
Table of Contents

GeoWave User Guide

Links
 Site (http://locationtech.github.io/geowave/)

 PDF (https://s3.amazonaws.com/geowave/latest/docs/userguide.pdf)

 Javadoc (https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html)

 GitHub (https://github.com/locationtech/geowave)

 Packages (http://locationtech.github.io/geowave/packages.html)

Introduction
What is GeoWave
Origin
Intent

Overview
Assumptions

Running GeoWave
External Components

Example screenshots
GeoLife
OpenStreetMap GPX Tracks
T-Drive

Statistics
Table Structure

Tools Framework
GeoWave Command Line Instructions

Ingest
Overview
Ingest Plugins
Ingest Statistics and Time Dimension Con�guration

Analytics
Overview
Running
Analytic Commands

Query
Overview

Third Party
GeoServer

Installation from RPM
Overview
Examples
RPM Installation Notes

Running from EMR
DataStore Con�guration

Apache Accumulo Con�guration
Google BigTable Con�guration
Apache HBase Con�guration

Jace JNI Proxies
Prepackaged Source and Binaries
Generate Proxies and Build from Source
Mapnik Plugin Con�guration
PDAL Plugin Con�guration

Puppet

http://locationtech.github.io/geowave/
https://s3.amazonaws.com/geowave/latest/docs/userguide.pdf
https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html
https://github.com/locationtech/geowave
http://locationtech.github.io/geowave/packages.html

Overview
Options
Examples
Clustered
Puppet script management

Appendices
Version
GeoWave Security

v0.9.5

GeoWave User Guide

Links

 Site (http://locationtech.github.io/geowave/)

 PDF (https://s3.amazonaws.com/geowave/latest/docs/userguide.pdf)

 Javadoc (https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html)

 GitHub (https://github.com/locationtech/geowave)

 Packages (http://locationtech.github.io/geowave/packages.html)

http://locationtech.github.io/geowave/
https://s3.amazonaws.com/geowave/latest/docs/userguide.pdf
https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html
https://github.com/locationtech/geowave
http://locationtech.github.io/geowave/packages.html

Introduction

What is GeoWave
GeoWave is an open-source library for storage, index, and search of multi-dimensional data on top of sorted key-value datastores
and popular big data frameworks. GeoWave includes specific tailored implementations that have advanced support for OGC
spatial types (up to 3 dimensions), and both bounded and unbounded temporal values. Both single and ranged values are
supported on all axes. GeoWave’s geospatial support is built on top of the GeoTools project extensibility model. This means that it
can integrate natively with any GeoTools-compatible project, such as GeoServer and UDig, and can ingest GeoTools compatible
data sources.

GeoWave provides out-of-the-box support for distributed key/value stores, as necessary for mission needs. The latest version of
GeoWave supports Apache Accumulo (https://accumulo.apache.org) and Apache HBase (https://hbase.apache.org) stores, though
additional data stores can be implemented as requested or needed.

This guide serves the purpose of focusing on the development side of GeoWave capabilities as well as assisting developers with
the GeoWave code surroundings.

GeoWave Capabilities

Add multi-dimensional indexing capability to Apache Accumulo and Apache HBase

Add support for geographic objects and geospatial operators to Apache Accumulo and Apache HBase

Provide a GeoServer (http://geoserver.org/) plugin to allow geospatial data in Accumulo and HBase to be shared and visualized
via OGC standard services

Provide Map-Reduce input and output formats for distributed processing and analysis of geospatial data

Geospatial software plugins include the following:

GeoServer (http://geoserver.org/) plugin to allow geospatial data in Accumulo to be shared and visualized via OGC standard
services

PDAL (http://www.pdal.io/) plugin for working with point cloud data

Mapnik (http://mapnik.org/) plugin for generating map tiles and generally making good looking maps.

Basically, GeoWave is working to bridge geospatial software with distributed compute systems and attempting to do for
distributed key/value stores what PostGIS does for PostgreSQL.

https://accumulo.apache.org/
https://hbase.apache.org/
http://geoserver.org/
http://geoserver.org/
http://www.pdal.io/
http://mapnik.org/

Origin
GeoWave was developed at the National Geospatial-Intelligence Agency (NGA) in collaboration with RadiantBlue Technologies
(http://www.radiantblue.com/) and Booz Allen Hamilton (http://www.boozallen.com/). The government has unlimited rights
(https://github.com/locationtech/geowave/blob/master/NOTICE) and is releasing this software to increase the impact of government
investments by providing developers with the opportunity to take things in new directions. The software use, modification, and
distribution rights are stipulated within the Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0.html) license.

Intent

Pluggable Backend

GeoWave is intended to be a multidimensional indexing layer that can be added on top of any sorted key-value store. Accumulo
was chosen as the initial target architecture, and support for HBase has been added as well. Any datastore which allows prefix
based range scans should be straightforward extensions.

Modular Framework Design

The GeoWave architecture is designed to be extremely extensible with most of the functionality units defined by interfaces, and
with default implementations of these interfaces to cover most use cases. GeoWave allows for easy feature extension and
platform integration – bridging the gap between distributed technologies and minimizing the learning curve for developers. The
intent is that the out of the box functionality should satisfy 90% of use cases, but the modular architecture allows for easy feature
extension as well as integration into other platforms.

Self-Describing Data

GeoWave stores the information needed to manipulate data, such as configuration and format, in the database itself. This allows
software to programmatically interrogate all the data stored in a single or set of GeoWave instances without needing bits of
configuration from clients, application servers, or other external stores.

Scalable

GeoWave is designed to operate either in a single-node setup or it can scale out as large as needed to support the amount of data
and/or processing resources necessary. By utilizing distributed computing clusters and server-side fine grain filtering, GeoWave is
fully capable of performing interactive time and/or location specific queries on datasets containing billions of features with 100
percent accuracy.

http://www.radiantblue.com/
http://www.boozallen.com/
https://github.com/locationtech/geowave/blob/master/NOTICE
http://www.apache.org/licenses/LICENSE-2.0.html

Overview
For GeoWave users, the primary method of interfacing with GeoWave is through the various Command-Line Interface (CLI)
commands and options. Users will use GeoWave to store, index, or search multi-dimensional data in a key-value datastore.

This typically involves these four steps:

Configure

Set up/configure a datastore or index on GeoWave for re-use across various operations as needed.

Ingest/Index

Ingest, or Index, data into a specific store (e.g., Accumulo, HBase)

Process

Process data using a distributed processing engine (e.g. MapReduce, Spark)

Query/Discover

Search/Query or Discover data ingested, indexed, or processed/transformed through GeoWave operations. A common data
discovery tool used is GeoServer (http://geoserver.org/), which interfaces with GeoWave through the plugin, for interfacing with
the selected datastore, e.g., Accumulo or HBase.

GeoWave uses tiered, gridded, Space Filling Curves (SFCs) to index data into your desired key-value store. The indexing
information is stored in a generic key structure that can also be used for server-side processing. This architecture allows query,
processing, and rendering times to be reduced by multiple orders of magnitude.

If there are questions or issues encountered, or topics of interest that could be expounded on, please create an issue within the
GeoWave project GitHub page (https://github.com/locationtech/geowave/issues).

http://geoserver.org/
https://github.com/locationtech/geowave/issues

Assumptions
Prior to running GeoWave functionality, this guide assumes that the following components are installed and/or available. Because
of the continuous changes occurring to these components, installing and maintaining extensive operational capabilities around
these components is outside the scope of this document.

Running GeoWave
In order to build and/or perform development using the GeoWave source, the following components are required:

Java Development Kit (JDK) (http://www.oracle.com/technetwork/java/javase/downloads/index.html) (>= 1.8)

Requires JRE v1.8 or greater

Download the latest JRE from the Java downloads site (http://www.oracle.com/technetwork/java/javase/downloads/index.html). The
OracleJDK is the most thoroughly tested but there are no known issues with OpenJDK.

