
Table of Contents

GeoWave User Guide

Links
 Site (http://ngageoint.github.io/geowave/)

 PDF (https://s3.amazonaws.com/geowave/0.9.4/docs/userguide.pdf)

 Javadoc (https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html)

 GitHub (https://github.com/ngageoint/geowave)

 Packages (https://s3.amazonaws.com/geowave/0.9.4/docs/packages.html)

What is GeoWave
Origin
Intent

Theory
Spatial Index

Example screenshots
GeoLife
OpenStreetMap GPX Tracks
T-Drive

Architecture
Overview
Indexes
Adapters
Key Structure
Statistics

Tools Framework
Building

Ingest
Overview
Ingest Example
Ingest Plugins
Ingest Statistics and Time Dimension Con�guration
New Formats

Analytics
Overview
Building
Running
Analytic Commands

Query
Overview

Third Party
GeoServer

Installation from RPM
Overview
Examples
RPM Installation Notes

Maven Repositories
Overview
Maven POM fragments
Maven settings.xml fragments

Installation from Source
GeoServer
Accumulo

http://ngageoint.github.io/geowave/
https://s3.amazonaws.com/geowave/0.9.4/docs/userguide.pdf
https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html
https://github.com/ngageoint/geowave
https://s3.amazonaws.com/geowave/0.9.4/docs/packages.html

Running from EMR
Provisioning
Connecting
Links
Con�guration

Accumulo Con�guration
Overview
Managing
Versioning

Building
Application Dependencies
Maven dependencies
Build Process
Docker Build Process

Jace JNI Proxies
Prepackaged Source and Binaries
Generate Proxies and Build from Source
Mapnik Plugin Con�guration
PDAL Plugin Con�guration

Puppet
Overview
Options
Examples
Clustered
Puppet script management

How to Contribute
Pull Requests

Documentation
Overview
Ordering
Preview
Transformation
Javadocs

Appendices
Version
Topics in need of documentation

v0.9.4

GeoWave User Guide
§

Links

 Site (http://ngageoint.github.io/geowave/)

 PDF (https://s3.amazonaws.com/geowave/0.9.4/docs/userguide.pdf)

 Javadoc (https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html)

 GitHub (https://github.com/ngageoint/geowave)

 Packages (https://s3.amazonaws.com/geowave/0.9.4/docs/packages.html)

http://ngageoint.github.io/geowave/
https://s3.amazonaws.com/geowave/0.9.4/docs/userguide.pdf
https://s3.amazonaws.com/geowave/latest/docs/apidocs/index.html
https://github.com/ngageoint/geowave
https://s3.amazonaws.com/geowave/0.9.4/docs/packages.html

What is GeoWave
GeoWave is a library for storage, index, and search of multi-dimensional data on top of a sorted key-value datastore. GeoWave
includes specific tailored implementations that have advanced support for OGC spatial types (up to 3 dimensions), and both
bounded and unbounded temporal values. Both single and ranged values are supported on all axes. GeoWave’s geospatial support
is built on top of the GeoTools extensibility model. This means that it can integrate natively with any GeoTools compatible project
(such as GeoServer and UDig), and can ingest GeoTools compatible data sources. GeoWave provides out-of-the-box support for the
Apache Accumulo (https://accumulo.apache.org) and Apache HBase (https://hbase.apache.org) distributed key/value stores.

GeoWave Features:

Adds multi-dimensional indexing capability to Apache Accumulo and Apache HBase

Adds support for geographic objects and geospatial operators to Apache Accumulo and Apache HBase

Provides a GeoServer (http://geoserver.org/) plugin to allow geospatial data in Accumulo to be shared and visualized via OGC
standard services

Provides Map-Reduce input and output formats for distributed processing and analysis of geospatial data

GeoWave attempts to do for Accumulo and HBase as PostGIS does for PostgreSQL.

https://accumulo.apache.org/
https://hbase.apache.org/
http://geoserver.org/

Origin
GeoWave was developed at the National Geospatial-Intelligence Agency (NGA) in collaboration with RadiantBlue Technologies
(http://www.radiantblue.com/) and Booz Allen Hamilton (http://www.boozallen.com/). The government has unlimited rights
(https://github.com/ngageoint/geowave/blob/master/NOTICE) and is releasing this software to increase the impact of government
investments by providing developers with the opportunity to take things in new directions. The software use, modification, and
distribution rights are stipulated within the Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0.html) license.

Intent

Pluggable Backend

GeoWave is intended to be a multidimensional indexing layer that can be added on top of any sorted key-value store. Accumulo
was chosen as the initial target architecture and support for HBase has been added as well. Any datastore which allows prefix
based range scans should be straightforward extensions.

