
v1.0.0

geowave icon logo cropped v2 | geowave-icon-logo-cropped-v2.png

GeoWave Developer Guide

Introduction

What is GeoWave

GeoWave is an open-source library for storage, index, and search of multi-dimensional data on top of

sorted key-value datastores and popular big data frameworks. GeoWave includes specific tailored

implementations that have advanced support for OGC spatial types (up to 3 dimensions), and both

bounded and unbounded temporal values. Both single and ranged values are supported on all axes.

GeoWave’s geospatial support is built on top of the GeoTools project extensibility model. This means

that it can integrate natively with any GeoTools-compatible project such as GeoServer and UDig, and

can ingest GeoTools compatible data sources.

GeoWave provides out-of-the-box support for distributed key/value stores, as necessary for mission

needs. The latest version of GeoWave supports Apache Accumulo and Apache HBase stores, though

additional data stores can be implemented as requested or needed.

This guide serves the purpose of focusing on the development side of GeoWave capabilities as well as

assisting developers with the GeoWave code surroundings.

• GeoWave Capabilities

◦ Add multi-dimensional indexing capability to Apache Accumulo and Apache HBase

◦ Add support for geographic objects and geospatial operators to Apache Accumulo and Apache

HBase

◦ Provide a GeoServer plugin to allow geospatial data in Accumulo and HBase to be shared and

visualized via OGC standard services

◦ Provide Map-Reduce input and output formats for distributed processing and analysis of

geospatial data

• Geospatial software plugins include the following:

◦ GeoServer plugin to allow geospatial data in Accumulo to be shared and visualized via OGC

standard services

◦ PDAL plugin for working with point cloud data

◦ Mapnik plugin for generating map tiles and generally making good looking maps.

Basically, GeoWave is working to bridge geospatial software with distributed compute systems and

attempting to do for distributed key/value stores what PostGIS does for PostgreSQL.

https://accumulo.apache.org
https://hbase.apache.org
http://geoserver.org/
http://geoserver.org/
http://www.pdal.io/
http://mapnik.org/

Origin

GeoWave was developed at the National Geospatial-Intelligence Agency (NGA) in collaboration with

RadiantBlue Technologies and Booz Allen Hamilton. The government has unlimited rights and is

releasing this software to increase the impact of government investments by providing developers

with the opportunity to take things in new directions. The software use, modification, and distribution

rights are stipulated within the Apache 2.0 license.

Intent

Pluggable Backend

GeoWave is intended to be a multidimensional indexing layer that can be added on top of any sorted

key-value store. Accumulo was chosen as the initial target architecture, and support for HBase has

been added as well. Any datastore which allows prefix based range scans should be straightforward

extensions.

Modular Framework Design

The GeoWave architecture is designed to be extremely extensible with most of the functionality units

defined by interfaces and with default implementations of these interfaces to cover most use cases.

GeoWave allows for easy feature extension and platform integration – bridging the gap between

distributed technologies and minimizing the learning curve for developers. The intent is that the out-

of-the-box functionality should satisfy 90% of use cases, but the modular architecture allows for easy

feature extension as well as integration into other platforms.

Self-Describing Data

GeoWave stores the information needed to manipulate data, such as configuration and format, in the

database itself. This allows software to programmatically interrogate all the data stored in a single or

set of GeoWave instances without needing bits of configuration from clients, application servers, or

other external stores.

Scalable

GeoWave is designed to operate either in a single-node setup or it can scale out as large as needed to

support the amount of data and/or processing resources necessary. By utilizing distributed computing

clusters and server-side fine grain filtering, GeoWave is fully capable of performing interactive time

and/or location specific queries on datasets containing billions of features with 100 percent accuracy.

http://www.radiantblue.com/
http://www.boozallen.com/
https://github.com/locationtech/geowave/blob/master/NOTICE
http://www.apache.org/licenses/LICENSE-2.0.html

Overview
For GeoWave users, the primary method of interfacing with GeoWave is through the various

Command-Line Interface (CLI) commands and options. Users will use GeoWave to store, index, or

search multi-dimensional data in a key-value datastore.

Figure 1. High-Level Operational Overview

This typically involves these four steps:

• Configure

Set up/configure a datastore or index on GeoWave for re-use across various operations as needed.

• Ingest/Index

Ingest, or Index, data into a specific store (e.g., Accumulo, HBase)

• Process

Process data using a distributed processing engine (e.g. MapReduce, Spark)

• Query/Discover

Search/Query or Discover data ingested, indexed, or processed/transformed through GeoWave

operations. A common data discovery tool used is GeoServer, which interfaces with GeoWave

through the plugin, for interfacing with the selected datastore, e.g., Accumulo or HBase.

GeoWave uses tiered, gridded, Space Filling Curves (SFCs) to index data into your desired key-value

store. The indexing information is stored in a generic key structure that can also be used for server-

side processing. This architecture allows query, processing, and rendering times to be reduced by

http://geoserver.org/

multiple orders of magnitude.

Figure 2. Tiered, Space Filling Curves

If there are questions or issues encountered, or topics of interest that could be expounded on, please

create an issue within the GeoWave project GitHub page.

https://github.com/locationtech/geowave/issues

Assumptions
Prior to setting up a development environment surrounding the GeoWave project, this guide assumes

that the following components are installed. Because of the continuous changes occurring to these

components, installing, and maintaining, extensive operational capabilities around these components

is outside the scope of this document.

Development & Building

In order to build and/or perform development using the GeoWave source, the following components

are required:

• Java Development Kit (JDK) (>= 1.8)

Requires JDK v1.8 or greater

Download from the Java downloads site. The OracleJDK is the most thoroughly tested but there are

no known issues with OpenJDK.

• Git

Reference online material at Git SCM Site.

For a complete reference guide for installing and using Git, please reference chapters in the online

Pro Git book.

• Maven

Requires a version of Maven >= 3.2.1

For a reference guide for getting started with Maven, please reference the online Maven Getting

Started Guide.

1. Uzazygezen - link:https://code.google.com/p/uzaygezen/

2. GeoTools - link:http://www.geotools.org/

3. Log4J - link:http://logging.apache.org/log4j/1.2/

• Java Advanced Imaging and Java Image I/O

Both are required to be installed on the GeoServer instance(s) as well as on the Accumulo nodes.

The Accumulo support is only required for certain functions (distributed rendering), so this may be

skipped in some cases.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://git-scm.com/
https://git-scm.com/
https://git-scm.com/book/en/v2
https://maven.apache.org/
https://maven.apache.org/guides/getting-started/
https://maven.apache.org/guides/getting-started/
http://www.oracle.com/technetwork/articles/javaee/jai-142803.html
https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/

External Components

Depending on the environment components that are being developed towards and/or tested against,

e.g., requirements, datastores, indices, etc., some external components will be beneficial. While this

information is outside the scope of this document, you can find these requirements in the GeoWave

User Guide.

userguide.html#assumptions
userguide.html#assumptions

Development Setup

Overview

Setting up an environment consists of a few steps:

1. Retrieving the GeoWave Code

2. Install GeoWave

3. Package GeoWave Tools Framework

4. Create Third-Party Plugins From Source

a. GeoServer Plugin

b. Accumulo Plugin

c. HBase Plugin

5. How to Contribute

Retrieving the Code

Users have two options for retrieving the geowave code: either by directly downloading the code

repository in zip archive or cloning the repository, both are accessed directory through GitHub.

Downloading the Code as Zip Archive

This option is for users who do not intend to contribute to the GeoWave project source, and simply

want to collaborate as a read-only user, and still build the code and run in an environment. This is by

far the simplest and most direct way to access the code.

To download a read-only version of the code repository:

1. Open a web browser and navigate to the GeoWave GitHub repository where the different projects

and latest changes can be viewed.

2. If interested in a particular branch, select the branch of choice. Otherwise, leave on the default

master branch for the latest tested changes.

3. Locate the green “Clone or download” button near the top right of the file navigation section.

Figure 3. Clone & Download GeoWave Repository

4. Expand the “Clone or download” pane by clicking on the green button labeled "Clone or download".

Figure 4. Clone & Download GeoWave Source Expanded

5. Download the code by clicking on the “Download ZIP” button. Depending on browser settings, the

code will either download automatically to the user account’s downloads directory or a prompt will

ask for the download destination. If the zip file is automatically downloaded to the downloads

directory, manually move the zip file to the intended destination directory.

6. Navigate on the system to the path where the zip file is located. Once you unzip the downloaded

https://github.com/locationtech/geowave

GeoWave repository source, it is ready for use and building locally.

Cloning the GeoWave Git Repository

For users who intend to either wish to propose contributions to the GeoWave project source, or simply

want a clean way to keep the code up-to-date with the latest committed changes from the GeoWave

team, the GeoWave code source can be cloned through the Git command line interface. Cloning the

repository enables a simplistic interface to where a user can easily compare their current codebase

against the latest code in the master (or a selected branch) repository.

1. Navigate to the system directory where the GeoWave project code is to be located. The code will be

downloaded to a parent folder named “geowave”. Ensure that there is not already an existing

folder titled “geowave”.