GeoWave build or RPM

At minimum, an existing GeoWave build or RPM is required. For building the GeoWave source, please refer to the
development guide.

External Components
Depending on the environment components being developed towards (e.g., requirements, datastores, indices, etc), the following
are not all required, though constraints are listed below for which versions are supported by GeoWave.

GeoServer (http://geoserver.org/) instance >= 2.10.0

Apache Accumulo (https://accumulo.apache.org/) version 1.5 or greater is required. 1.5.x, 1.6.x, 1.7.x, 1.8.x, have all been tested.

Apache HBase (https://hbase.apache.org/) >= 1.2.1

Apache Hadoop (http://hadoop.apache.org/) versions >= 2.3

Cloudera (http://cloudera.com/content/cloudera/en/home.html) CDH5. GeoWave tests with CDH 5.9

Hortonworks Data Platform (http://hortonworks.com/hdp/) 2.6+

Java Advanced Imaging (http://www.oracle.com/technetwork/articles/javaee/jai-142803.html) and Java Image I/O
(https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/) are also both required to be installed on the GeoServer instance(s)
_as well as on the Accumulo nodes. The Accumulo support is only required for certain functions (distributed rendering), - so
this may be skipped in some cases.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://geoserver.org/
https://accumulo.apache.org/
https://hbase.apache.org/
http://hadoop.apache.org/
http://cloudera.com/content/cloudera/en/home.html
http://hortonworks.com/hdp/
http://www.oracle.com/technetwork/articles/javaee/jai-142803.html
https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/

Example screenshots
The screenshots below are of data loaded from various attributed data sets into a GeoWave instance, processed (in some cases) by
a GeoWave analytic process, and rendered by Geoserver.

Contents

GeoLife

GeoLife at city scale

GeoLife at house scale

OpenStreetMap GPX Tracks

OSM GPX at continent scale

OSM GPX at world scale

T-Drive

T-drive at city scale

T-drive at block scale

T-drive at house scale

GeoLife
Microsoft research has made available a trajectory data set that contains the GPS coordinates of 182 users over a three year
period (April 2007 to August 2012). There are 17,621 trajectories in this data set.

More information on this data set is available at Microsoft Research GeoLife page (http://research.microsoft.com/jump/131675).

GeoLife at City Scale

Below are renderings of GeoLife data. They display the raw points as well as the results of a GeoWave kernel density analytic. The
data corresponds to Mapbox zoom level 13.

https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-geolife
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-geolife-city
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-geolife-house
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-osm-gpx
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-osm-gpx-continent
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-osm-gpx-world
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-tdrive
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-tdrive-city
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-tdrive-block
https://s3.amazonaws.com/geowave/0.9.5/docs/114-appendix-screenshots.html#screenshots-tdrive-house
http://research.microsoft.com/jump/131675
https://s3.amazonaws.com/geowave/0.9.5/docs/images/geolife-density-13.jpg

https://s3.amazonaws.com/geowave/0.9.5/docs/images/geolife-points-13.jpg

GeoLife at House Scale

This data set corresponds to a Mapbox zoom level of 15

Graphic background ©MapBox and ©OpenStreetMap

Graphic background ©MapBox and ©OpenStreetMap

https://s3.amazonaws.com/geowave/0.9.5/docs/images/geolife-density-17.jpg
https://s3.amazonaws.com/geowave/0.9.5/docs/images/geolife-points-17.jpg

OpenStreetMap GPX Tracks
The OpenStreetMap Foundation has released a large set of user contributed GPS tracks. These are about eight years of historical
tracks. The data set consists of just under three billion (not trillion as some websites claim) points, or just under one million
trajectories.

More information on this data set is available at GPX Planet page (http://wiki.openstreetmap.org/wiki/Planet.gpx).

OSM GPX at Continent Scale

The data below corresponds to a Mapbox zoom level of 6

http://wiki.openstreetmap.org/wiki/Planet.gpx
https://s3.amazonaws.com/geowave/0.9.5/docs/images/osmgpx.jpg

OSM GPX at World Scale

This data set corresponds to a Mapbox zoom level of 3

https://s3.amazonaws.com/geowave/0.9.5/docs/images/osmgpx-world.jpg

T-Drive
Microsoft research has made available a trajectory data set that contains the GPS coordinates of 10,357 taxis in Beijing, China and
surrounding areas over a one week period. There are approximately 15 million points in this data set.

More information on this data set is available at: Microsoft Research T-drive page (http://research.microsoft.com/apps/pubs/?id=152883).

T-Drive at City Scale

Below are renderings of the t-drive data. They display the raw points along with the results of a GeoWave kernel density analytic.
The data corresponds to Mapbox zoom level 12.

http://research.microsoft.com/apps/pubs/?id=152883
https://s3.amazonaws.com/geowave/0.9.5/docs/images/t-drive-points-12.jpg
https://s3.amazonaws.com/geowave/0.9.5/docs/images/t-drive-density-12.jpg

T-Drive at Block Scale

This data set corresponds to a Mapbox zoom level of 15

Graphic background©MapBox and ©OpenStreetMap

Graphic background©MapBox and ©OpenStreetMap

T-Drive at House Scale

This data set corresponds to a Mapbox zoom level of 17

Graphic background©MapBox and ©OpenStreetMap

Graphic background©MapBox and ©OpenStreetMap

Statistics
Adapters provide a set of statistics stored within a statistic store. The set of available statistics is specific to each adapter and the
set of attributes for those data items managed by the adapter. Statistics include:

Ranges over an attribute, including time

Enveloping bounding box over all geometries

Cardinality of the number of stored items

Histograms over the range of values for an attribute

Cardinality of discrete values of an attribute

Statistics are updated during data ingest and deletion. Range and bounding box statistics reflect the largest range over time. Those
statistics are not updated during deletion. Statistics based on cardinality are updated upon deletion.

Re-computation of statistics is required in these three circumstances:

1. As indexed items are removed from the adapter store, the range and envelope statistics may lose their accuracy if the
removed item contains an attribute that represents the minimum or maximum value for the population.

2. New statistics added to the statistics store after data items are ingested. These new statistics do not reflect the entire
population.

3. Software changes invalidate prior stored images of statistics.

Statistics retain the same visibility constraints as the associated attributes. Thus, there is a set of statistics for each unique
constraint. The statistics store answers each statistics inquiry for a given adapter with only those statistics matching the
authorizations of the requester. The statistics store merges authorized statistics covering the same attribute.

Table Structure

Tools Framework
A plugin framework (using Service Provider Interface [SPI] based injection) is provided with several input formats and utilities
supported out of the box.

This section assumes that a GeoWave build is available. Building GeoWave from source is outside the scope of this
document. For details on generating a GeoWave build, please reference the GeoWave Developer Guide
(http://locationtech.github.io/geowave/devguide.html#building-code).

GeoWave Command Line Instructions
GeoWave comes available with several levels of command-line functionality. In this section, we will provide a high-level overview
of the commands and will also outline a few of the core functions available, though for a full exhaustive list of commands, please
see the GeoWave CLI Appendix (http://locationtech.github.io/geowave/commands.html).

It is assumed that a geowave system command alias is registered in the terminal session being run through.

To test this, type 'geowave' (no quotes) and press enter.

If a list of geowave options is returned, then the system command alias is available. Otherwise, if an error similar
to or containing the term, 'geowave: command not found' is returned, the system command alias has not been
registered. For details on how to register the 'geowave' system command alias, please refer to the GeoWave
Developer Guide (http://locationtech.github.io/geowave/devguide.html#packaging-code).

If the alias system command is not registered, the full java command - (e.g., java -cp {GEOWAVE_HOME}
{GEOWAVE_JAR}) - will need to be used in place of the 'geowave' alias.

General Usage & Options

For root-level command-line usage of GeoWave, run the 'geowave' command.

This will return all available commands through GeoWave along with a brief description of each.