Modular Design

The architecture itself is designed to be extremely extensible with most of the functionality units defined by interfaces, and with
default implementations of these interfaces to cover most use cases. The intent is that the out of the box functionality should
satisfy 90% of use cases but the modular architecture allows for easy feature extension as well as integration into other platforms.

Self-Describing Data

GeoWave stores the information needed to manipulate data (such as configuration and format), in the database itself. This allows
software to programmatically interrogate all the data stored in a single or set of GeoWave instances without needing bits of
configuration from clients, application servers, or other external stores.

http://www.radiantblue.com/
http://www.boozallen.com/
https://github.com/ngageoint/geowave/blob/master/NOTICE
http://www.apache.org/licenses/LICENSE-2.0.html

Theory


This is a brief overview of the theory and concepts behind GeoWave. For an in-depth discussion, please see the
GeoWave Developer Guide. (http://ngageoint.github.io/geowave/devguide.html#theory)

Spatial Index
GeoWave creates a spatial index to represent multi-dimensional data in a manner that can be reduced to a series of ranges on a 1
dimensional number line. Examples of these include:

latitude, longitude

latitude, longitude, time

latitude, longitude, altitude, time

feature vector1, feature vector 2 (…), feature vector n

This is due to the way big table based databases store the data – as a sorted set of key/value pairs.

The goal is to provide a property that ensures values close in n-dimensional space are still close in 1-dimensional space. There are
a few reasons for this, but primarily it’s so we can represent an n-dimensional range selector (bbox typically – but can be
abstracted to a hyper-rectangle) as a smaller number of highly contiguous 1d ranges.

Figure: Z-Order curve based dimensional decomposition

Fortunately there is already a type of transform that describes this operation in mathematics – it’s called a “Space Filling Curve” –
or SFC for short. Different space filling curves have different properties, but they all take an n-dimensional space and describe a
set of steps to trace all points in a single sequence.

http://ngageoint.github.io/geowave/devguide.html#theory

Figure: Haverkort, Walderveen Locality and Bounding-Box Quality of Two-Dimensional Space-Filling Curves 2008 arXiv:0806.4787v2

The trade-offs for the various curves are outside the scope of this user manual, but the paper cited for figure two is an excellent
starting point to start learning about these curves.

GeoWave supports two space filling curves: Z-Order and Hilbert, with the Hilbert type space filling curve being the primary
implementation.

Example screenshots
The screenshots below are of data loaded from various attributed data sets into a GeoWave instance, processed (in some cases) by
a GeoWave analytic process, and rendered by Geoserver.

GeoLife
Microsoft research has made available a trajectory data set that contains the GPS coordinates of 182 users over a three year
period (April 2007 to August 2012). There are 17,621 trajectories in this data set.

More information on this data set is available at Microsoft Research GeoLife page (http://research.microsoft.com/jump/131675)

GeoLife at city scale

Below are renderings of GeoLife data. They display the raw points as well as the results of a GeoWave kernel density analytic. The
data corresponds to Mapbox zoom level 13.

image::geolife-density-13-thumb.jpg[scaledwidth="100%",alt="Geolife density at city scale",link=images/geolife-density-13.jpg]
image::geolife-points-13-thumb.jpg[scaledwidth="100%",alt="Geolife points at city scale",link=images/geolife-points-13.jpg]

http://research.microsoft.com/jump/131675

GeoLife at house scale

This data set corresponds to a Mapbox zoom level of 15

Graphic background ©MapBox and ©OpenStreetMap

Graphic background ©MapBox and ©OpenStreetMap

https://s3.amazonaws.com/geowave/0.9.4/docs/images/geolife-density-17.jpg
https://s3.amazonaws.com/geowave/0.9.4/docs/images/geolife-points-17.jpg

OpenStreetMap GPX Tracks
The OpenStreetMap Foundation has released a large set of user contributed GPS tracks. These are about 8 years of historical
tracks. The data set consists of just under 3 billion (not trillion as some websites claim) points, or just under one million
trajectories.

More information on this data set is available at GPX Planet page (http://wiki.openstreetmap.org/wiki/Planet.gpx)

OSM GPX at continent scale

The data below corresponds to a Mapbox zoom level of 6

http://wiki.openstreetmap.org/wiki/Planet.gpx
https://s3.amazonaws.com/geowave/0.9.4/docs/images/osmgpx.jpg

OSM GPX at world scale

This data set corresponds to a Mapbox zoom level of 3

https://s3.amazonaws.com/geowave/0.9.4/docs/images/osmgpx-world.jpg

T-Drive
Microsoft research has made available a trajectory data set that contains the GPS coordinates of 10,357 taxis in Beijing, China and
surrounding areas over a one week period. There are approximately 15 million points in this data set.