2. Clone the git repository by opening a terminal and running the command:

$ git clone https://github.com/locationtech/geowave.git

NOTE

If you do not need the complete history, and want to speed up the clone, you can limit

the depth of the checkout process by appending “-depth NUM_COMMITS” to the clone

command above.

Terminal activity should appear, similar to below, as the repository is cloned. Note that this can

typically take a few minutes.

Cloning into 'geowave'...
remote: Counting objects: 1311924, done.
remote: Compressing objects: 100% (196/196), done.
remote: Total 1311924 (delta 68), reused 0 (delta 0), pack-reused 1311657
Receiving objects: 100% (1311924/1311924), 784.52 MiB | 6.18 MiB/s, done.
Resolving deltas: 100% (1159959/1159959), done.

3. Confirm that the repository clone was successful by ensuring that the GeoWave directory was

created. Running the command “ls –l | grep geowave” should yield a result similar to below.

$ ls -l | grep geowave
drwxr-xr-x 22 {user} {domain group} 748 Mar 16 10:41 geowave

4. Confirm that the GeoWave contents were properly downloaded and cloned by examining the

contents of the 'geowave' directory. Note that the folder entries should look closely identical to the

listings on the GitHub site

$ ls -lah geowave
total 144
drwxr-xr-x 22 {user} {domain group} 748B Mar 16 10:41 .
drwx------+ 9 {user} {domain group} 306B Mar 16 10:33 ..
drwxr-xr-x 12 {user} {domain group} 408B Mar 16 10:44 .git
-rw-r--r-- 1 {user} {domain group} 710B Mar 16 10:35 .gitattributes
-rw-r--r-- 1 {user} {domain group} 147B Mar 16 10:35 .gitignore
drwxr-xr-x 6 {user} {domain group} 204B Mar 16 10:36 .metadata
-rw-r--r-- 1 {user} {domain group} 3.1K Mar 16 10:35 .travis.yml
drwxr-xr-x 7 {user} {domain group} 238B Mar 16 10:35 .utility
-rw-r--r-- 1 {user} {domain group} 11K Mar 16 10:35 LICENSE
-rw-r--r-- 1 {user} {domain group} 724B Mar 16 10:35 NOTICE
-rw-r--r-- 1 {user} {domain group} 8.0K Mar 16 10:35 README.md
drwxr-xr-x 6 {user} {domain group} 204B Mar 16 10:35 analytics
drwxr-xr-x 9 {user} {domain group} 306B Mar 16 10:35 core
drwxr-xr-x 10 {user} {domain group} 340B Mar 16 10:37 deploy
drwxr-xr-x 7 {user} {domain group} 238B Mar 16 10:42 dev-resources
drwxr-xr-x 6 {user} {domain group} 204B Mar 16 10:37 docs
drwxr-xr-x 9 {user} {domain group} 306B Mar 16 10:37 examples
drwxr-xr-x 7 {user} {domain group} 238B Mar 16 10:35 extensions
-rw-r--r-- 1 {user} {domain group} 31K Mar 16 10:35 pom.xml
drwxr-xr-x 6 {user} {domain group} 204B Mar 16 10:35 services
drwxr-xr-x 10 {user} {domain group} 340B Mar 16 10:38 test

The GeoWave source is now ready for use and building locally

Building the Source

Tools Framework Overview

A plugin framework (using Service Provider Interface (SPI)-based injection) is provided with several

input formats and utilities supported out of the box. First, we’ll show how to build and use the built-in

formats and then describe how to create a new plugin.

Building

GeoWave will shortly be available in Maven central (for tagged releases) but until then, or to get the

latest features, building GeoWave from source is the best bet.

Building GeoWave

To build the project source, navigate to the directory into which the GeoWave code was downloaded.

Using Maven from the command line, run the following command in a local terminal:

$ mvn clean install ①

① You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true

-DskipITs=true -DskipTests=true

NOTE

Integration Tests: Windows

Integration tests are currently not working on Windows out of the box. If you install

cygwin and set the environmental variable CYGPATH to the location of the cygpath

binary provided by cygwin to make it work.

Upon executing the command above, you should see a terminal output beginning with similar code

below. Maven will build all the projects in the repository, so this will take a few minutes to complete.

[INFO] Scanning for projects...
[INFO] --
[INFO] Reactor Build Order:
[INFO]
[INFO] GeoWave Parent POM
[INFO] GeoWave Core Parent POM
[INFO] GeoWave CLI
[INFO] GeoWave Index
[INFO] GeoWave Store
[INFO] GeoWave MapReduce
[INFO] GeoWave Ingest Framework
[INFO] GeoWave Spatial and Temporal Support
[INFO] GeoWave Extensions
[INFO] Geowave Vector Adapter
[INFO] Geowave Raster Adapter
[INFO] GeoWave Analytics Parent POM
[INFO] GeoWave Analytics API
[INFO] GeoWave MapReduce Analytics
[INFO] GeoWave Spark Analytics
[INFO] GeoWave Deployment Configurations
[INFO] GeoWave Documentation
[INFO] GeoWave Accumulo
[INFO] GeoWave Hbase
[INFO] GeoWave Examples
[INFO] GeoWave BigTable
[INFO] GeoWave GeoLife Format Support
[INFO] GeoWave Raster Format
[INFO] GeoWave Vector Format
[INFO] GeoWave GPX Format
[INFO] GeoWave T-Drive Format
[INFO] GeoWave GDELT Format Support
[INFO] GeoWave Avro Format
[INFO] GeoWave Twitter Format Support
[INFO] geowave-format-4676
[INFO] GeoWave Services Parent POM
[INFO] GeoWave Services API
[INFO] geowave-service-4676
[INFO] GeoWave Debug Commandline Tools
[INFO] Geowave GeoServer Commandline Tools
[INFO] Geowave OSM Commandline Tools
[INFO] GeoWave LandSat8 Operations
[INFO] GeoWave Java Client for REST services
[INFO] GeoWave REST Services WebApp
[INFO] GeoWave Integration Tests
[INFO]
[INFO] --
[INFO] Building GeoWave Parent POM 1.0.0

[INFO] --

Once this is completed, the compiled artifacts (jar, war, etc.) are “installed” into your local repository

for each respective project. The compiled artifacts are also available in each project target directory.

Maven dependencies

Required repositories not in Maven Central have been added to the parent POM, specifically the

cloudera and opengeo repositories.

Docker Build Process

We have support for building both the GeoWave jar artifacts and RPMs from Docker containers. This

capability is useful for a number of different situations:

• Jenkins build workers can run Docker on a variety of host-operating systems and build for others

• Anyone running Docker will be able to duplicate our build and packaging environments

• Will allow us to build on existing container clusters instead of single purpose build VMs

If building artifacts using Docker containers interests you, check out the README in

deploy/packaging/docker.

Creating Eclipse Projects

In order to facilitate a more complete development environment, we now need to get the GeoWave

source code into an Integrated Development Environment (IDE). This section will walk you through

how to import Maven projects into the Eclipse IDE.

NOTE

There are several IDEs available, though this guide will assume use of Eclipse. If you

are developing in a different IDE than Eclipse, there are likely guides on the internet to

guide you through converting a Maven project into your IDE.

Using the Eclipse Maven M2Eclipse plugin, we can import maven projects into eclipse, and eclipse will

automatically resolve/download dependencies listed in the pom.xml file for each project.

NOTE
If any project pom.xml dependencies are changed/updated, Eclipse will automatically

update the project and any downstream changes to related/depependent projects.

1. Import the Maven GeoWave projects into the Eclipse workspace.

a. Within Eclipse, select File → Import.

https://github.com/locationtech/geowave/tree/master/deploy/packaging/docker
http://www.eclipse.org/m2e/

Figure 5. Eclipse File Import Menu

b. From the "Import" window, select the option under "Maven" for "Existing Maven Projects" and

select the "Next" button.

Figure 6. Existing Maven Projects Wizard

c. From the "Import Maven Projects" window, select the “Browse” button and navigate to the root

directory where the GeoWave source is located on the file system. Once found, select the

geowave directory and select the "Open" button.

d. Within the "Import Maven Projects" window, the “Projects” pane should now be populated with

all of the GeoWave projects. Select the "Finish" button to exit.

e. Upon returning to the workspace in Eclipse, the Project Explorer pane should now be populated

with all of the GeoWave projects.

Figure 7. Eclipse Workspace

Packaging the Source

This section is intended to outline how to package the various GeoWave builds into deployable jar files.

Packaging CLI Tools Framework

When the GeoWave code is ready for packaging and deployment, the code can be easily packaged up

using Maven by running the command below from the GeoWave home directory:

$ mvn package -P geowave-tools-singlejar ①

① You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true

-DskipITs=true -DskipTests=true

This process will take a minute or two to build.

Once the packaging process has completed, the geowave-tools jar is now packaged in the deploy/target

directory.

When packaged for installation, there will be a wrapper alias command named 'geowave' that will be

installed in $PATH.