Options:

--config-file:

Override configuration file (default is <home>/.geowave/config.properties).

This flag must come after 'geowave' and before any subcommand.

--debug:

Verbose output. Use the debug flag to increase the debug logging output by GeoWave on the console to DEBUG. By default, it is
set to WARN.

This flag must come after 'geowave' and before any subcommand.

--version:

The version flag will output the build arguments that were used to build GeoWave as well as the version of the GeoWave tools
jar you’re using:

Not all three options are required. All have been listed as example, though each can be used independently or as
any combination of the three options.

Example:

$ geowave
BASH

$ geowave --config-file {path to configuration file override} --debug --version
BASH

http://locationtech.github.io/geowave/devguide.html#building-code
http://locationtech.github.io/geowave/commands.html
http://locationtech.github.io/geowave/devguide.html#packaging-code

Accumulo

Utility operations to set accumulo splits

Analytic

Commands that run mapreduce or spark processing to enhance an existing GeoWave dataset

Con�g

Commands that affect local configuration only

Explain

See what arguments are missing and what values will be used for GeoWave commands

GeoServer

Commands that manage geoserver data stores and layers

HBase

Utility operations to combine statistics in hbase

Help

The help command will show arguments and their defaults. It can be prepended to any GeoWave command. If you use it while
also specifying a sub-command and its arguments, that command’s help information will be displayed:

Ingest

Commands that ingest data directly into GeoWave or stage data to be ingested into GeoWave

Landsat

Operations to analyze, download, and ingest Landsat 8 imagery publicly available on AWS

OSM

Operations to ingest OSM nodes, ways and relations to GeoWave

Raster

$ geowave accumulo
BASH

$ geowave analytic
BASH

$ geowave config
BASH

$ geowave explain
BASH

$ geowave gs
BASH

$ geowave hbase
BASH

$ geowave help <command> <subcommand>
BASH

$ geowave ingest
BASH

$ geowave landsat
BASH

$ geowave osm
BASH

Operations to perform transformations on raster data in GeoWave

Remote

Operations to manage a remote store

Vector

Vector data operations

$ geowave raster
BASH

$ geowave remote
BASH

$ geowave vector
BASH

Ingest

Overview
In addition to the raw data to ingest, the ingest process requires an adapter to translate the native data into a format that can be
persisted into the data store. Also, the ingest process requires an Index that is a definition of all the configured parameters that
define how data is translated to Row IDs (how it is indexed). It also includes what common fields need to be maintained within
the table to be used by fine-grained and secondary filters.

The full list of GeoWave ingest commands can be found in the GeoWave CLI Appendix
(http://locationtech.github.io/geowave/commands.html#ingest-commands).

For examples and other details of running ingest commands, please be sure to check out the GeoWave QuickStart Guide
Examples.

Ingest Plugins
The geowave command line utility comes with several plugins out of the box. You can list the available plugins that are registered
with your commandline tool.

 You can add more by simply copying a desired plugin into the /usr/local/geowave/tools/plugins directory.

The above listplugins command should yield a result similar to what is shown below.

$ geowave ingest listplugins
BASH

http://locationtech.github.io/geowave/commands.html#ingest-commands

Ingest Statistics and Time Dimension Con�guration
The available plugins for vector support adjustments to their configuration via the command line. The system property
'SIMPLE_FEATURE_CONFIG_FILE' may be assigned to the name of a locally accessible JSON file defining the configuration.

Example

Configuration consists of several parts:

1. Selecting temporal attributes for a temporal index

2. Assigning to each attribute the type of statistics to be captured within the Statistics Store

3. Determining which attributes should be indexed in a secondary index

4. Determining which attribute contains visibility information for other attributes

5. Setting the names of the indices to update in WFS-T transactions via the GeoServer plug-in

The JSON file is made up of configurations. Each configuration is defined by a class name and a set of attributes. Configurations
are grouped by the Simple Feature Type name.

Available index types currently registered as plugins:

 spatial_temporal:
 This dimensionality type matches all indices that only require Geometry and Time.

 spatial:
 This dimensionality type matches all indices that only require Geometry.

Available ingest formats currently registered as plugins:

 twitter:
 Flattened compressed files from Twitter API

 geotools-vector:
 all file-based vector datastores supported within geotools

 geolife:
 files from Microsoft Research GeoLife trajectory data set

 gdelt:
 files from Google Ideas GDELT data set

 stanag4676:
 xml files representing track data that adheres to the schema defined by STANAG-4676

 geotools-raster:
 all file-based raster formats supported within geotools

 gpx:
 xml files adhering to the schema of gps exchange format

 tdrive:
 files from Microsoft Research T-Drive trajectory data set

 avro:
 This can read an Avro file encoded with the SimpleFeatureCollection schema. This schema is also used by the export
tool, so this format handles re-ingesting exported datasets.

Available datastores currently registered:

 accumulo:
 A GeoWave store backed by tables in Apache Accumulo

 bigtable:
 A GeoWave store backed by tables in Google's Cloud BigTable

 hbase:
 A GeoWave store backed by tables in Apache HBase

$ GEOWAVE_TOOL_JAVA_OPT="-DSIMPLE_FEATURE_CONFIG_FILE=myconfigfile.json"
$ geowave ingest localtogw ./ingest mystore myindex

Temporal Con�guration

There are three attributes for the temporal configuration:

1. timeName

2. startRangeName

3. endRangeName

These attributes are associated with the name of a simple feature type attribute that references a time value. To index by a single
time attribute, set timeName to the name of the single attribute. To index by a range, set both startRangeName and
endRangeName to the names of the simple feature type attributes that define start and end time values.

Statistics Con�guration

Each simple feature type attribute may have several assigned statistics. Bounding box and range statistics are automatically
captured for geometry and temporal attributes.

Attribute
Type

Statistic
Name

Statistic Configuration
Attributes (with default
values)

Statistic Class

Numeric Fixed Bin
Histogram

minValue=-∞, maxValue=∞,
bins=32

mil.nga.giat.geowave.adapter.vector.stats. FeatureFixedBinNumericStatistics$Fea
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/j

Dynamic
Histogram

mil.nga.giat.geowave.adapter.vector.stats. FeatureNumericHistogramStatistics$Fe
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/j

Numeric
Range

mil.nga.giat.geowave.adapter.vector.stats. FeatureNumericRangeStatistics$Featur
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/j

String Count Min
Sketch

errorFactor=0.001,
probabilityOfCorrectness=0.98

mil.nga.giat.geowave.adapter.vector.stats. FeatureCountMinSketchStatistics$Feat
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/j

Hyper Log
Log

precision=16 mil.nga.giat.geowave.adapter.vector.stats. FeatureHyperLogLogStatistics$Feature
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/j

Visibility Con�guration

Visibility configuration has two attributes: the visibility manager class and the visibility attribute name.

A Visibility Manager extends mil.nga.giat.geowave.core.store.data.visibility.VisibilityManagement
(https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/mil/nga/giat/geowave/core/store/data/visibility/VisibilityManagement.java)

. An instance of this class interprets the contents of a visibility attribute, within a simple feature, to determine the visibility
constraints of the other attributes in that simple feature. The default visibility management class is
mil.nga.giat.geowave.adapter.vector.plugin.visibility.JsonDefinitionColumnVisibilityManagement
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/plugin/visibility/JsonDefinitionCo

.