More information on this data set is available at: Microsoft Research T-drive page (http://research.microsoft.com/apps/pubs/?id=152883)

T-drive at city scale

Below are renderings of the t-drive data. They display the raw points along with the results of a GeoWave kernel density analytic.
The data corresponds to Mapbox zoom level 12.

http://research.microsoft.com/apps/pubs/?id=152883
https://s3.amazonaws.com/geowave/0.9.4/docs/images/t-drive-points-12.jpg
https://s3.amazonaws.com/geowave/0.9.4/docs/images/t-drive-density-12.jpg

T-drive at block scale

This data set corresponds to a Mapbox zoom level of 15

Graphic background©MapBox and ©OpenStreetMap

Graphic background©MapBox and ©OpenStreetMap

T-drive at house scale

This data set corresponds to a Mapbox zoom level of 17

Graphic background©MapBox and ©OpenStreetMap

Graphic background©MapBox and ©OpenStreetMap

Architecture


This is a brief overview of the GeoWave architecture. For an in-depth discussion, please see the GeoWave
Developer Guide. (http://ngageoint.github.io/geowave/devguide.html#architecture)

Overview

The core of the GeoWave architecture concept is getting data in, and pulling data out – or Ingest and Query. There are also two
types of data persisted in the system: feature data, and metadata. Feature data is the actual set of attributes and geometries that
are stored for later retrieval. Metadata describes how the data is persisted in the database. The intent is to store the information
needed for data discovery and retrieval in the database. This means that an existing data store isn’t tied to a bit of configuration
on a particular external server or client, but instead is “self-describing.”

Indexes
The core engine to quickly retrieve data from GeoWave is a SFC (space filling curve) based index. This index can be configured
with several different parameters:

number of levels

number of dimensions

cardinality of each dimension

dimension type (bounded / unbounded)

value range of each dimension

More on each of these properties will be described later; the intent of this list is to provide a notion of what type of configuration
information is persisted.

http://ngageoint.github.io/geowave/devguide.html#architecture

In order to insert data in a datastore the configuration of the index has to be known. The index is persisted in a special table and
is referenced back via table name to a table with data in it. Therefore queries can retrieve data without requiring index
configuration. There is a restriction that only one index configuration per table is supported - i.e. you can’t store data on both a 2D
and 3D index in the same table. (You could store 2D geometry types in a 3D index though).

Adapters
In order to store geometry, attributes, and other information, a format is required that describes how to serialize and deserialize
the data. GeoWave provides an interface that handles the serialization and deserialization of feature data. A default
implementation supporting the GeoTools simple feature type is included by default. More on this specific implementation, as well
as the interface, will be detailed later in this document. A pointer to the java class (expected to be on the classpath) is stored in the
Adapter persistence table. This is loaded dynamically when the data is queried and the results are translated to the native data
type

Feature Serialization

GeoWave allows developers to create their own data adapters. Adapters not only determine how the data is actually stored
(serialization/deserialization), but also contain a hierarchy of attribute types. The reason for this hierarchy has to do with
extensibility vs. optimization. A data adapter could theoretically take a dependency on ffmpeg, store the feature as metadata in a
video stream, and persist that value to the database. All questions of sanity of this solution aside, there are some additional
specific issues with the way fine grain filtering is done - specifically due to the iterators. Iterators are part of the Accumulo
extensibility module and allow for arbitrary code to be plugged in directly at the tablet server level into the core Accumulo kernel.
With more code in the iterators there is both a greater chance of crashing (and taking down a tablet server - and possibly an
Accumulo instance), greater use of memory (memory used by the iterator / class loader isn’t available for caching, etc., and a
greater O&M debt - the iterators have to be distributed to each client out of band - and require impersonating the Accumulo user
(possibly root).

Based on this, our goal was to minimize the code, and standardize on as few iterators as possible. This conflicted with the desire
to allow maximum flexibility with arbitrary DataAdapters. A middle ground was found, and this hierarchy was created. Some
standardization was put in place around how certain data types would be stored and serialized, but a "native data" portion was
still left in place for arbitrary data - with the caveat that native data cannot be used in distributed (iterator based) filtering - only
in client side filtering.

Primary Index Data

These are sets of data which are also used to construct the primary index (space filling curve). They will typically be geometry
coordinates and optionally time - but could be any set of numeric values (think decomposed feature vectors, etc.). They cannot be
null.

Common Index Data

These are a collection of attributes. There can be any number of attributes, but they must conform to the DimensionField
interface - the attribute type must have a FieldReader and a FieldWriter that is within the classpath of the tablet servers.
GeoWave provides a basic implementation for these attribute types:

Boolean

Byte

Short

Float

Double

BigDecimal

Integer

Long

BigInteger

String

Geometry

Date

Calendar

The values that are not part of the primary index can be used for distributed secondary filtering, and can be null. The values that
are associated with the primary index will be used for fine-grained filtering within an iterator.