In a development environment where this script has not been installed, a directory containing the

tools jar can be created with any needed plugin jars and used with something like the following

command:

java -cp "$DIR/* <operation> <options>

Alternatively, if operating in an *nix-based environment, adding the command as an alias to the user

profile can be performed by following these steps:

1. Open the user account profile script for editing.

$ vi ~/.profile [Press Enter]

2. Add an alias to the profile for geowave. The alias will be structured similar to that below.

alias geowave="java -cp $GEOWAVE_HOME/deploy/target/geowave-deploy-1.0.0-tools.jar
org.locationtech.geowave.core.cli.GeoWaveMain"

NOTE
Replace $GEOWAVE_HOME with the value of the GeoWave home directory or create

an environment variable for that name and value.

3. Save and close editor.

:q! [Press Enter]

4. Update profile in current environment.

$ source ~/.profile [Press Enter]

At this point, you can now run GeoWave Command Line Instructions. For a full list of these commands,

please see the GeoWave CLI Appendix.

commands.html

How to Contribute

GeoWave is an open source project and we welcome contributions from the community.

Pull Requests

Pull requests from non locationtech member must be done though a forked repository.

To create a new fork, just click the the "Fork" button at the top of the GeoWave GitHub page. You can

now submit pull requests from your working branch on your fork directly to the master branch on

locationtech.

GeoWave uses a Maven plugin formatter to keep all of our code standardized. You should run a Maven

install immediately prior to committing and pushing changes.

Prior to submitting a pull request, please squash down your commits into one. This will help keep our

commit history clean and will cut down on "in progress commits" that don’t relay any helpful

information in the future.

All pull request contributions to this project will be released under the Apache 2.0 license.

Software source code previously released under an open source license and then modified by NGA

staff is considered a "joint work" (see 17 USC 101); it is partially copyrighted, partially public domain,

and as a whole is protected by the copyrights of the non-government authors and must be released

according to the terms of the original open source license.

Architecture

Overview

Figure 8. GeoWave Architecture Overview

The core of the GeoWave architecture concept is getting data in (Ingest), and pulling data out (Query).

There are also two types of data persisted in the system: feature data and metadata. Feature data is the

actual set of attributes and geometries that are stored for later retrieval. Metadata describes how the

data is persisted in the database. The intent is to store the information needed for data discovery and

retrieval in the database. This means that an existing data store isn’t tied to a bit of configuration on a

particular external server or client but instead is “self-describing.”

Persistence

Three things are required to load data into a working accumulo cluster: an index, feature type, and

supported source format.

Source Formats

Leveraging the GeoTools infrastructure, GeoWave supports ingesting any DataSource that GeoTools

supports. Currently supported data types include:

• arcgrid

• arcsde

• db2

• raster formats

◦ geotiff

◦ grassraster

◦ gtopo30

◦ imageio-ext-gdal

◦ imagemoasaic

◦ imagepyramid

◦ JP2K

• Database “jdgc-ng” support

◦ h2

◦ mysql

◦ oracle

◦ postgis

◦ spatialite

◦ sqlserver

• postgis

• property file

• shapefile

• dfs

• edigeo

• geojson

• wfs

For a current list of supported formats, refer to the GeoTools User Guide. Reference the version of

GeoTools that GeoWave was built against (currently 18.1).

Indexes

The core engine to quickly retrieve data from GeoWave is a SFC-based index. This index can be

configured with several different parameters:

• number of levels

• number of dimensions

• cardinality of each dimension

• dimension type (bounded/unbounded)

• value range of each dimension

More on each of these properties will be described later, but the intent of this list is to provide a notion

of what type of configuration information is persisted.

In order to insert data in a datastore, the configuration of the index has to be known. The index is

persisted in a special table and is referenced back via table name to a table with data in it. Therefore,

queries can retrieve data without requiring index configuration. There is a restriction that only one

index configuration per table is supported, i.e., you can’t store data on both a 2-dimensional and 3-

dimensional index in the same table. (You could store 2-dimensional geometry types in a 3-dimensional

index though).

Adapters

In order to store geometry, attributes, and other information, a format is required that describes how

to serialize and deserialize the data. GeoWave provides an interface that handles the serialization and

deserialization of feature data. A default implementation supporting the GeoTools simple feature type

is included by default. More on this specific implementation, as well as the interface, will be detailed

later in this document. A pointer to the Java class, expected to be on the classpath, is stored in the

Adapter persistence table. This is loaded dynamically when the data is queried and the results are

translated to the native data type.

Feature Serialization

http://docs.geotools.org/stable/userguide/faq.html

Figure 9. Feature Serialization

GeoWave allows developers to create their own data adapters. Adapters not only determine how the

data is actually stored (serialization/deserialization), but also contain a hierarchy of attribute types.

The reason for this hierarchy has to do with extensibility vs. optimization. A data adapter could

theoretically take a dependency on ffmpeg, store the feature as metadata in a video stream, and persist

that value to the database. All questions of sanity of this solution aside, there are some additional

specific issues with the way fine grain filtering is done, specifically due to the iterators.

Based on this, our goal was to minimize the code and standardize on as few iterators as possible. This

conflicted with the desire to allow maximum flexibility with arbitrary DataAdapters. A middle ground

was found and this hierarchy was created. Some standardization was put in place around how certain

data types would be stored and serialized, but a "native data" portion was still left in place for

arbitrary data. The caveat is that native data cannot be used in distributed (iterator based) filtering -

only in client side filtering.

Primary Index Data

These are sets of data that are also used to construct the primary index SFC. They will typically be

geometry coordinates and optionally time, but could be any set of numeric values (think decomposed

feature vectors, etc.). They cannot be null.

Common Index Data

These are a collection of attributes. There can be any number of attributes but they must conform to

the NumericDimensionField interface. The attribute type must have a FieldReader and a FieldWriter

that is within the classpath of the tablet servers. GeoWave provides a basic implementation for these

attribute types:

Boolean Byte Short Float Double BigDecimal Integer

Long BigInteger String Geometry Date Calendar

The values that are not part of the primary index can be used for distributed secondary filtering and

can be null. The values that are associated with the primary index will be used for fine-grained

filtering within an iterator.

Native Data

These can be literally anything. No distributed filtering can be performed on this data except for

Accumulo’s visibility filter, but the client-side filtering extensibility point can still be used if necessary.

The Data Adapter has to provide methods to serialize and deserialize these items in the form of Field

Readers and Writers, but it is not necessary to have these methods on the classpath of any nodes.

Field Writers/Readers

These are type specific implementations used by

org.locationtech.geowave.core.store.adapter.DataAdapter to tell GeoWave how to serialize or

deserialize information of a certain type. The default implementations are included in the distributed

filter iterators. This is what drives the type requirements listed above in the Common Index Data

section.

Writing Data

When writing data, writing implementation classes should implement the Writable interface.

Writing Vector Data

When writing vector data, GeoWave provides the default vector writable implementation, the

org.locationtech.geowave.adapter.vector.FeatureWritable class.

This class is used by org.locationtech.geowave.adapter.vector.FeatureDataAdapter to persist

org.opengis.feature.simple.SimpleFeature and its org.opengis.feature.simple.SimpleFeatureType. The

attribute types of the feature must be understood before the feature can be deserialized so therefore

each org.opengis.feature.simple.SimpleFeature serializes its type.

NOTE
This class caches feature type information. If the feature type changes, then the cache

should be emptied using the clearCache() method.

Writing Raster Data

When writing raster data, GeoWave provides the default raster writable implementation, the

org.locationtech.geowave.adapter.raster.adapter.GridCoverageWritable class.

https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/dimension/NumericDimensionField.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/data/field/FieldReader.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/data/field/FieldWriter.java
https://hadoop.apache.org/docs/r2.6.1/api/org/apache/hadoop/io/Writable.html
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/FeatureWritable.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/FeatureDataAdapter.java
http://docs.geotools.org/stable/javadocs/org/opengis/feature/simple/SimpleFeature.html
http://docs.geotools.org/stable/javadocs/org/opengis/feature/simple/SimpleFeatureType.html
http://docs.geotools.org/stable/javadocs/org/opengis/feature/simple/SimpleFeature.html
https://github.com/locationtech/geowave/blob/master/extensions/adapters/raster/src/main/java/org/locationtech/geowave/adapter/raster/adapter/GridCoverageWritable.java

This class is used by GridCoverageDataAdapter, e.g.,

org.locationtech.geowave.adapter.raster.adapter.RasterDataAdapter, to persist

org.opengis.coverage.grid.GridCoverage. The adapter has information regarding the sample model and

color model so all that is necessary to persist is the buffer and the envelope.