Secondary Index Con�guration

Secondary Index Configurations is made up of one of three classes:

mil.nga.giat.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/NumericSecondaryInd

mil.nga.giat.geowave.adapter.vector.index.TemporalSecondaryIndexConfiguration
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/TemporalSecondaryIn

mil.nga.giat.geowave.adapter.vector.index.TextSecondaryIndexConfiguration
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/TextSecondaryIndexCo

Each of this configurations maintains a set of simple feature attribute names to index in a secondary index.

https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/stats/FeatureFixedBinNumericStatistics.java#L130
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/stats/FeatureNumericHistogramStatistics.java#L356
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/stats/FeatureNumericRangeStatistics.java#L128
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/stats/FeatureCountMinSketchStatistics.java#L203
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/stats/FeatureHyperLogLogStatistics.java#L205
https://github.com/locationtech/geowave/blob/master/core/store/src/main/java/mil/nga/giat/geowave/core/store/data/visibility/VisibilityManagement.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/plugin/visibility/JsonDefinitionColumnVisibilityManagement.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/NumericSecondaryIndexConfiguration.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/TemporalSecondaryIndexConfiguration.java
https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/TextSecondaryIndexConfiguration.java

Primary Index Identi�ers

The class mil.nga.giat.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration
(https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/SimpleFeaturePrimaryInd

is used to maintain the configuration of primary indices used for adding or updating simple features via the GeoServer plug-in
(FeatureWriter).

Example

{
 "configurations": {
 "myFeatureTypeName" : [
 {
 "@class" : "mil.nga.giat.geowave.adapter.vector.utils.TimeDescriptors$TimeDescriptorConfiguration",
 "startRangeName":null,
 "endRangeName":null,
 "timeName":"captureTime"
 },
 {
 "@class": "mil.nga.giat.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration",
 "attributes" : ["pop"]
 },
 {
 "@class": "mil.nga.giat.geowave.adapter.vector.plugin.visibility.VisibilityConfiguration",
 "attributeName" : "vis"
 },
 {
 "@class": "mil.nga.giat.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration",
 "indexNames": ["SPATIAL_IDX"]
 }
 {
 "@class" :
"mil.nga.giat.geowave.adapter.vector.stats.StatsConfigurationCollection$SimpleFeatureStatsConfigurationCollection",
 "attConfig" : {
 "population" : {
 "configurationsForAttribute" : [
 {
 "@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureFixedBinNumericStatistics$FeatureFixedBinConfig",
 "bins" : 24
 }
]
 },
 "country" : {
 "configurationsForAttribute" : [
 {
 "@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureCountMinSketchStatistics$FeatureCountMinSketchConfig",
 "probabilityOfCorrectness" : 0.98,
 "errorFactor" :0.001
 },
 {
 "@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureHyperLogLogStatistics$FeatureHyperLogLogConfig"
 }
]
 }
 }
 }
]
 }
}

https://github.com/locationtech/geowave/blob/master/extensions/adapters/vector/src/main/java/mil/nga/giat/geowave/adapter/vector/index/SimpleFeaturePrimaryIndexConfiguration.java

Analytics

Overview
Analytics embody algorithms tailored to geospatial data. Most analytics leverage Hadoop MapReduce for bulk computation.
Results of analytic jobs consist of vector or raster data stored in GeoWave. The analytics infrastructure provides tools to build
algorithms in Spark. For example, a Kryo serializer/deserializer enables exchange of SimpleFeatures and the
GeoWaveInputFormat supplies data to the Hadoop RDD.

GeoWaveInputFormat does not remove duplicate features that reference lines and/or polygons spanning multiple index regions. If w
with duplication in time ranges, please take a look at the GeoWave GeoWaveDedupeJobRunner
(https://github.com/locationtech/geowave/blob/master/core/mapreduce/src/main/java/mil/nga/giat/geowave/mapreduce/dedupe/GeoWaveDedupeJobRu

.

It is also important to note that, while duplication can arise as an issue, though if using the XZ-Order SFC (which is used by default fo
and polygons), it does not require duplication. The only time there should be a duplication issue is if you are indexing a time range a
time range spans multiple periods based on your temporal binning strategy. The default periodicity is "YEAR," meaning that a row m
duplicate under default spatial-temporal indexing if you are trying to index a time range that crosses December 31 23:59:59.999 and
1 00:00:00 of the following year.

The following algorithms are provided.

Name Description

KMeans++ A K-Means implementation to find K centroids over the population of data. A set of preliminary sampling
iterations find an optimal value of K and the initial set of K centroids. The algorithm produces K centroids
and their associated polygons. Each polygon represents the concave hull containing all features associated
with a centroid. The algorithm supports drilling down multiple levels. At each level, the set centroids are
determined from the set of features associated the same centroid from the previous level.

KMeans Jump Uses KMeans++ over a range of k, choosing an optimal k using an information theoretic based
measurement.

Example Usage: yarn jar geowave-tools.jar analytic kmeansjump

KMeans Parallel Performs a KMeans Parallel Cluster

Example Usage: yarn jar geowave-tools.jar analytic kmeansparallel

DBScan The Density Based Scanner algorithm produces a set of convex polygons for each region meeting density
criteria. Density of region is measured by a minimum cardinality of enclosed features within a specified
distance from each other.

Example Usage: yarn jar geowave-tools.jar analytic dbscan

Nearest
Neighbors

An infrastructure component that produces all the neighbors of a feature within a specific distance.

Example Usage: yarn jar geowave-tools.jar analytic nn

Building/Developing GeoWave analytics is outside the scope of this document. For details around how to build the
GeoWave source and tools, please refer to the GeoWave Developer Guide
(http://locationtech.github.io/geowave/devguide.html#building).

Running
The GeoWave analytical tools are made available through MapReduce and Spark implementations. To run the tools, use the yarn
or hadoop system APIs, as outlined below.

https://github.com/locationtech/geowave/blob/master/core/mapreduce/src/main/java/mil/nga/giat/geowave/mapreduce/dedupe/GeoWaveDedupeJobRunner.java
http://locationtech.github.io/geowave/devguide.html#building

The above command will execute <algorithm> (such as dbscan), sourcing the data from the <store> datastore (see config
addstore).

Analytic Commands
The full list of GeoWave analytic commands, and any details associated with each, can be found in the GeoWave CLI Appendix
(http://locationtech.github.io/geowave/commands.html#analytic-commands).

yarn jar geowave-tools.jar analytic <algorithm> <options> <store>
BASH

http://locationtech.github.io/geowave/commands.html#analytic-commands

Query

Overview

A query in GeoWave currently consists of a set of ranges on the dimensions of the primary index. Up to three dimensions, plus
temporal optionally, can take advantage of any complex OGC geometry for the query window. For dimensions of four or greater
the query can only be a set of ranges on each dimension, e.g., hyper-rectangle, etc.

The query geometry is decomposed by GeoWave into a series of ranges on a one dimensional number line - based on a compact
Hilbert space filling curve (SFC) ordering. These ranges are sent through an Accumulo batch scanner to all the tablet servers.
These ranges represent the coarse grain filtering.

At the same time, the query geometry has been serialized and sent to custom Accumulo iterators. These iterators then do a second
stage filtering on each feature for an exact intersection test. Only if the stored geometry and the query geometry intersect does
the processing chain continue.

A second order filter can then be applied - this is used to remove features based on additional attributes, typically time or other
feature attributes. These operators can only exclude items from the set defined by the range - they cannot include additional
features. Think "AND" operators not "OR".

A final filter is possible on the client set after all the returned results have been aggregated together. Currently, this is only used
for final de-duplication. Whenever possible, the distributed filter options should be used as it splits the work load among all the
tablet servers.

Third Party

GeoServer
This section will outline the various aspects of the GeoServer tools that are relevant to GeoWave capabilities. While GeoServer is a
third-party tool that integrates with GeoWave, it is important to note that this is not meant to be an exhaustive guide to
GeoServer, though it’s more of an overview and integration guide. For official GeoServer documentation and how-to guides,
please reference the GeoServer documentation (http://docs.geoserver.org) guides.

This section assumes that a GeoWave GeoServer plugin has already been created. If this is not the case and a
plugin needs to be created, please refer to the GeoServer plugin section.

GeoWave supports both raster images and vector data exposed through Geoserver.

WFS-T

GeoWave supports WFS-T for vector data by extending GeoTools. After following the deployment steps, GeoWave appears as the
data store types called 'GeoWave Datastore - ACCUMULO' and 'GeoWave Datastore - HBASE'.