Native Data

These can be literally anything. From the point of view of the data adapter they are just a binary (or Base64) encoded chunk of
data. No distributed filtering can be performed on this data except for Accumulo’s visibility filter - but the client side filtering
extensibility point can still be used if necessary. The Data Adapter has to provide methods to serialize and deserialize these items
in the form of Field Readers and Writers, but it is not necessary to have these methods on the classpath of any nodes.

Key Structure

The above diagram describes the default structure of entries in the data store. The index ID comes directly from the tiered space
filling curve implementation. We do not impose a requirement that data IDs are globally unique but they should be unique for the
adapter. Therefore, the pairing of Adapter ID and Data ID define a unique identifier for a data element. The lengths are stored
within the row ID as 4 byte integers. This enables fully reading the row ID because these IDs can be of variable length. The
number of duplicates is stored within the row ID as well to inform the de-duplication filter whether this element needs to be
temporarily stored in order to ensure no duplicates are sent to the caller. The adapter ID is within the Row ID to enforce unique
row IDs as a whole row iterator is used to aggregate fields for the distributable filters. The adapter ID is also used as the column
family as the mechanism for adapter-specific queries to fetch only the appropriate column families.

Statistics
Adapters provide a set of statistics stored within a statistic store. The set of available statistics is specific to each adapter and the
set of attributes for those data items managed by the adapter. Statistics include:

Ranges over an attribute, including time.

Enveloping bounding box over all geometries.

Cardinality of the number of stored items.

Histograms over the range of values for an attribute.

Cardinality of discrete values of an attribute.

Statistics are updated during data ingest and deletion. Range and bounding box statistics reflect the largest range over time. Those
statistics are not updated during deletion. Statistics based on cardinality are updated upon deletion.

Tools Framework
A plugin framework (using Service Provider Interface (SPI) based injection) is provided with several input formats and utilities
supported out of the box.

First we’ll show how to build and use the built in formats, and after that describe how to create a new plugin.

Building
First build the main project after specifying the dependency versions you’d like to build against.

1 Examples of current build args can be seen in the top level .travis.yml file in the env/matrix section

2
If you don’t need the complete history and want to speed up the clone you can limit the depth of your checkout with --
depth NUM_COMMITS

3
You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true -DskipITs=true -
DskipTests=true

Now we can build the cli tools framework

The geowave tools jar is now packaged in deploy/target. When packaged for installation there will be a wrapper script named
geowave that will be installed in $PATH. In a development environment where this script has not been installed you could create
a directory containing the tools jar and any needed plugin jars and use with something like the following command java -cp
"$DIR/* <operation> <options>

At this point you can now run GeoWave Command Line Instructions. For a full list of these commands please see the GeoWave
CLI Appendix (http://ngageoint.github.io/geowave/commands.html).

export BUILD_ARGS="-Daccumulo.version=1.7.2 -Daccumulo.api=1.7 -Dhbase.version=1.3.0 -Dhadoop.version=2.7.3 -
Dgeotools.version=16.0 -Dgeoserver.version=2.10.0"
git clone https://github.com/ngageoint/geowave.git
cd geowave
mvn install $BUILD_ARGS

BASH

1

2

3

mvn package -P geowave-tools-singlejar $BUILD_ARGS
BASH

http://ngageoint.github.io/geowave/commands.html

Ingest

Overview
In addition to the raw data to ingest, the ingest process requires an adapter to translate the native data into a format that can be
persisted into the data store. Also, the ingest process requires an Index which is a definition of all the configured parameters that
define how data is translated to row IDs (how it is indexed) and what common fields need to be maintained within the table to be
used by fine-grained and secondary filters.

The full list of GeoWave ingest commands can be found in the GeoWave CLI Appendix
(http://ngageoint.github.io/geowave/commands.html#ingest-commands).

Ingest Example
GeoWave can ingest any data type that has been listed as an ingest plugin. Let’s start out with the GeoTools datastore; this wraps a
bunch of GeoTools supported formats. This includes all file-based datastores supported within GeoTools. We will use the shapefile
capability for our example here.