Key Structure

Figure 10. Accumulo Data Schema

The above diagram describes the default structure of entries in the data store. The Index ID comes

directly from the tiered SFC implementation. We do not impose a requirement that Data IDs are

globally unique but they should be unique for the adapter. Therefore, the pairing of Adapter ID and

Data ID define a unique identifier for a data element. The lengths are stored within the Row ID as 4

byte integers. This enables fully reading the Row ID because these IDs can be of variable length. The

number of duplicates is stored within the Row ID as well to inform the de-duplication filter whether

this element needs to be temporarily stored in order to ensure no duplicates are sent to the caller. The

Adapter ID is within the Row ID to enforce unique Row IDs as a whole row iterator is used to aggregate

fields for the distributable filters. The Adapter ID is also used as the column family as the mechanism

for adapter-specific queries to fetch only the appropriate column families.

https://github.com/locationtech/geowave/blob/master/extensions/adapters/raster/src/main/java/org/locationtech/geowave/adapter/raster/adapter/RasterDataAdapter.java
http://docs.geotools.org/stable/javadocs/org/opengis/coverage/grid/GridCoverage.html

Statistics
Adapters provide a set of statistics stored within a statistic store. The set of available statistics is

specific to each adapter as well as the set of attributes for those data items managed by the adapter.

Statistics include:

• Ranges over an attribute, including time

• Enveloping bounding box over all geometries

• Cardinality of the number of stored items

• Histograms over the range of values for an attribute

• Cardinality of discrete values of an attribute

Statistics are updated during data ingest and deletion. Range and bounding box statistics reflect the

largest range over time. Those statistics are not updated during deletion. Statistics based on cardinality

are updated upon deletion.

Re-computation of statistics is required in three circumstances:

1. As indexed items are removed from the adapter store, the range and envelope statistics may lose

their accuracy if the removed item contains an attribute that represents the minimum or

maximum value for the population.

2. New statistics added to the statistics store after data items are ingested. These new statistics do not

reflect the entire population.

3. Software changes invalidate prior stored images of statistics.

Statistics retain the same visibility constraints as the associated attributes. Thus, there is a set of

statistics for each unique constraint. The statistics store answers each statistics inquiry for a given

adapter with only those statistics matching the authorizations of the requester. The statistics store

merges authorized statistics covering the same attribute.

Figure 11. Statistics Merge

Table Structure

Figure 12. Statistics Structure

Ingest

Overview

In addition to the raw data to ingest, the ingest process requires an adapter to translate the native data

into a format that can be persisted into the data store. Also, the ingest process requires an index which

is a definition of all the configured parameters that define how data is translated to Row IDs (how it is

indexed) and what common fields need to be maintained within the table to be used by fine-grained

and secondary filters.

Figure 13. Ingest Architecture

The logic within the ingest process immediately ensures that the index and data adapter are persisted

within the Index Store and the Adapter Store to support self-described data discovery. In-memory

implementations of both of these stores are provided for cases when connections to third-party

datastores (e.g., Accumulo, HBase) are undesirable in the ingest process, such as ingesting bulk data in

a Map-Reduce job. Then the flow determines the set of Row IDs that the data will need to be inserted

into. Duplication is essential under certain circumstances and therefore data may be inserted in

multiple locations, e.g., polygons that cross the dateline or date ranges that cross binning boundaries

such as December 31-January 1 when binning by year. De-duplication is always performed as a client

filter when querying the data. This will be combined with the actual data in a persistable format, after

a translation has been performed by the adapter to create a set of mutations.

There is a Writer interface that the data store’s AccumuloOperations will instantiate that specifies how

the mutations will actually be written. The default implementation will wrap an Accumulo

BatchWriter with this interface, but in some cases it could make sense to provide a custom

implementation of the writer. This process is the same when using an HBase datastore. When

performing a bulk ingest within the mapper or reducer of a job, it would be appropriate to define a

writer to add the mutations to the context of the bulk ingest rather than writing live to Accumulo or

HBase.

The full list of GeoWave ingest commands can be found in the commands.html#ingest-

commands[GeoWave CLI Appendix^].

Ingest Plugins

The GeoWave command line utility comes with several plugins out of the box. You can list the available

plugins that are registered with your commandline tool.

geowave ingest listplugins

You can add more by simply copying a desired plugin into the /usr/local/geowave/tools/plugins

directory.

Available index types currently registered as plugins:

 spatial_temporal:
 This dimensionality type matches all indices that only require Geometry and Time.

 spatial:
 This dimensionality type matches all indices that only require Geometry.

Available ingest formats currently registered as plugins:

 twitter:
 Flattened compressed files from Twitter API

 geotools-vector:
 all file-based vector datastores supported within geotools

 geolife:
 files from Microsoft Research GeoLife trajectory data set

 gdelt:
 files from Google Ideas GDELT data set

 stanag4676:
 xml files representing track data that adheres to the schema defined by STANAG-4676

 geotools-raster:
 all file-based raster formats supported within geotools

 gpx:
 xml files adhering to the schema of gps exchange format

 tdrive:
 files from Microsoft Research T-Drive trajectory data set

 avro:
 This can read an Avro file encoded with the SimpleFeatureCollection schema. This
schema is also used by the export tool, so this format handles re-ingesting exported
datasets.

Available datastores currently registered:

 accumulo:
 A GeoWave store backed by tables in Apache Accumulo

 bigtable:
 A GeoWave store backed by tables in Google's Cloud BigTable

 hbase:
 A GeoWave store backed by tables in Apache HBase

Ingest Statistics and Time Dimension Configuration

The available plugins for vector support adjustments to their configuration via the command line. The

system property 'SIMPLE_FEATURE_CONFIG_FILE' may be assigned to the name of a locally accessible

JSON file defining the configuration.

Example

$ GEOWAVE_TOOL_JAVA_OPT="-DSIMPLE_FEATURE_CONFIG_FILE=myconfigfile.json"
$ geowave ingest localtogw ./ingest mystore myindex

Configuration consists of several parts:

1. Selecting temporal attributes for a temporal index.

2. Assigning to each attribute the type of statistics to be captured within the statistics store.

3. Determining which attributes should be indexed in a secondary index.

4. Determining which attribute contains visibility information for other attributes

5. Setting the names of the indices to update in WFS-T transactions via the GeoServer plug-in.

The JSON file is made up of configurations. Each configuration is defined by a class name and a set of

attributes. Configurations are grouped by the Simple Feature Type name.

Temporal Configuration

There three attributes for the temporal configuration are:

1. timeName

2. startRangeName

3. endRangeName

These attributes are associated with the name of a simple feature type attribute that references a time

value. To index by a single time attribute, set timeName to the name of the single attribute. To index by a

range, set both startRangeName and endRangeName to the names of the simple feature type attributes that

define start and end time values.

Statistics Configuration

Each simple feature type attribute may have several assigned statistics. Bounding box and range

statistics are automatically captured for geometry and temporal attributes.

Attribute
Type

Statistic Name Statistic
Configuration
Attributes (with
default values)

Statistic Class

Numeric Fixed Bin Histogram minValue=-∞,
maxValue=∞,
bins=32

org.locationtech.geowave.adapter.vector.st
ats.
FeatureFixedBinNumericStatistics$Feature
FixedBinConfig

Dynamic Histogram org.locationtech.geowave.adapter.vector.st
ats.
FeatureNumericHistogramStatistics$Featu
reNumericHistogramConfig

Numeric Range org.locationtech.geowave.adapter.vector.st
ats.
FeatureNumericRangeStatistics$FeatureNu
mericRangeConfig

String Count Min Sketch errorFactor=0.001,
probabilityOfCorre
ctness=0.98

org.locationtech.geowave.adapter.vector.st
ats.
FeatureCountMinSketchStatistics$FeatureC
ountMinSketchConfig

Hyper Log Log precision=16 org.locationtech.geowave.adapter.vector.st
ats.
FeatureHyperLogLogStatistics$FeatureHyp
erLogLogConfig

Visibility Configuration

Visibility configuration has two attributes: the visibility manager class and the visibility attribute

name.

A Visibility manager extends org.locationtech.geowave.core.store.data.visibility.VisibilityManagement.

An instance of this class interprets the contents of a visibility attribute, within a simple feature, to

determine the visibility constraints of the other attributes in that simple feature. The default visibility

management class is

org.locationtech.geowave.adapter.vector.plugin.visibility.JsonDefinitionColumnVisibilityManagement.

Secondary Index Configuration

Secondary Index Configurations is made up of one of these three classes:

• org.locationtech.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration

• org.locationtech.geowave.adapter.vector.index.TemporalSecondaryIndexConfiguration

• org.locationtech.geowave.adapter.vector.index.TextSecondaryIndexConfiguration

https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureFixedBinNumericStatistics.java#L130
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureFixedBinNumericStatistics.java#L130
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureFixedBinNumericStatistics.java#L130
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureFixedBinNumericStatistics.java#L130
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericHistogramStatistics.java#L356
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericHistogramStatistics.java#L356
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericHistogramStatistics.java#L356
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericHistogramStatistics.java#L356
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericRangeStatistics.java#L128
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericRangeStatistics.java#L128
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericRangeStatistics.java#L128
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureNumericRangeStatistics.java#L128
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureCountMinSketchStatistics.java#L203
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureCountMinSketchStatistics.java#L203
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureCountMinSketchStatistics.java#L203
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureCountMinSketchStatistics.java#L203
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureHyperLogLogStatistics.java#L205
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureHyperLogLogStatistics.java#L205
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureHyperLogLogStatistics.java#L205
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/stats/FeatureHyperLogLogStatistics.java#L205
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/data/visibility/VisibilityManagement.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/plugin/visibility/JsonDefinitionColumnVisibilityManagement.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/index/NumericSecondaryIndexConfiguration.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/index/TemporalSecondaryIndexConfiguration.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/index/TextSecondaryIndexConfiguration.java

Each of this configurations maintains a set of simple feature attribute names to index in a secondary

index.