Accumulo Datastore Plugin

On the Geowave Datastore - ACCUMULO creation tab, the system prompts for the following connection parameters.

Name Description Constraints

http://docs.geoserver.org/
https://s3.amazonaws.com/geowave/0.9.5/docs/080-install-from-source.html#geoserver-plugin

Name Description Constraints

zookeeper Comma-separated list of Zookeeper host
and port

Host and port are separated by a colon
(host:port)

instance The Accumulo tablet server’s instance
name

The name matches the one configured
in Zookeeper

user The Accumulo user name The user should have administrative
privileges to add and remove
authorized visibility constraints

password Accumulo user’s password

gwNamespace The table namespace associated with
this Accumlo data store

Lock Management Select one from a list of lock managers Zookeeper is required with a multiple
Geoserver architecture

Authorization Management Provider Select from a list of providers

Authorization Data URL The URL for an external supporting
service or configuration file

The interpretation of the URL depends
on the selected provider

Query Index Strategy The pluggable query strategy to use for
querying geowave tables - a reasonable
default will be used if not supplied

HBase Datastore Plugin

On the Geowave Datastore - HBASE creation tab, the system prompts for the following connection parameters.

Name Description Constraints

enableCustomFilters Allows for the use of custom filters Defaults to true

zookeeper Comma-separated list of Zookeeper host
and port

Host and port are separated by a colon
(host:port)

enableCoprocessors Allows for the use of HBase co-
processors

Defaults to true

Name Description Constraints

gwNamespace The table namespace associated with
this Hbase data store

verifyCoprocessors Defaults to true

Lock Management Select one from a list of lock managers Zookeeper is required with a multiple
Geoserver architecture

Authorization Management Provider Select from a list of providers

Authorization Data URL The URL for an external supporting
service or configuration file

The interpretation of the URL depends
on the selected provider

Query Index Strategy The pluggable query strategy to use for
querying geowave tables - a reasonable
default will be used if not supplied.

GeoServer Con�guration

GeoWave can be configured for a GeoServer connection through the GeoServer config command line interface (CLI) operation.

Argument Required Description

--url True GeoServer URL (for example http://localhost:8080/geoserver), or simply host:port and
appropriate assumptions are made

--username True GeoServer User

--password True GeoServer Password - Refer to the password security section for more details and options

--workspace False GeoServer Default Workspace

GeoWave supports connecting to GeoServer through both HTTP and HTTPS (HTTP + SSL) connections. If connecting to GeoServer
through an HTTP connection (e.g., http://localhost:8080/geoserver), the command above is sufficient.

GeoServer SSL Connection Properties

If connecting to GeoServer through a Secure Sockets Layer (SSL) connection over HTTPS (e.g., https://localhost:8443/geoserver),
some additional configuration options need to be specified, in order for the system to properly establish the secure connection’s
SSL parameters. Depending on the particular SSL configuration through which the GeoServer server is being connected, you will
need to specify which parameters are necessary.

Not all SSL configuration settings may be necessary, as it depends on the setup of the SSL connection through
which GeoServer is hosted. Contact your GeoServer administrator for SSL connection related details.

SSL Argument Description

--sslKeyManagerAlgorithm Specify the algorithm to use for the keystore.

--sslKeyManagerProvider Specify the key manager factory provider.

--sslKeyPassword Specify the password to be used to access the server certificate from the specified
keystore file. - Refer to the password security section for more details and options.

--sslKeyStorePassword Specify the password to use to access the keystore file. - Refer to the password security
section for more details and options.

--sslKeyStorePath Specify the absolute path to where the keystore file is located on system. The keystore
contains the server certificate to be loaded.

--sslKeyStoreProvider Specify the name of the keystore provider to be used for the server certificate.

--sslKeyStoreType The type of keystore file to be used for the server certificate, e.g., JKS (Java KeyStore).

--sslSecurityProtocol Specify the Transport Layer Security (TLS) protocol to use when connecting to the
server. By default, the system will use TLS.

--sslTrustManagerAlgorithm Specify the algorithm to use for the truststore.

--sslTrustManagerProvider Specify the trust manager factory provider.

--sslTrustStorePassword Specify the password to use to access the truststore file. - Refer to the password security
section for more details and options

geowave config geoserver {GEOSERVER URL} --user {USERNAME} --pass {PASSWORD}
BASH

http://localhost:8080/geoserver
https://s3.amazonaws.com/geowave/0.9.5/docs/007-security.html#password-security
http://localhost:8080/geoserver
https://localhost:8443/geoserver
https://s3.amazonaws.com/geowave/0.9.5/docs/007-security.html#password-security
https://s3.amazonaws.com/geowave/0.9.5/docs/007-security.html#password-security
https://s3.amazonaws.com/geowave/0.9.5/docs/007-security.html#password-security

SSL Argument Description

--sslTrustStorePath Specify the absolute path to where truststore file is located on system. The truststore file
is used to validate client certificates.

--sslTrustStoreProvider Specify the name of the truststore provider to be used for the server certificate.

--sslTrustStoreType Specify the type of key store used for the truststore, e.g., JKS (Java KeyStore).

WFS-T

Transactions are initiated through a Transaction operation, that contains inserts, updates, and deletes to features. WFS-T supports
feature locks across multiple requests by using a lock request followed by subsequent use of a provided Lock ID. The GeoWave
implementation supports transaction isolation. Consistency during a commit is not fully supported. Thus, a failure during a
commit of a transaction may leave the affected data in an intermediary state. Some deletions, updates, or insertions may not be
processed in such a case. The client application must implement its own compensation logic upon receiving a commit-time error
response. As expected with Accumulo, operations on a single feature instances are atomic.

Inserted features are buffered prior to commit. The features are bulk fed to the data store when the buffer size is exceeded and
when the transaction is committed. In support of atomicity and isolation, flushed features, prior to commit, are marked in a
transient state and are only visible to the controlling transaction. Upon commit, these features are 'unmarked'. The overhead
incurred by this operation is avoided by increasing the buffer size to avoid pre-commit flushes.

Lock Management

Lock management supports life-limited locks on feature instances. The only supported lock manager is in-memory, which is
suitable for single Geoserver instance installations.

Index Selection

Data written through WFS-T is indexed within a single index. The adapter inspects existing indices, finding one that matches the
data requirements. A geo-temporal index is chosen for features with temporal attributes. The adapter creates a geospatial index
upon failure of finding a suitable index. A geotemporal index is not created, regardless of the existence of temporal attributes.
Currently, geotemporal indices lead to poor performance for queries requesting vectors over large spans of time.

Authorization Management

Authorization Management provides the set of credentials compared against the security labels attached to each cell.
Authorization Management determines the set of authorizations associated with each WFS-T request. The available Authorization
Management strategies are registered through the Server Provider model, within the file

META-INF/services/mil.nga.giat.geowave.vector.auth.AuthorizationFactorySPI .

The provided implementations include the following

Empty - Each request is processed without additional authorization.

JSON - The requester user name, extracted from the Security Context, is used as a key to find the user’s set of authorizations
from a JSON file. The location of the JSON file is determined by the associated Authorization Data URL (e.g.,
file://opt/config/auth.json). An example of the contents of the JSON file is given below.

Fred has three authorization labels. Barney has one.

Visibility Management

Visibility constraints, applied to feature instances during insertions, are ultimately determined in
mil.nga.giat.geowave.store.data.field.FieldWriter . There are writers for each supported data type in Geoserver. By
default, the set visibility expression attached to each feature property is empty. Visibility Management supports selection of a
strategy by wrapping each writer to provide visibility. This alleviates the need to extend the type specific FieldWriters.