Something recognizable

The naturalearthdata side has a few shapefile we can use use. On the page 50m Cultural Vectors
(http://www.naturalearthdata.com/downloads/50m-cultural-vectors/)

Let’s download the Admin 0 - Countries shapefile: ne_50m_admin_0_countries.zip
(http://naciscdn.org/naturalearth/50m/cultural/ne_50m_admin_0_countries.zip)

1
This will create a re-usable named configuration mystore that can be referenced as a store by other commandline
operations such as ingest. The type (-t) can also be set to hbase if you prefer to use HBase as your datastore

2
We preface the table name with the Accumulo namespace we configured earlier in Accumulo followed by a dot
(NAMESPACE.TABLE_NAME). The Accumulo Configuration section can explain this further.

3 If you are using an HBase datastore, zookeeper is the only required option here

4
This will create a re-usable named configuration myindex that can be referenced as an index by other commandline
operations such as ingest

5

The index is spatial and pre-split based on the number of partitions you may desire - this is an optional parameter but an
example of customization you may choose on index configuration, in this case data is randomized into different splits
which can help avoid hotspotting to a single node/core

6 Notice the ingest command uses the named configurations mystore and myindex

7
Explicitly set the ingest formats by name (or multiple comma-delimited formats), if not set all available ingest formats
will be used

After running the ingest command you should see the various index tables in you datastore.

Ingest Plugins

$ mkdir ingest
$ mv ne_50m_admin_0_countries.zip ingest/
$ cd ingest
$ unzip ne_50m_admin_0_countries.zip
$ rm ne_50m_admin_0_countries.zip
$ cd ..
$ geowave config addstore -t accumulo mystore \
 --gwNamespace geowave.50m_admin_0_countries \
 --zookeeper ${ZOOKEEPER_HOSTNAME}:2181 \
 --instance ${ACCUMULO_INSTANCE_NAME} \
 --user ${USERNAME} \
 --password ${PASSWORD}
$ geowave config addindex -t spatial myindex \
 --partitionStrategy round_robin \
 --numPartitions ${NUM_PARTITIONS} \
$ geowave ingest localToGW ./ingest mystore myindex \
 -f geotools-vector \

BASH

1

2

3

4

5

6

7

http://ngageoint.github.io/geowave/commands.html#ingest-commands
http://www.naturalearthdata.com/downloads/50m-cultural-vectors/
http://naciscdn.org/naturalearth/50m/cultural/ne_50m_admin_0_countries.zip

The geowave command line utility comes with several plugins out of the box. You can list the available plugins that are registered
with your commandline tool.

You can add more by simply copying a desired plugin into the /usr/local/geowave/tools/plugins directory.

Available index types currently registered as plugins:

spatial_temporal

This dimensionality type matches all indices that only require Geometry and Time.

spatial

This dimensionality type matches all indices that only require Geometry.

Available ingest formats currently registered as plugins:

geotools-vector

all file-based vector datastores supported within geotools

geolife

files from Microsoft Research GeoLife trajectory data set

gdelt

files from Google Ideas GDELT data set

stanag4676

xml files representing track data that adheres to the schema defined by STANAG-4676

geotools-raster

all file-based raster formats supported within geotools

gpx

xml files adhering to the schema of gps exchange format

tdrive

files from Microsoft Research T-Drive trajectory data set

avro

This can read an Avro file encoded with the SimpleFeatureCollection schema. This schema is also used by the export tool, so
this format handles re-ingesting exported datasets.

Available datastores currently registered:

accumulo

A GeoWave store backed by tables in Apache Accumulo

hbase

A GeoWave store backed by tables in Apache HBase

Ingest Statistics and Time Dimension Con�guration
The available plugins for vector support adjustments to their configuration via the command line. The system property
'SIMPLE_FEATURE_CONFIG_FILE' may be assigned to the name of a locally accessible JSON file defining the configuration.

Example

geowave ingest listplugins

$ GEOWAVE_TOOL_JAVA_OPT="-DSIMPLE_FEATURE_CONFIG_FILE=myconfigfile.json"
$ geowave ingest localtogw ./ingest mystore myindex

Configuration consists of several parts:

1. Selecting temporal attributes for a temporal index.

2. Assigning to each attribute the type of statistics to be captured within the Statistics Store

3. Determining which attributes should be indexed in a secondary index.

4. Determining which attribute contains visibility information for other attributes

5. Setting the names of the indices to update in WFS-T transactions via the GeoServer plug-in.

The JSON file is made up of configurations. Each configuration is defined by a class name and a set of attributes. Configurations
are grouped by the Simple Feature Type name.

Temporal Con�guration

There are three attributes for the temporal configuration:

1. timeName

2. startRangeName

3. endRangeName

These attributes are associated with the name of a simple feature type attribute that references a time value. To index by a single
time attribute, set timeName to the name of the single attribute. To index by a range, set both startRangeName and
endRangeName to the names of the simple feature type attributes that define start and end time values.

Statistics Con�guration

Each simple feature type attribute may have several assigned statistics. Bounding box and range statistics are automatically
captured for geometry and temporal attributes.