Primary Index Identifiers

The class org.locationtech.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration is

used to maintain the configuration of primary indices used for adding or updating simple features via

the GeoServer plug-in (FeatureWriter).

Example

https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/index/SimpleFeaturePrimaryIndexConfiguration.java

{
 "configurations": {
 "myFeatureTypeName" : [
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.utils.TimeDescriptors$TimeDescriptorConfiguratio
n",
 "startRangeName" : null,
 "endRangeName" : null,
 "timeName" : "captureTime"
 },
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration",
 "attributes" : ["pop"]
 },
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.plugin.visibility.VisibilityConfiguration",
 "attributeName" : "vis"
 },
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration",
 "indexNames" : ["SPATIAL_IDX"]
 }
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.stats.StatsConfigurationCollection$SimpleFeature
StatsConfigurationCollection",
 "attConfig" : {
 "population" : {
 "configurationsForAttribute" : [
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.stats.FeatureFixedBinNumericStatistics$FeatureFi
xedBinConfig",
 "bins" : 24
 }
]
 },
 "country" : {
 "configurationsForAttribute" : [
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.stats.FeatureCountMinSketchStatistics$FeatureCou
ntMinSketchConfig",

 "probabilityOfCorrectness" : 0.98,
 "errorFactor" : 0.001
 },
 {
 "@class" :
"org.locationtech.geowave.adapter.vector.stats.FeatureHyperLogLogStatistics$FeatureHyperL
ogLogConfig"
 }
]
 }
 }
 }
]
 }
}

Index Strategies

Indexing data within GeoWave can be done in many ways, depending on the nature of what data is

being indexed and which properties are of interest to be indexed/queried.

All GeoWave indexes must implement the IndexStrategy interface. When data is indexed, the

IndexStrategy implementation is applied during processing and indexes the data as a Persistable object

in order to support serialization and deserialization within GeoWave.

Currently, all index strategy implementations implement either the FieldIndexStrategy interface or the

NumericIndexStrategy interface.

FieldIndexStrategy

The FieldIndexStrategy interface is a more generic strategy for defining data to be indexed, which can

be mostly any type. Each implementation of this strategy is responsible for defining how to serialize

and de-serialize the data as well as each of the other indexing strategy methods.

NumericIndexStrategy

As the name implies, the NumericIndexStrategy was designed for indexing numeric data and defines

methods which describe the numeric data a bit further.

IndexStrategy Hierarchy

The diagram below outlines the hierarchy of the various index strategies currently available within

GeoWave.

Figure 14. IndexStrategy Hierarchy

https://github.com/locationtech/geowave/tree/master/core/index/src/main/java/org/locationtech/geowave/core/index/IndexStrategy.java
https://github.com/locationtech/geowave/tree/master/core/index/src/main/java/org/locationtech/geowave/core/index/Persistable.java
https://github.com/locationtech/geowave/tree/master/core/index/src/main/java/org/locationtech/geowave/core/index/FieldIndexStrategy.java
https://github.com/locationtech/geowave/tree/master/core/index/src/main/java/org/locationtech/geowave/core/index/NumericIndexStrategy.java

If there is not a suitable index strategy implementation that exists for your data being indexed, one can

be developed according to the specific needs of your data and mission. Feel free to reference the

strategies described above or any of the examples available.

New Formats

When trying to ingest new data formats, new ingest plugins need to be written to interface with the

different data types. Format plugins hook into the ingest framework and allow decoupling from the

datastores, e.g., accumulo or hbase, and an index. Generally the intent is to limit a format plugin to

what it takes to translate raw files into GeoWave rows. For vector data, geowave rows implies the

GeoTools' SimpleFeature object and for raster it implies the GeoTools' GridCoverage object.

Additionally, a data format can supply a translation from a file to any custom schema, which will be in

turn used as an intermediate format to support distributed ingest.

Ingest plugins should extend the AbstractSimpleFeatureIngestPlugin.

Any of our extensions/formats projects are good examples for extensible new formats that can be

discovered at runtime, such as the AvroIngestPlugin, or any of the other existing ingest plugins, such as

those listed below:

• AbstractSimpleFeatureIngestPlugin

◦ AvroIngestPlugin

◦ GDELTIngestPlugin

◦ GeoLifeIngestPlugin

◦ GpxIngestPlugin

◦ TdriveIngestPlugin

◦ TwitterIngestPlugin

https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/ingest/AbstractSimpleFeatureIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/avro/src/main/java/org/locationtech/geowave/format/avro/AvroIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/avro/src/main/java/org/locationtech/geowave/format/avro/AvroIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/gdelt/src/main/java/org/locationtech/geowave/format/gdelt/GDELTIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/geolife/src/main/java/org/locationtech/geowave/format/geolife/GeoLifeIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/gpx/src/main/java/org/locationtech/geowave/format/gpx/GpxIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/tdrive/src/main/java/org/locationtech/geowave/format/tdrive/TdriveIngestPlugin.java
https://github.com/locationtech/geowave/blob/master/extensions/formats/twitter/src/main/java/org/locationtech/geowave/format/twitter/TwitterIngestPlugin.java

Analytics

Overview

Analytics embody algorithms tailored to geospatial data. Most analytics leverage Hadoop MapReduce

for bulk computation. Results of analytic jobs consist of vector or raster data stored in GeoWave. The

analytics infrastructure provides tools to build algorithms in Spark. For example, a Kryo

serializer/deserializer enables exchange of SimpleFeatures and the GeoWaveInputFormat supplies

data to the Hadoop RDD.

NOTE
GeoWaveInputFormat does not remove duplicate features that reference polygons

spanning multiple index regions.

The following algorithms are provided:

Name Description

KMeans++ A K-Means implementation to find K centroids over the population of data. A set of
preliminary sampling iterations find an optimal value of K and the an initial set of K
centroids. The algorithm produces K centroids and their associated polygons. Each
polygon represents the concave hull containing all features associated with a
centroid. The algorithm supports drilling down multiple levels. At each level, the set
centroids are determined from the set of features associated the same centroid from
the previous level.

KMeans Jump Uses KMeans++ over a range of k, choosing an optimal k using an information
theoretic based measurement.

KMeans
Parallel

Performs a KMeans Parallel Cluster

DBScan The Density Based Scanner algorithm produces a set of convex polygons for each
region meeting density criteria. Density of region is measured by a minimum
cardinality of enclosed features within a specified distance from each other.

Nearest
Neighbors

A infrastructure component that produces all the neighbors of a feature within a
specific distance.

Building

Build the GeoWave tools project as explained in the "ToolsFramework → Building" section.

Running

yarn jar geowave-tools.jar analytic <algorithm> <options> <store>

The above command will execute <algorithm> (such as dbscan), sourcing the data from the <store>

datastore (see store add in the GeoWave CLI commands).

Analytic Commands

The full list of GeoWave analytic commands can be found in the GeoWave CLI Appendix.

commands.html#store-add
commands.html#analytic-commands

Query
A query in GeoWave currently consists of a set of ranges on the dimensions of the primary index. Up to

three dimensions (plus temporal optionally) can take advantage of any complex OGC geometry for the

query window. For dimensions of four or greater, the query can only be a set of ranges on each

dimension (e.g., hyper-rectangle, etc.).

Overview

Figure 15. Query Architecture

The query geometry is decomposed by GeoWave into a series of ranges on a one-dimensional number

line based on a compact Hilbert space filling curve ordering. These ranges are sent through a batch

scanner to all the tablet servers. These ranges represent the coarse grain filtering.

At the same time, the query geometry has been serialized and sent to custom iterators. These iterators

then do a second stage filtering on each feature for an exact intersection test. Only if the stored

geometry and the query geometry intersect does the processing chain continue.

A second order filter can then be applied. This is used to remove features based on additional

attributes - typically time or other feature attributes. These operators can only exclude items from the

set defined by the range, not any additional features — think "AND" operators - not "OR".

A final filter is possible on the client set, after all the returned results have been aggregated together.

Currently, this is only used for final de-duplication. Whenever possible, the distributed filter options

should be used, as it splits the work load among all the tablet servers.

Query Implementation

GeoWave queries must implement the org.locationtech.geowave.core.store.query.Query interface.

Like most other query environments (e.g., SQL in RDBMS), queries can be as simple or as complex as

necessary. The most basic query within GeoWave would be the EverythingQuery, equivilent to the SQL

"star-search" query, where no constraints are added to the query.

A more useful example of a simple query to reference as an example with a constraint would be the

SpatialQuery or the TemporalQuery.