The visibility management strategy is registered through the Java Service Provider Interface (SPI) model, within the file META-
INF/services/mil.nga.giat.geowave.vector.plugin.visibility.ColumnVisibilityManagement . The only provided
implementation is the JsonDefinitionColumnVisibilityManagement . The implementation expects a property within each
feature instance to contain a JSON string describing how to set the visibility for each property of the feature instance. This
approach allows each instance to determine its own visibility criteria.

Each name/value pair within the JSON structure defines the visibility for the associated feature property with the same name. In
the following example, the geometry property is given a visibility S and the eventName is given a visibility TS .

JSON attributes can be regular expressions matching more than one feature property name. In the example, all properties except
for those that start with 'geo' have visibility TS .

The order of the name/value pairs must be considered if one rule is more general than another, as shown in the example. The
rule . matches all properties. The more specific rule geo. must be ordered first.

The system extracts the JSON visibility string from a feature instance property named GEOWAVE_VISIBILITY . Selection of an
alternate property is achieved by setting the associated attribute descriptor 'visibility' to the boolean value TRUE.

 {
 "authorizationSet": {
 "fred" : ["1","2","3"],
 "barney" : ["a"]
 }
 }

JSON

{ "geometry" : "S", "eventName": "TS" }
JSON

{ "geo.*" : "S", ".*" : "TS" }
JSON

file://opt/config/auth.json

Installation from RPM

Overview
There is a public GeoWave RPM Repo (http://locationtech.github.io/geowave/packages.html) available with the distribution packages and
vendors listed below. As you’ll need to coordinate a restart of Accumulo to pick up changes to the GeoWave iterator classes the
repos default to be disabled so you can keep auto updates enabled. When ready to do an update, simply add --
enablerepo=geowave to your command. The packages are built for a number of different hadoop distributions (Cloudera,
Hortonworks, and Apache). The RPMs have the vendor name embedded as the second portion of the rpm name (geowave-apache-
accumulo, geowave-hdp2-accumulo, geowave-cdh5-accumulo, geowave-apache-hbase, etc.)

Examples
Use the GeoWave repo RPM to configure a host and search for GeoWave RPMs to install.

Several of the RPMs (accumulo, hbase, jetty, single-host, and tools) are both GeoWave version and vendor version
specific. In the examples, below the rpm name geowave-$VERSION-VENDOR_VERSION should be adjusted as
needed.

Currently supported distribution vendors through GeoWave include:

Distribution
Vendor

Vendor Abbreviation

Apache apache

Cloudera cdh5

Hortonworks hdp2

GeoWave RPMs

Name Description

geowave-$VERSION-$VENDOR-accumulo Accumulo Components

geowave-$VERSION-$VENDOR-hbase HBase Components

geowave-$VERSION-core Core (home directory and geowave user)

geowave-$VERSION-docs Documentation (HTML, PDF and man pages)

geowave-$VERSION-$VENDOR-tools Command Line Tools (ingest, etc.)

geowave-$VERSION-$VENDOR-jetty GeoServer components installed into /usr/local/geowave/geoserver and available
at, e.g., http://localhost:8000/geoserver/web

geowave-$VERSION-puppet Puppet Scripts

rpm -Uvh http://s3.amazonaws.com/geowave-rpms/release/noarch/geowave-repo-1.0-3.noarch.rpm

To search for GeoWave packages for a specific distribution
yum --enablerepo=geowave search geowave-$VERSION-$VENDOR-*

To install a specific GeoWave package on a host (probably a namenode)
yum --enablerepo=geowave install geowave-$VERSION-$VENDOR-$PACKAGE

Update all packages for a specific venfors distribution
yum --enablerepo=geowave install geowave-$VERSION-$VENDOR-*

BASH

http://locationtech.github.io/geowave/packages.html
http://localhost:8000/geoserver/web

Name Description

geowave-$VERSION-$VENDOR-single-host All GeoWave components installed on a single host (sometimes useful for
development)

geowave-repo GeoWave RPM Repo config file

geowave-repo-dev GeoWave Development RPM Repo config file

In the above table, replace the following:

$VERSION: Version of GeoWave source, e.g., 0.9.4

$VENDOR: Distribution vendor abbreviation - from vendors table above, e.g., apache, cdh5, hdp2

$PACKAGE: Package - see RPMs table above, i.e. accumulo, hbase, jetty, single-host, tools

For all vendors or packages for a particular version, replace with * (e.g., 'geowave-0.9.4-apache-*') for all apache
apache packages in 0.9.4 version of GeoWave.

Note that only accumulo, hbase, jetty, tools, and single-host are vendor package rpm’s. All others are version
RPMs.

RPM Installation Notes
RPM names contain the version in the name so support concurrent installations of multiple GeoWave and/or vendor versions. A
versioned /usr/local/geowave-$GEOWAVE_VERSION-$VENDOR_VERSION directory is linked to /usr/local/geowave using
alternatives ex: /usr/local/geowave → /usr/local/geowave-0.9.3-hdp2, but there could also be another /usr/local/geowave-0.9.2.1-
cdh5 still installed but not the current default.

View geowave-home installed and default using alternatives

geowave-*-accumulo:

This RPM will install the GeoWave Accumulo iterator into the local file system and then upload it into HDFS using the hadoop fs
-put command. This means of deployment requires that the RPM is installed on a node that has the correct binaries and
configuration in place to push files to HDFS, like your namenode. We also need to set the ownership and permissions correctly
within HDFS and as such, need to execute the script as a user that has superuser permissions in HDFS. This user varies by Hadoop
distribution vendor. If the Accumulo RPM installation fails, check the install log located at
/usr/local/geowave/accumulo/geowave-to-hdfs.log for errors. The script can be re-run manually if there was a problem
that can be corrected like the HDFS service was not started. If a non-default user was used to install Hadoop you can specify a
user that has permissions to upload with the --user argument /usr/local/geowave/accumulo/deploy-to-geowave-to-hdfs.sh
--user my-hadoop-user

 This only applies to the Accumulo RPM. There is no such requirement for the HBase RPM.

With the exception of the Accumulo RPM mentioned above, there are no restrictions on where you install RPMs. You can install
the rest of the RPMs all on a single node for development use or a mix of nodes depending on your cluster configuration.

alternatives --display geowave-home
geowave-home - status is auto.
 link currently points to /usr/local/geowave-0.9.3-hdp2
/usr/local/geowave-0.9.3-hdp2 - priority 90
/usr/local/geowave-0.9.2.1-cdh5 - priority 89
Current `best' version is /usr/local/geowave-0.9.3-hdp2.

BASH

Running from EMR
For a step by step walkthrough of setting up GeoWave on an EMR cluster, please see our Quickstart Guide
(http://locationtech.github.io/geowave/quickstart.html).

http://locationtech.github.io/geowave/quickstart.html

DataStore Con�guration
This section outlines any particular methods for configurations that are necessary for GeoWave-supported datastores.

GeoWave currently supports the following datastores:

Apache Accumulo Configuration

Google BigTable Configuration

Apache HBase Configuration

Apache Accumulo Con�guration
Overview

Procedure

Managing

Versioning

Basic

Advanced

Overview

The two high level tasks to configure Accumulo for use with GeoWave are to:

1. Ensure the memory allocations for the master and tablet server processes are adequate

2. Add the GeoWave Accumulo iterator to a classloader. The iterator is a rather large file, so ensure the Accumulo Master process
has at least 512m of heap space and the Tablet Server processes have at least 1g of heap space.

The recommended Accumulo configuration for GeoWave requires several manual configuration steps but isolates the GeoWave
libraries in application specific classpath(s) reducing the possibility of dependency conflict issues. A single user for all of GeoWave
data or a user per data type are two of the many local configuration options. You should just just ensure each namespace
containing GeoWave tables is configured to pick up the 'geowave-accumulo.jar'.