Attribute
Type

Statistic
Name

Statistic Configuration Attributes (with
default values)

Statistic Class

Numeric Fixed Bin
Histogram

minValue=-∞,maxValue=∞,bins=32 mil.nga.giat.geowave.adapter.vector.stats.
FeatureFixedBinNumericStatistics$FeatureFixedBinConfig

Dynamic
Histogram

mil.nga.giat.geowave.adapter.vector.stats.
FeatureNumericHistogramStatistics$FeatureNumericHistogra

Numeric
Range

mil.nga.giat.geowave.adapter.vector.stats.
FeatureNumericRangeStatistics$FeatureNumericRangeConfig

String Count Min
Sketch

errorFactor=0.001,probabilityOfCorrectness=0.98 mil.nga.giat.geowave.adapter.vector.stats.
FeatureCountMinSketchStatistics$FeatureCountMinSketchCon

Hyper Log
Log

precision=16 mil.nga.giat.geowave.adapter.vector.stats.
FeatureHyperLogLogStatistics$FeatureHyperLogLogConfig

Visibility Con�guration

Visibility configuration has two attributes: the visibility manager class and the visibility attribute name.

A Visibility manager extends mil.nga.giat.geowave.core.store.data.visibility.VisibilityManagement. An instance of this class
interprets the contents of a visibility attribute, within a simple feature, to determine the visibility constraints of the other
attributes in that simple feature. The default visibility management class is
mil.nga.giat.geowave.adapter.vector.plugin.visibility.JsonDefinitionColumnVisibilityManagement.

Secondary Index Con�guration

Secondary Index Configurations is made up of one of three classes: .
mil.nga.giat.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration .
mil.nga.giat.geowave.adapter.vector.index.TemporalSecondaryIndexConfiguration .

mil.nga.giat.geowave.adapter.vector.index.TextSecondaryIndexConfiguration

Each of this configurations maintains a set of simple feature attribute names to index in a secondary index.

Primary Index Identi�ers

The class mil.nga.giat.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration is used to maintain the
configuration of primary indices used for adding or updating simple features via the GeoServer plug-in (FeatureWriter).

Example

New Formats
There are multiple ways to get data into GeoWave. In other sections we will discuss higher order frameworks, mapreduce
interfaces, etc. The intent here is "just the basics" - the least framework intensive way that one can load geospatial data.

Information here will reference the SimpleIngest and SimpleIngestProducerConsumer examples in the geowave-examples
project.


The following example is using Accumulo for our datastore. Using HBase for the datastore would work the same
way, except you would use the BasicHBaseOperations object instead of the BasicAccumuloOperations object.

Minimum information needed

Geowave requires a few pieces of fundamental information in order to persist data - these are:

BasicAccumuloOperations object

This class contains the information required to connect to an accumulo instance - and which table to use in accumulo.

{
 "configurations": {
 "myFeatureTypeName" : [
 {"@class":"mil.nga.giat.geowave.adapter.vector.utils.TimeDescriptors$TimeDescriptorConfiguration",
 "startRangeName":null,
 "endRangeName":null,
 "timeName":"captureTime"
 },
 { "@class": "mil.nga.giat.geowave.adapter.vector.index.NumericSecondaryIndexConfiguration",
 "attributes" : ["pop"]
 },
 { "@class": "mil.nga.giat.geowave.adapter.vector.plugin.visibility.VisibilityConfiguration",
 "attributeName" : "vis"
 },
 { "@class": "mil.nga.giat.geowave.adapter.vector.index.SimpleFeaturePrimaryIndexConfiguration",
 "indexNames": ["SPATIAL_IDX"]
 }

{"@class":"mil.nga.giat.geowave.adapter.vector.stats.StatsConfigurationCollection$SimpleFeatureStatsConfigurationCollecti
on",
 "attConfig" : {
 "population" : {
 "configurationsForAttribute" : [
 {"@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureFixedBinNumericStatistics$FeatureFixedBinConfig","bins" : 24}
]
 },
 "country" : {
 "configurationsForAttribute" : [
 {"@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureCountMinSketchStatistics$FeatureCountMinSketchConfig",
 "probabilityOfCorrectness" : 0.98,
 "errorFactor" :0.001
 },
 {"@class" :
"mil.nga.giat.geowave.adapter.vector.stats.FeatureHyperLogLogStatistics$FeatureHyperLogLogConfig"}
]
 }
 }
 }
]
 }
}

Zookeepers - in the format zookeeper1:port,zookeeper2:port,etc…

Accumulo Instance ID - this is the "instance" that the Accumulo cluster you are connecting to was initialized with. It’s a
global setting per cluster.

