Although research on lightweight CNN models and similar 
approaches has made strides in accelerating data processing, for 
closed-loop supplemental lighting systems requiring minute-level 
or even second-level responses, the latency and cost of current 
technologies remain significant obstacles.
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By systematically examining these challenges, this review 
identifies four central bottlenecks: the reliance on predefined 
lighting strategies rather than plant-driven control, the conflict 
between sensing accuracy and real-time applicability, the tension 
between model performance and interpretability, and the 
limited transferability of models across crops and environments. 
Addressing these issues requires a shift from component-level 
optimization toward system-level integration, where sensing, 
modeling, and control operate within a closed-loop framework.

Looking forward, future research should prioritize dynamic and 
demand-driven lighting strategies, cost-effective sensing 
solutions, interpretable and transferable modeling approaches, 
and comprehensive economic and sustainability assessments. 
Progress along these directions will be essential for translating 
laboratory-scale innovations into robust, scalable, and 
commercially viable lighting management systems.

Overall, this review provides a structured and critical perspective 
on the evolving landscape of intelligent lighting control in 
controlled-environment agriculture, offering both a synthesis of 
current knowledge and a roadmap for future research and 
practical implementation.
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