Procedure

1. Create a user and namespace.

2. Grant the user ownership permissions on all tables created within the application namespace.

3. Create an application or data set specific classpath.

4. Configure all tables within the namespace to use the application classpath.

1 You’ll be prompted for a password.

2 Ensure the user has ownership of all tables created within the namespace.

3
The Accumulo root path in HDFS varies between hadoop vendors. For Apache and Cloudera it is '/accumulo' and for
Hortonworks it is '/apps/accumulo'

4
Link the namespace with the application classpath. Adjust the labels as needed if you’ve used different user or
application names

These manual configuration steps have to be performed before attempting to create GeoWave index tables. After the initial
configuration, you may elect to do further user and namespace creation and configuring to provide isolation between groups and
data sets.

Managing

After installing a number of different iterators, you may want to figure out which iterators have been configured.

You will get back a listing of context classpath override configurations that map the application or user context you configured to
a specific iterator jar in HDFS.

accumulo shell -u root
createuser geowave
createnamespace geowave
grant NameSpace.CREATE_TABLE -ns geowave -u geowave
config -s general.vfs.context.classpath.geowave=hdfs://${MASTER_FQDN}:8020/${ACCUMULO_ROOT}/lib/[^.].*.jar
config -ns geowave -s table.classpath.context=geowave
exit

BASH

1

2

3

4

Print all configuration and grep for line containing vfs.context configuration and also show the following line
accumulo shell -u root -p ROOT_PWD -e "config -np" | grep -A 1 general.vfs.context.classpath

BASH

Versioning

It’s of critical importance to ensure that the various GeoWave components are all the same version and that your client is of the
same version that was used to write the data.

Basic

The RPM packaged version of GeoWave puts a timestamp in the name so it’s pretty easy to verify that you have a matched set of
RPMs installed. After an update of the components, you must restart Accumulo to get vfs to download the new versions and this
should keep everything synched.

Compare version and timestamps of installed RPMs

Advanced

When GeoWave tables are first accessed on a tablet server, the vfs classpath tells Accumulo where to download the jar file from
HDFS. The jar file is copied into the local /tmp directory (the default general.vfs.cache.dir setting) and loaded onto the classpath. If
there is ever doubt as to if these versions match, you can use the commands below from a tablet server node to verify the version
of this artifact.

Commit hash of the jar in HDFS

1
The root directory of Accumulo in various distributions can vary, so check with 'hadoop fs -ls /' first to ensure you have
the correct initial path.

Compare with the versions downloaded locally

Example

1 This is the version loaded into hdfs and should be present on all tablet servers once Accumulo has been restarted.

2 The find command will probably locate a number of different versions depending on how often you clean out /tmp.

There may be multiple versions copies present - one per JVM, the error scenario is when a tablet server is missing the correct
iterator jar.

[spohnae@c1-master ~]$ rpm -qa | grep geowave
geowave-0.9.3-apache-core-0.9.3-201602012009.noarch
geowave-0.9.3-apache-jetty-0.9.3-201602012009.noarch
geowave-0.9.3-apache-accumulo-0.9.3-201602012009.noarch
geowave-0.9.3-apache-tools-0.9.3-201602012009.noarch

BASH

sudo -u hdfs hadoop fs -cat /accumulo/classpath/geowave/geowave-accumulo-build.properties | grep scm.revision | sed
s/project.scm.revision=

BASH

1

sudo find /tmp -name "*geowave-accumulo.jar" -exec unzip -p {} build.properties \; | grep scm.revision | sed
s/project.scm.revision=//

BASH

[spohnae@c1-node-03 ~]$ sudo -u hdfs hadoop fs -cat /${ACCUMULO_ROOT}/lib/geowave-accumulo-build.properties | grep
scm.revision | sed s/project.scm.revision=//
294ffb267e6691de3b9edc80e312bf5af7b2d23f
[spohnae@c1-node-03 ~]$ sudo find /tmp -name "*geowave-accumulo.jar" -exec unzip -p {} build.properties \; | grep
scm.revision | sed s/project.scm.revision=//
294ffb267e6691de3b9edc80e312bf5af7b2d23f
294ffb267e6691de3b9edc80e312bf5af7b2d23f
25cf0f895bd0318ce4071a4680d6dd85e0b34f6b

BASH

1

2

2

Google BigTable Con�guration
There are no additional configuration steps required for Google BigTable, once the RPM has performed the installation.

Apache HBase Con�guration
There are no additional configuration steps required for Apache HBase, once the RPM has performed the installation.

Jace JNI Proxies
Using Jace, we are able to create JNI proxy classes for GeoWave that can be used in C/C++ applications.

Boost is required when using the Jace bindings.

Prepackaged Source and Binaries
There is a public GeoWave RPM Repo (http://locationtech.github.io/geowave/packages.html) where you can download a tarball for the
GeoWave Jace bindings for your desired platform. If your platform is not available, there is a source tarball which can be used in
conjunction with CMake to build the GeoWave Jace bindings for your desired platform.

Generate Proxies and Build from Source
If you want, you can generate and build the Jace proxies yourself. For more details on how to do this, please check out the
GeoWave Developer Guide (http://locationtech.github.io/geowave/devguide.html#proxies).

Mapnik Plugin Con�guration

Mapnik

Mapnik (http://mapnik.org/) is an open source toolkit for developing mapping applications. GeoWave is supported as a plugin for
Mapnik for reading vector data from Accumulo.

PDAL Plugin Con�guration

PDAL

The Point Data Abstraction Library PDAL (http://www.pdal.io/index.html) is a BSD licensed library for translating and manipulating
point cloud data of various formats. GeoWave is supported as a plugin for PDAL for both reading and writing data to Accumulo.

Note: These instructions assume that you are using prepackaged binaries.

Con�gure CMake for PDAL

To configure PDAL to run with GeoWave, there are a few CMake options that need to be configured. While some of the options
(namely the JAVA options) may configure automatically, some will need to be set manually. Refer to the table below to get an idea
for how these options would be configured on Ubuntu 14.04 LTS.

Option Value Automatically Configured?

BUILD_PLUGIN_GEOWAVE ON

BUILD_GEOWAVE_TESTS ON

GEOWAVE_RUNTIME_JAR /path/to/geowave/geowave-runtime.jar

GEOWAVE_INCLUDE_DIR /path/to/geowave/include

GEOWAVE_LIBRARY /path/to/geowave/libgeowave.so

JAVA_AWT_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH2 /usr/lib/jvm/java-8-oracle/include/linux X

JAVA_AWT_LIBRARY /usr/lib/jvm/java-8-
oracle/jre/lib/amd64/libjawt.so

X

JAVA_JVM_LIBRARY /usr/lib/jvm/java-8-
oracle/jre/lib/amd64/server/libjvm.so

X

http://locationtech.github.io/geowave/packages.html
http://locationtech.github.io/geowave/devguide.html#proxies
http://mapnik.org/
http://www.pdal.io/index.html

Note: As Boost is a PDAL dependency, it should already be included.

Build PDAL

Once CMake is configured, you can proceed with your normal PDAL build process.

Last but not least, you should ensure that the libraries specified above are available via PATH or LD_LIBRARY_PATH when
building shared libraries.

Within the PDAL documentation, you can see examples of how GeoWave can be used as both a reader
(http://www.pdal.io/stages/readers.geowave.html) and writer (http://www.pdal.io/stages/writers.geowave.html).

http://www.pdal.io/stages/readers.geowave.html
http://www.pdal.io/stages/writers.geowave.html

Puppet

Overview
A GeoWave Puppet module (http://puppetlabs.com/) has been provided as part of both the tar.gz archive bundle and as an RPM. This
module can be used to install the various GeoWave services onto separate nodes in a cluster or all onto a single node for
development.

There are a couple of different RPM repo settings that may need setting. As the repo is disabled by default to avoid picking up new
Accumulo iterator jars without coordinating a service restart, there is likely some customization required for a particular use
case. Class parameters are intended to be overridden to provide extensibility.