Accumulo Username - this is the name of the user you would like to connect as. This is a user account managed by
accumulo, not a system, etc. user.

Accumulo Password - this is the password associated with the user specified above. Again, this is an accumulo controlled
secret.

Geowave Namespace - this is not an Accumulo namespace; rather think of it as a prefix geowave will use on any tables it
creates. The only current constraint is only one index type is allowed per namespace.

SimpleFeatureType instance

Simple Feature Types (http://www.opengeospatial.org/standards/sfs) are an OGC specification for defining geospatial features.
Leveraging this standard is one of the easiest ways to get GIS data into GeoWave

SimpleFeatureType instance - org.opengis.feature.simple.SimpleFeatureType - this defines the names, types, and other
metadata (nullable, etc) of a feature. Think of it as a Map of Name:Values where the values are typed.

DataAdapter instance

A geowave data adapter is an implementation of the DataAdapter interface that handles the persistence serialization of
whatever the object you are storing.

We are storing SimpleFeatures, so can leverage the provided FeatureDataAdapter

Index instance

The final piece needed - the index defines which attributes are indexed, and how that index is constructed.

There are lots of options for index configuration, but for convenience we have provided two defaults

DataStore

This is the piece that puts everything above together.

Initialization required a BasicAccumuloOperations instance, the rest are provided as parameters for calls which need them.

Ingest some data

Here we will programmatically generate a grid of points at each location where a whole number latitude and longitude intersect.

Basic Accumulo Operations

Simple Feature Type

A geometry field is required. Everything else is really optional. It’s often convenient to add a text latitude and longitude field for
ease of display values (getFeatureInfo, etc.).

/***
 * The class tells geowave about the accumulo instance it should connect to, as well as what tables it should
create/store it's data in
 * @param zookeepers Zookeepers associated with the accumulo instance, comma separate
 * @param accumuloInstance Accumulo instance name
 * @param accumuloUser User geowave should connect to accumulo as
 * @param accumuloPass Password for user to connect to accumulo
 * @param geowaveNamespace Different than an accumulo namespace (unfortunate naming usage) - this is basically a
prefix on the table names geowave uses.
 * @return Object encapsulating the accumulo connection information
 * @throws AccumuloException
 * @throws AccumuloSecurityException
 */
protected BasicAccumuloOperations getAccumuloInstance(String zookeepers, String accumuloInstance, String accumuloUser,
String accumuloPass, String geowaveNamespace)
 throws AccumuloException, AccumuloSecurityException {
 return new BasicAccumuloOperations(zookeepers, accumuloInstance, accumuloUser, accumuloPass, geowaveNamespace);
}

JAVA

http://www.opengeospatial.org/standards/sfs

Spatial index

Data Adapter

Generating and loading points

/***
 * A simple feature is just a mechanism for defining attributes (a feature is just a collection of attributes + some
metadata)
 * We need to describe what our data looks like so the serializer (FeatureDataAdapter for this case) can know how to
store it.
 * Features/Attributes are also a general convention of GIS systems in general.
 * @return Simple Feature definition for our demo point feature
 */
protected SimpleFeatureType createPointFeatureType(){

 final SimpleFeatureTypeBuilder builder = new SimpleFeatureTypeBuilder();
 final AttributeTypeBuilder ab = new AttributeTypeBuilder();

 //Names should be unique (at least for a given GeoWave namespace) - think about names in the same sense as a full
classname
 //The value you set here will also persist through discovery - so when people are looking at a dataset they will see
the
 //type names associated with the data.
 builder.setName("Point");

 //The data is persisted in a sparse format, so if data is nullable it will not take up any space if no values are
persisted.
 //Data which is included in the primary index (in this example lattitude/longtiude) cannot be null
 //Calling out latitude an longitude separately is not strictly needed, as the geometry contains that information.
But it's
 //convienent in many use cases to get a text representation without having to handle geometries.
 builder.add(ab.binding(Geometry.class).nillable(false).buildDescriptor("geometry"));
 builder.add(ab.binding(Date.class).nillable(true).buildDescriptor("TimeStamp"));
 builder.add(ab.binding(Double.class).nillable(false).buildDescriptor("Latitude"));
 builder.add(ab.binding(Double.class).nillable(false).buildDescriptor("Longitude"));
 builder.add(ab.binding(String.class).nillable(true).buildDescriptor("TrajectoryID"));
 builder.add(ab.binding(String.class).nillable(true).buildDescriptor("Comment"));

 return builder.buildFeatureType();
}

JAVA

/***
 * We need an index model that tells us how to index the data - the index determines
 * -What fields are indexed
 * -The precision of the index
 * -The range of the index (min/max values)
 * -The range type (bounded/unbounded)
 * -The number of "levels" (different precisions, needed when the values indexed has ranges on any dimension)
 * @return GeoWave index for a default SPATIAL index
 */
protected Index createSpatialIndex(){