While GeoWave query implementations can be customized to meet the specific needs of the data being

ingested and/or indexed within GeoWave, the follow queries already exist in the latest version of

GeoWave:

• Query

◦ AdapterIdQuery

◦ BatchIdQuery

◦ DataIdQuery

◦ EverythingQuery

◦ PrefixIdQuery

◦ RowIdQuery

◦ DistributableQuery

▪ BasicQuery

• SpatialQuery

◦ IndexOnlySpatialQuery

◦ SpatialTemporalQuery

• TemporalQuery

▪ CoordinateRangeQuery

▪ CQLQuery

https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/Query.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/EverythingQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/SpatialQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/TemporalQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/Query.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/AdapterIdQuery.java
https://github.com/locationtech/geowave/blob/master/analytics/api/src/main/java/org/locationtech/geowave/analytic/clustering/DistortionGroupManagement.java#L131
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/DataIdQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/EverythingQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/PrefixIdQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/RowIdQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/DistributableQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/BasicQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/SpatialQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/IndexOnlySpatialQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/SpatialTemporalQuery.java
https://github.com/locationtech/geowave/blob/master/core/geotime/src/main/java/org/locationtech/geowave/core/geotime/store/query/TemporalQuery.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/query/CoordinateRangeQuery.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/org/locationtech/geowave/adapter/vector/query/cql/CQLQuery.java

Contextual Query Language

Queries are structured implementing the Contextual Query Language (CQL), formerly known/referred

to as the Common Query Language. CQL was developed with the intent of being a formalized

representation for queries in various databases or for other information in storage systems. It was

intended to make queries more human readable and understandable while still maintaining the

complexity that is often necessary.

CQL is used primarily by GeoServer for performing filters and queries on GeoWave data. For more

details on this, please refer to the GeoServer tutorials.

For more information on the CQL specifications, please reference the official Library of Congress CQL

standards website. Additionally, examples and details on the Query Syntax can be found in the CQL

specs section.

http://docs.geoserver.org/latest/en/user/tutorials/cql/cql_tutorial.html
http://www.loc.gov/standards/sru/cql/
http://www.loc.gov/standards/sru/cql/
http://www.loc.gov/standards/sru/cql/spec.html
http://www.loc.gov/standards/sru/cql/spec.html

Services

gRPC

GeoWave’s gRPC service provides a way for remote gRPC client applications to interact with GeoWave.

gRPC Protobuf

During the build process, GeoWave auto-generates protobuf message files (.proto) for all GeoWave

commands that derive from the abstract class ServiceEnabledCommand. The source for the generation

process may be found in the geowave-grpc-protobuf-generator project. The auto-generated protobuf

files, as well as any manually-generated GeoWave protobuf files can be located in the geowave-grpc-

protobuf project. The protobuf files are compiled to their respective Java classes by this project as well.

For more details on protobuf, please refer to the Protocol Buffers tutorials

gRPC server

The gRPC server discovers and loads all GeoWave gRPC service implementations via the

GeoWaveGrpcServiceSpi interface. The server code and gRPC service implementations may be found

in the geowave-grpc-server project. This project also contains definitions for a few CLI commands to

start and stop the server.

https://developers.google.com/protocol-buffers/

Third Party

GeoServer

GeoWave supports both raster images and vector data exposed through GeoServer. An in-depth

overview of GeoServer is outside the scope of the developer guide. For details on GeoServer, as well as

how to configure or add GeoWave datastores, please reference the GeoWave User Guide.

userguide.html#geoserver

Installation from RPM
There is a public GeoWave RPM Repo available with the various distribution packages available

through GeoWave. The RPM Repo page will list the different packages and vendors available. For

details and examples on how to search, install, and update GeoWave packages through command-line,

please see the GeoWave User Guide.

packages.html
userguide.html#install-from-rpm

Maven Artifacts
Both release and snapshot GeoWave artifacts are available on Maven Central.

You can use maven to reference pre-built GeoWave artifacts with the following pom.xml snippet

(replacing ${keyvalue-datastore} with your datastore of choice and ${geowave.version} with the

geowave version you’d like to use):

<dependencies>
<dependency>
<groupId>org.locationtech.geowave</groupId>
<artifactId>geowave-datastore-${keyvalue-datastore}</artifactId>
<version>${geowave.version}</version>
</dependency>
<dependency>
<groupId>org.locationtech.geowave</groupId>
<artifactId>geowave-adapter-vector</artifactId>
<version>${geowave.version}</version>
</dependency>
<dependency>
<groupId>org.locationtech.geowave</groupId>
<artifactId>geowave-adapter-raster</artifactId>
<version>${geowave.version}</version>
</dependency>
</dependencies>

Also, to use GeoWave’s snapshots add the following repository to your pom.xml:

<repository>
<id>ossrh</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>

Create Third-Party Plugins
This section focuses on describing how to create GeoWave plugins for third-party components.

• GeoServer

• Accumulo Plugin

• HBase Plugin

GeoServer Plugin

This section will outline how to generate GeoServer plugin jar, which can be deployed and run within

an operating GeoServer server in order to be able to perform GeoWave functionality within GeoServer.

GeoServer Versions

GeoWave has to be built against specific versions of GeoWave and GeoTools. To see the currently

supported versions, look at the build matrix section of the .travis.yml file in the root directory of the

project.

Create GeoServer Plugin

First we need to build the GeoServer plugin. From the GeoWave root directory, run the following

command:

mvn package -P geotools-container-singlejar ①

① You can speed up the build by skipping tests by appending to the command "-Dfindbugs.skip=true

-Dformatter.skip=true -DskipITs=true -DskipTests=true" (no quotes)

Once the above command is successfully run, the GeoServer plugin jar file can be found within the

'deploy/target/' directory.

Let’s assume you have GeoServer deployed in a Tomcat container in '/opt/tomcat'.

cp deploy/target/*-geoserver-singlejar.jar /opt/tomcat/webapps/geoserver/WEB-INF/lib/

Now re-start Tomcat.

NOTE Previous versions of the GeoWave RPMs (0.9.5 and below) used Jetty instead of Tomcat.

Accumulo Plugin

This section will outline how to generate an Accumulo plugin jar, that can be either deployed and run

on either a single node or an operational and distributed cluster for interacting with Accumulo within

GeoWave.

Accumulo Versions

GeoWave has been tested and worked against Accumulo 1.5.0 through 1.7.2.

Create Accumulo Plugin

From the GeoWave root directory, run the following command to create the accumulo plugin:

mvn package -P accumulo-container-singlejar ①

① You can speed up the build by skipping tests by appending to the command: "-Dfindbugs.skip=true

-Dformatter.skip=true -DskipITs=true -DskipTests=true" (no quotes).

Once the above command is successfully run, the Accumulo plugin jar file can be found within the

'deploy/target/' directory.

For details on configuring Accumulo, please refer to the Accumulo Configuration section.

091-accumulo-config.pdf#accumulo-config

HBase Plugin

This section will outline how to generate an hbase plugin jar, that can be deployed and run on either a

single node or an operational and distributed cluster for interacting with HBase within GeoWave.

HBase Versions

GeoWave has been tested and worked against HBase 1.2.1 and forward.

Create HBase Plugin

From the GeoWave root directory, run the following command to create the hbase plugin:

mvn package -P hbase-container-singlejar ①

① You can speed up the build by skipping tests by appending to the command: "-Dfindbugs.skip=true

-Dformatter.skip=true -DskipITs=true -DskipTests=true" (no quotes).

Once the above command is successfully run, the hbase plugin jar file can be found within the

'deploy/target/' directory.

Jace JNI Proxies
Using Jace, we are able to create JNI proxy classes for GeoWave that can be used in C/C++ applications.

Boost is required when using the Jace bindings.

Prepackaged Source and Binaries

There is a public GeoWave RPM Repo where you can download a tarball for the GeoWave Jace

bindings for your desired platform. If your platform is not available, there is a source tarball that can

be used in conjunction with CMake to build the GeoWave Jace bindings for your desired platform.

Generate Proxies and Build from Source

If you want, you can generate and build the Jace proxies yourself.

Step 1 - Checkout Jace and GeoWave

First, we need to clone Jace and GeoWave.

$ git clone git@github.com:jwomeara/jace.git
$ git clone git@github.com:locationtech/geowave.git

Note: We are using a non-standard Jace implementation.

Step 2 - Install Jace

First, we need to install Jace v1.3.0. This is the software that is used to generate the C++ proxy classes.

$ cd jace
$ git checkout tags/v1.3.0
$ mvn clean install -Dsources

Step 3 - Generate GeoWave Jace Proxies

Here, we will specify a Maven profile that specifies that we are building jace proxies.

$ cd geowave
$ mvn clean package -pl deploy -am -P generate-geowave-jace -DskipTests

This generates the source and header files required to build GeoWave. To build the library, simply run

packages.html

cmake, followed by make.

Note: To build static libraries, use "-DBUILD_SHARED_LIBS=OFF". Otherwise use "-

DBUILD_SHARED_LIBS=ON" (no quotes).