Options
geowave_version

The desired version of GeoWave to install, ex: '0.9.3'. We support concurrent installs but only one will be active at a time.

hadoop_vendor_version

The Hadoop framework vendor and version against which GeoWave was built. Examples would be cdh5 or hdp2. Check the
available packages (http://locationtech.github.io/geowave/packages.html) site for currently supported hadoop distributions.

install_accumulo

Install the GeoWave Accumulo Iterator on this node and upload it into HDFS. This node must have a working HDFS client.

install_app

Install the GeoWave ingest utility on this node. This node must have a working HDFS client.

install_app_server

Install Jetty with Geoserver and GeoWave plugin on this node.

http_port

The port on which the Jetty application server will run - defaults to 8080.

repo_base_url

Used with the optional geowave::repo class to point the local package management system at a source for GeoWave RPMs. The
default location is http://s3.amazonaws.com/geowave-rpms/release/noarch/.

repo_enabled

To pick up an updated Accumulo iterator you’ll need to restart the Accumulo service. We don’t want to pick up new RPMs with
something like a yum-cron job without coordinating a restart so the repo is disabled by default.

repo_refresh_md

The number of seconds before checking for new RPMs. On a production system the default of every 6 hours should be
sufficient, but you can lower this down to 0 for a development system on which you wish to pick up new packages as soon as
they are made available.

Examples

Development

Install everything on a one-node development system. Use the GeoWave Development RPM Repo and force a check for new RPMs
with every pull (don’t use cached metadata).

http://puppetlabs.com/
http://locationtech.github.io/geowave/packages.html
http://s3.amazonaws.com/geowave-rpms/release/noarch/

Clustered
Run the application server on a different node. Use a locally maintained rpm repo vs. the one available on the Internet and run
the app server on an alternate port, so as not to conflict with another service running on that host.

Puppet script management
As mentioned in the overview, the scripts are available from within the GeoWave source tar bundle
(http://locationtech.github.io/geowave/packages.html) (Search for gz to filter the list). You could also use the RPM package to install and
pick up future updates on your puppet server.

Source Archive

Unzip the source archive, locate puppet-scripts.tar.gz, and manage the scripts yourself on your Puppet Server.

RPM

There’s a bit of a boostrap issue when first configuring the Puppet server to use the GeoWave puppet RPM as yum won’t know
about the RPM Repo and the GeoWave Repo Puppet class hasn’t been installed yet. There is an RPM available that will set up the
yum repo config after which you should install geowave-puppet manually and proceed to configure GeoWave on the rest of the
cluster using Puppet.

Dev VM
class { 'geowave::repo':
 repo_enabled => 1,
 repo_refresh_md => 0,
} ->
class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_accumulo => true,
 install_app => true,
 install_app_server => true,
}

RUBY

Master Node
node 'c1-master' {
 class { 'geowave::repo':
 repo_base_url => 'http://my-local-rpm-repo/geowave-rpms/dev/noarch/',
 repo_enabled => 1,
 } ->
 class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_accumulo => true,
 install_app => true,
 }
}

App server node
node 'c1-app-01' {
 class { 'geowave::repo':
 repo_base_url => 'http://my-local-rpm-repo/geowave-rpms/dev/noarch/',
 repo_enabled => 1,
 } ->
 class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_app_server => true,
 http_port => '8888',
 }
}

RUBY

rpm -Uvh http://s3.amazonaws.com/geowave-rpms/release/noarch/geowave-repo-1.0-3.noarch.rpm
yum --enablerepo=geowave install geowave-puppet

BASH

http://locationtech.github.io/geowave/packages.html

Appendices

Version
This documentation was generated for GeoWave version 0.9.4-SNAPSHOT from commit
3a3eed870675dcef4506877043325236d690f5b7.

GeoWave Security

Datastore Passwords

In order to provide security around account passwords, particularly those entered through command-line, GeoWave is
configured to perform encryption on password fields that are configured for datastores or other configured components. To take
the topic of passwords even further, GeoWave has also been updated to support multiple options around how to pass in
passwords when configuring a new datastore, rather than always having to enter passwords in clear-text at command line.

Password Options

The following options are currently supported for entering passwords into GeoWave:

pass: <password>

This option will allow for a clear-text password to be entered on command-line. It is strongly encouraged not to use this
method outside of a local development environment (i.e., NOT in a production environment or where concurrent users are
sharing the same system).

env:<environment variable containing the password>

This option will allow for an environment variable to be used to store the password, and the name of the environment
variable to be entered on command-line in place of the password itself.

file:<path to local file containing the password>

This option will allow for the password to be inside a locally-accessible text file, and the path to file to be entered on
command-line in place of the password itself. Please note that the password itself is the ONLY content to be stored in the file
as this option will read all content from the file and store that as the password.

propfile:<path to local properties file containing the password>:<property file key to password value>

This option will allow for the password to be stored inside a locally-accessible properties file, and the key that stores the
password field to be also specified. The value associated with the specified key will be looked up and stored as the
password.

stdin

This option will result in the user being prompted after hitting enter, and will prevent the entered value from appearing in
terminal history.

Users can still continue to enter their password in plain text at command line (just as was done with previous
versions of GeoWave), but it is strongly encouraged not to do so outside of a local development environment (i.e.,
NOT in a production environment or where concurrent users are sharing the same system).

Password Encryption

Passwords are encrypted within GeoWave using a local encryption token key. It is important to not manipulate the key or internal
content. By doing so, you are compromising the likelihood of not being able to encrypt new data or decrypt already encrypted
data.

It is assumed that a geowave system command alias is registered in the terminal session being run through.

To test this, type 'geowave' (no quotes) and press Enter.

If a list of GeoWave options is returned, then the system command alias is available. Otherwise, if an error similar
to or containing the term 'geowave: command not found' is returned, the system command alias has not been
registered. For details on how to register the 'geowave' system command alias, please refer to the GeoWave
Developer Guide (http://locationtech.github.io/geowave/devguide.html#packaging-code).

If the alias system command is not registered, the full java command - e.g. java -cp {GEOWAVE_HOME}
{GEOWAVE_JAR}) will need to be used in place of the 'geowave' alias.

In the event that the encryption token key is compromised, or thought to be compromised, a new token key can very easily be
generated using a GeoWave system command.

http://locationtech.github.io/geowave/devguide.html#packaging-code

The above command will re-encrypt all passwords already configured against the new token key. As a result, the previous token
key is obselete and can no longer be used.

This option is only useful to counter the event that only the token key file is compromised. In the event that both
the token key file and encrypted password value have been compromised, it is recommended that steps are taken
to change the datastore password and re-configure GeoWave to use the new password.

Con�guring Console Echo

When the 'stdin' option is specified for passwords to be entered at command line, it is recognized that there are circumstances
where the console echo is wanted to be enabled (i.e., someone looking over your shoulder), and other times where the console
echo is wanted to be disabled.

For configuring the default console echo setting:

The above command will set the default setting for all console prompts. Default is false if not specified, meaning any characters
that are typed (when console echo is disabled) are not shown on the screen.

GeoWave provides the ability to override the console echo setting for passwords specifically. For configuring the password
console echo setting:

If the above is specified, this setting will be applied for passwords when a user is promoted for input. By default, if the passwords
console echo is not specified, the system will use the console default echo setting.

Enabling/Disabling Password Encryption

GeoWave provides the ability to enable or disable password encryption as it is seen necessary. By default, password encryption is
enabled, but can be disabled for debugging purposes. For configuring the password encryption enabled setting:

It is HIGHLY discouraged against disabling password encryption, particularly in a production (or similar)
environment. While this option is available for assisting with debugging credentials, it should be avoided outside
of production-like environments in order to avoid leaking data source credentials to unauthorized parties.

$ geowave config newcryptokey
BASH

$ geowave config set geowave.console.default.echo.enabled={true|false}
BASH

$ geowave config set geowave.console.password.echo.enabled={true|false}
BASH

$ geowave config set geowave.encryption.enabled={true|false}
BASH

Last updated 2017-08-24 05:36:48 +00:00