Mapnik Plugin Configuration

Mapnik

Mapnik is an open source toolkit for developing mapping applications. GeoWave is supported as a

plugin for Mapnik for reading vector data from Accumulo.

PDAL Plugin Configuration

PDAL

The Point Data Abstraction Library PDAL is a BSD licensed library for translating and manipulating

point cloud data of various formats. GeoWave is supported as a plugin for PDAL for both reading and

writing data to Accumulo.

Note: These instructions assume that you are using prepackaged binaries.

Configure CMake for PDAL

To configure PDAL to run with GeoWave, there are a few CMake options that need to be configured.

While some of the options (namely the JAVA options) may configure automatically, some will need to

be set manually. Refer to the table below to get an idea for how these options would be configured on

Ubuntu 14.04 LTS.

Option Value Automatically
Configured?

BUILD_PLUGIN_GEOWAVE ON

BUILD_GEOWAVE_TESTS ON

GEOWAVE_RUNTIME_JAR /path/to/geowave/geowave-runtime.jar

GEOWAVE_INCLUDE_DIR /path/to/geowave/include

GEOWAVE_LIBRARY /path/to/geowave/libgeowave.so

JAVA_AWT_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH2 /usr/lib/jvm/java-8-oracle/include/linux X

JAVA_AWT_LIBRARY /usr/lib/jvm/java-8-oracle/jre/lib/amd64/libjawt.so X

http://mapnik.org/
http://www.pdal.io/index.html

Option Value Automatically
Configured?

JAVA_JVM_LIBRARY /usr/lib/jvm/java-8-
oracle/jre/lib/amd64/server/libjvm.so

X

Note: As Boost is a PDAL dependency, it should already be included.

Build PDAL

Once CMake is configured, you can proceed with your normal PDAL build process.

Last but not least when building shared libraries, you should ensure that the libraries specified above

are available via PATH or LD_LIBRARY_PATH.

Within the PDAL documentation, you can see examples of how GeoWave can be used as both a reader

and writer.

http://www.pdal.io/stages/readers.geowave.html
http://www.pdal.io/stages/writers.geowave.html

Documentation

Overview

The documentation is writen in AsciiDoc which is a plain-text markup format that can be created using

any text editor and read “as-is”, or rendered to several other formats like HTML, PDF or EPUB.

Helpful Links:

• What is Asciidoc?

• Writer’s Guide

• AsciiDoc Syntax Reference

Ordering

All of the content stored in the docs/content directory of this project will be rendered into a single

webpage with an auto-generated table of contents and a PDF. The order in which the pages appear is

determined by the sort order of the file names given to the ASCIIDOC files in the docs/content directory,

so a numeric prefix has been given to each file. Gaps can be left in between the numbers (only the sort

order is important) to allow for future edits without having to renumber other documents that will

appear after the new content.

Preview

To preview markup as HTML before making a commit, there are plugins available, and various text

editors and IDEs, that can be used while editing. If your preferred text editor has no plugin available,

there’s a Firefox AsciiDoc Plugin available that allows for previewing with a quick refresh of the

browser.

Site

To build all the content used for the entire finished web page or the generated PDF for the GeoWave

website, use the following command.

cd geowave
mvn -P {FORMAT} install ①

① Supported formats include 'pdf' and 'html' (no quotes).

The entire site, including both docs and javadocs, will be available for inspection in the

geowave/target/site/ directory.

http://www.methods.co.nz/asciidoc/index.html
http://asciidoctor.org/docs/what-is-asciidoc/
http://asciidoctor.org/docs/asciidoc-writers-guide/
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://github.com/asciidoctor/asciidoctor-firefox-addon
https://locationtech.github.io/geowave/
https://locationtech.github.io/geowave/

Appendices

Version

This documentation was generated for GeoWave version 1.0.0.

GeoWave Project Descriptions

The table below outlines the different project hierarchies within the GeoWave project

Path Name Description

geowave GeoWave Parent Parent directory

analytics GeoWave Analytics The set of analytics provided for GeoWave
Datasets. Extensions to geowave-core-mapreduce
for particular methodogies (spark on hadoop/yarn
or mapreduce on hadoop/yarn).

api GeoWave Analytics API GeoWave APIs and re-usable analytic code that
can be shared across specific external
frameworks, e.g., mapreduce and spark

mapreduce GeoWave MapReduce
Analytics

Specific algorithms written in mapreduce for
GeoWave

spark GeoWave Spark
Analytics

Specific algorithms written for spark on GeoWave
data

core GeoWave Core The set of base functionalities provided for all
configurations of GeoWave

cli GeoWave Core CLI Command Line Interface for GeoWave Tools.
Builds on store to provide the commandline tool
framework for interacting with GeoWave

geotime GeoWave Spatial and
Temporal Support

Builds on the core store and index modules
special casing the multidimensional index
problem as spatial and spatial-temporal index on
a sorted key value store

index GeoWave Index Focused on the problem of maintaining good
lexicographic sort order for multidimensional
data, exposed primarily through
NumericIndexStrategy, i.e., how do I form my key
in the key-value store

ingest GeoWave Ingest
Framework

Builds on cli to provide the ingest commandline
tools

mapreduce GeoWave MapReduce Builds on store to provide the basic analytic
components for running jobs on Hadoop.
Primarily, this exposes Hadoop input and output
formats for GeoWave that can be used to
intelligently distribute jobs across GeoWave data
within the context of any distributed processing
framework run on YARN such as Spark or
MapReduce.

Path Name Description

store GeoWave Store Focused on applying that indexing to a sorted key
value store, exposed primarily through
DataStore, i.e., how to persist and retrieve objects
by its multi-dimensional bounds

deploy GeoWave Deployment
Configurations

Various scripts for packaging and deploying
GeoWave in production

dev-resources GeoWave Development
Resources

Development resources and settings for GeoWave

docs GeoWave
Documentation

Documentation, primarily in the form of asciidoc
that can be compiled into a variety of formats
including HTML, PDF, EPUB, and others
(everything seen on
http://locationtech.github.io/geowave is
automatically built and published on each
commit)

examples GeoWave Examples Some very basic code examples for reading and
writing vector data in GeoWave, and running
some basic analytics. This is a great and simple
place to contribute if you see a gap that you think
should be covered.

extensions GeoWave Extensions The set of extended capabilities supported for
GeoWave

adapters GeoWave Extension
Adapaters

A DataAdapter in the system is essentially
responsible for taking any java object and
handling serialization/deserialization to/from the
value portion of the key-value pair. It’s called
encode and decode in the code because it is a little
more complex than just serialization and
_deserialization-, but in general, the over-
simplified high-level view is that the
NumericIndexStrategy from geowave-core-index
handles building a good key, and the DataAdapter
handles building a good value, then the DataStore
has no direct logic for mapping the java object to a
key or a value. If you have a new java object, you
can write a new adapter independent of specific
datastores. Likewise, if you have a new strategy
for indexing or a different dimensionality to
index, that would be independent of any of the
specific datastores (ie. you can simply write your
own adapter if you have a unique dataset and it
can store your data with any indexing scheme on
any backend datastore).

http://locationtech.github.io/geowave
https://github.com/locationtech/geowave/blob/master/core/index/src/main/java/org/locationtech/geowave/core/index/NumericIndexStrategy.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/adapter/DataAdapter.java
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/org/locationtech/geowave/core/store/DataStore.java

Path Name Description

auth Authorization functionality for GeoWave Data
Adapters

raster Geowave Raster Adapter The DataAdapter for GridCoverage data (e.g.,
"raster" data in GIS vocabulary) is
RasterDataAdapter, this also contains
GeoTools/GeoServer extensions for GeoWave
raster data within the plugin package.

vector Geowave Vector Adapter The DataAdapter for SimpleFeature data (e.g.,
"vector" data in GIS vocabulary) is
FeatureDataAdapter, this also contains
geotools/geoserver extensions for GeoWave vector
data within the plugin package

cli GeoWave Extension
CLI’s

Other tools plugin, that can be included as a
command in the commandline framework, this is
where any tool goes that plugins in to geowave-
core-cli as commands for GeoWave. GeoWave
services are now available, which automatically
exposes CLI commands as service endpoints.

debug GeoWave Debug
Commandline Tools

A set of ad-hoc debug tools available through the
command line that can be applied to GeoWave
data

geoserver Geowave GeoServer
Commandline Tools

GeoWave Commandline Tools for Managing
GeoServer Layers and Data Stores

landsat8 GeoWave LandSat8
Operations

GeoWave support for public LandSat8 data

osm Geowave OSM
Commandline Tools

OSM Data processing system for GeoWave

datastores GeoWave DataStores The only dependency on a particular datastore
(e.g., Accumulo, HBase), the rest of the project is
independent of the datastore; the intent is to keep
as much reusuable code outside of the concrete
datastore implementation as can be sensible

accumulo GeoWave Accumulo Geowave Data Store on Apache Accumulo

bigtable GeoWave BigTable Geowave Data Store on Google BigTable

hbase GeoWave HBase Geowave Data Store on Apache HBase

Path Name Description

formats GeoWave Extension
Formats

A format plugin in the system is an extension to
the commandline ingest framework, providing a
means to read data from a particular format of
interest and map it to a particular adapter; in the
open source project, we provide a variety of
vector formats and a single raster format that
wraps a popular library; GeoTools ("geotools-
vector" format covers all formats supported by
GeoTools and geotools-raster covers all raster
formats supported by geotools, each covering a
large variety of popular geospatial formats)

avro GeoWave Avro Format GeoWave ingest support for Avro data matching
GeoWave’s generic vector avro schema

gdelt GeoWave GDELT Format
Support

GeoWave ingest support for Google Ideas' GDELT
dataset

geolife GeoWave GeoLife
Format Support

GeoWave ingest support for Microsoft Research’s
GeoLife dataset

geotools-raster GeoWave Raster Format GeoWave ingest support for all raster formats that
are supported within geotools

geotools-
vector

GeoWave Vector Format GeoWave ingest support for all vector formats
that are supported within geotools

gpx GeoWave GPX Format GeoWave ingest support for GPX data

stanag4676 GeoWave stanag4676 support for the NATO
specification for track data.

format geowave-format-4676 The GeoWave stanag4746 format implementation
supports ingest of tracks, track points, motion
events, and associated image chips into GeoWave.

service geowave-service-4676 The GeoWave stanag4746 service implementation
provides a rest endpoint to get the image chips per
point and motion event, and stitch videos together
per track.

tdrive GeoWave T-Drive
Format

GeoWave ingest support for Microsoft Research’s
T-Drive dataset

twitter GeoWave Twitter
Format Support

GeoWave ingest support for twitter JSON data

services GeoWave Services The set of REST services and clients provided for
interacting with GeoWave.

api GeoWave Services API Service APIs for use when interfacing with
GeoWave as a consumer.

Path Name Description

client GeoWave Java Client for
REST services

Java clients exposing GeoWave CLI interfaces and
functionality.

webapp GeoWave REST Services
WebApp

The server-side implementation of GeoWave
services API

test GeoWave Integration
Tests

A module for integration and functional tests of
GeoWave. Integration tests for end-to-end
functionality with local test environments for
each datastore (often can serve as examples as
well, but typically the intent of examples is to be
simple and straightforward; the integration tests
are more complex, but certainly more inclusive of
a variety of functionality)

Theory

Spatial Index

GeoWave creates a spatial index to represent multi-dimensional data in a manner that can be reduced

to a series of ranges on a 1 dimensional number line. Examples of these include:

• latitude, longitude

• latitude, longitude, time

• latitude, longitude, altitude, time

• feature vector1, feature vector 2 (…), feature vector n

This is due to the way big-table-based databases store the data – as a sorted set of key/value pairs.

The goal is to provide a property that ensures values close in n-dimensional space are still close in 1-

dimensional space. There are a few reasons for this, but primarily it’s so we can represent an n-

dimensional range selector (bbox typically, but can be abstracted to a hyper-rectangle) as a smaller

number of highly contiguous 1-dimensional ranges.

Figure 16. Z-Order curve based dimensional decomposition

Fortunately, there is already a type of transform that describes this operation in mathematics called a

“Space Filling Curve” (SFC). Different SFCs have different properties, but they all take an n-dimensional

space and describe a set of steps to trace all points in a single sequence.

Figure 17. Haverkort, Walderveen Locality and Bounding-Box Quality of Two-Dimensional Space-Filling

Curves 2008 arXiv:0806.4787v2

The trade-offs for the various curves are outside the scope of this user manual, but the paper cited for

Figure two is an excellent starting point to start learning about these curves.

GeoWave supports two space filling curves: Z-Order and Hilbert, with the latter being the primary

implementation.

Hilbert SFC

The Hilbert curve is a bit more complex to work with than the Z-curve, both when calculating and

when performing a decomposition. Nevertheless it is popular in certain areas in computer science

where multiple variables need to be set in a linear order – process scheduling for one. A simplistic

view of a standard projections of the earth mapped to a Hilbert curve would look something like the

image below, which shows 4 bits of cardinality per dimension (how many buckets we have).

Figure 18. Hilbert space filling curve superimposed over a projection of the earth

Note that the cardinality (number of buckets per dimensions) has an impact on the resolution of our

Hilbert index. Here we map from -180 to +180 over 16 buckets so we have resolution of no better than

360/16, or 22.5 degrees for longitude (and incidentally 11.25 degrees for latitude). This doesn’t mean we

can’t represent values more precisely than this. It just means that our initial (coarse) index (based on

SFC ranges) can’t provide resolution any better than this. Adding more bits per dimensions will

increase the precision of the SFC-based index.

Z-Order SFC

This is also commonly called a GeoHash or Morton order, and sometimes is incorrectly called a Peano

curve. This is the most popular SFC used for multi-dimensional → 1-dimensional mappings primarily

because it is very easy to implement in code.

To implement this, ideally, a bit-interleaving approach is used (that is what gives rise to the diagram in

the figure Z-Order curve based dimensional decomposition). Imagine we had two numbers, A and B. Let

the binary representation of those numbers be A1A2A3 and B1B2B3. The “bit interleaved” version

would be A1B1A2B2A3B3. Since we are working with binary numbers this gives a “unit cell” of 2x2. If

we added dimensions, just imagine the same interleaving, but another term — C1C2C3, etc. This is

sometimes implemented in Base 10 instead of Base 2. This implementation somewhat reduces the

locality (“packing property” – or the measure of how close numbers in n-dimensional space are to

numbers in 1-dimensional space). As you might expect a 2-dimensional version of this gives a unit cell

of 10x10 (for two dimensions) – hence the worse packing.

XZ-Order SFC

The XZ-Order SFC is an extension of Z-Ordering, and designed to map spatial objects. This is done by

extending the region of each Z-Order dimension by 2, in order to support mapping spatial - non-point -

objects, such as polygons or rectangles.

Decomposition

Range decomposition is the core to the concept of SFC-based indexing. This is when we take a range

described in multiple dimensions and turn it into a series of 1-dimensional ranges.

Figure 19. Hilbert Decomposition 1

Figure: Hilbert Ranges

In the figure above we show what we mean by this. The bounding box described by the blue selection

window, or (2,9) → (5,13), will “fully” decompose to 3 ranges – 70→75, 92→99, and 116→121.

It should be noted that sometimes more simplistic algorithms will not fully decompose, but would

instead represent this as 70→121 or even 64→127 (the smallest “unit cell” this box fits in). As you can

see, this would result in scanning many extraneous cells.

At some point, with high precision, high dimensionality curves, the number of possible unit cells can

become too large to deal with. In such a case, GeoWave optimizes this by treating the curve as a “lower

cardinality” curve than it actually is. So the unit cell size might not be 1, but instead 64, 128, 1024, etc.

This allows the user to still achieve high precision when selection windows are small but not spend an

inordinate amount of time fully decomposing for large selection windows.

Figure 20. Hilbert Decomposition 2

Consider a region query asking for all data from:

 (1,1) -> (5,4)

This query range is shown at left by a blue bounding box.

What did we do here?

• We broke down the initial region into 4 subregions (Red boxes).

• We broke down each subregion (red box) into 4 sub-sub regions (purple boxes).

• We then broke down each of those purple boxes into green boxes.

NOTE

• Once we had a decomposed quad that is full contained by the bounding box we

stopped decomposing.

• We didn’t bother decomposing regions that didn’t overlap the original search

criteria.

Figure 21. Hilbert Decomposition 3

Here we see the query range fully decomposed into the underlying "quads". Note that in some

instances we were able to stop decomposing when the query window fully contained the quad

(segment 3 and segment 8).

Figure 22. Hilbert Decomposition 4

Now we have fully transitioned to the 1-dimensional number line from the previous set of quads. We

have also rolled together regions that are contiguous.

	GeoWave Developer Guide
	GeoWave Developer Guide
	Introduction
	What is GeoWave
	Origin
	Intent

	Overview
	Assumptions
	Development & Building
	External Components

	Development Setup
	Overview
	Retrieving the Code
	Building the Source
	Creating Eclipse Projects
	Packaging the Source
	How to Contribute

	Architecture
	Overview
	Persistence
	Indexes
	Adapters
	Key Structure

	Statistics
	Table Structure

	Ingest
	Overview
	Ingest Plugins
	Ingest Statistics and Time Dimension Configuration
	Index Strategies
	New Formats

	Analytics
	Overview
	Building
	Running
	Analytic Commands

	Query
	Overview
	Query Implementation
	Contextual Query Language

	Services
	gRPC

	Third Party
	GeoServer

	Installation from RPM
	Maven Artifacts
	Create Third-Party Plugins
	GeoServer Plugin
	Accumulo Plugin
	HBase Plugin

	Jace JNI Proxies
	Prepackaged Source and Binaries
	Generate Proxies and Build from Source
	Mapnik Plugin Configuration
	PDAL Plugin Configuration

	Documentation
	Overview
	Ordering
	Preview
	Site

	Appendices
	Version
	GeoWave Project Descriptions
	Theory