 //Reasonable values for spatial and spatio-temporal are provided through static factory methods.
 //They are intended to be a reasonable starting place - though creating a custom index may provide better
 //performance is the distribution/characterization of the data is well known.
 return IndexType.SPATIAL.createDefaultIndex();
}

JAVA

/***
 * The dataadapter interface describes how to serialize a data type.
 * Here we are using an implementation that understands how to serialize
 * OGC SimpleFeature types.
 * @param sft simple feature type you want to generate an adapter from
 * @return data adapter that handles serialization of the sft simple feature type
 */
protected FeatureDataAdapter createDataAdapter(SimpleFeatureType sft){
 return new FeatureDataAdapter(sft);
}

JAVA

Other methods

There are other patterns that can be used. See the various classes in the geowave-examples project. The method displayed above
is the suggested pattern - it’s demonstrated in SimpleIngestIndexWriter.java

The other methods displayed work, but are either more complicated than necessary (SimpleIngestProducerConsumer.java) or not
very efficient (SimpleIngest.java).

protected void generateGrid(
 final BasicAccumuloOperations bao) {

 // create our datastore object
 final DataStore geowaveDataStore = getGeowaveDataStore(bao);

 // In order to store data we need to determine the type of data store
 final SimpleFeatureType point = createPointFeatureType();

 // This a factory class that builds simple feature objects based on the
 // type passed
 final SimpleFeatureBuilder pointBuilder = new SimpleFeatureBuilder(
 point);

 // This is an adapter, that is needed to describe how to persist the
 // data type passed
 final FeatureDataAdapter adapter = createDataAdapter(point);

 // This describes how to index the data
 final Index index = createSpatialIndex();

 // features require a featureID - this should be unqiue as it's a
 // foreign key on the feature
 // (i.e. sending in a new feature with the same feature id will
 // overwrite the existing feature)
 int featureId = 0;

 // get a handle on a GeoWave index writer which wraps the Accumulo
 // BatchWriter, make sure to close it (here we use a try with resources
 // block to close it automatically)
 try (IndexWriter indexWriter = geowaveDataStore.createIndexWriter(index)) {
 // build a grid of points across the globe at each whole
 // lattitude/longitude intersection
 for (int longitude = -180; longitude <= 180; longitude++) {
 for (int latitude = -90; latitude <= 90; latitude++) {
 pointBuilder.set(
 "geometry",
 GeometryUtils.GEOMETRY_FACTORY.createPoint(new Coordinate(
 longitude,
 latitude)));
 pointBuilder.set(
 "TimeStamp",
 new Date());
 pointBuilder.set(
 "Latitude",
 latitude);
 pointBuilder.set(
 "Longitude",
 longitude);
 // Note since trajectoryID and comment are marked as
 // nillable we
 // don't need to set them (they default ot null).

 final SimpleFeature sft = pointBuilder.buildFeature(String.valueOf(featureId));
 featureId++;
 indexWriter.write(
 adapter,
 sft);
 }
 }
 }
 catch (final IOException e) {
 log.warn(
 "Unable to close index writer",
 e);
 }
 }

JAVA

Analytics

Overview
Analytics embody algorithms tailored to geospatial data. Most analytics leverage Hadoop MapReduce for bulk computation.
Results of analytic jobs consist of vector or raster data stored in GeoWave. The analytics infrastructure provides tools to build
algorithms in Spark. For example, a Kryo serializer/deserializer enables exchange of SimpleFeatures and the
GeoWaveInputFormat supplies data to the Hadoop RDD


GeoWaveInputFormat does not remove duplicate features that reference polygons spanning multiple index
regions.

The following algorithms are provided.

Name Description

KMeans++ A K-Means implementation to find K centroids over the population of data. A set of preliminary sampling
iterations find an optimal value of K and the an initial set of K centroids. The algorithm produces K
centroids and their associated polygons. Each polygon represents the concave hull containing all features
associated with a centroid. The algorithm supports drilling down multiple levels. At each level, the set
centroids are determined from the set of features associated the same centroid from the previous level.

KMeans Jump Uses KMeans++ over a range of k, choosing an optimal k using an information theoretic based
measurement.

KMeans Parallel Performs a KMeans Parallel Cluster

DBScan The Density Based Scanner algorithm produces a set of convex polygons for each region meeting density
criteria. Density of region is measured by a minimum cardinality of enclosed features within a specified
distance from each other.

Nearest
Neighbors

A infrastructure component that produces all the neighbors of a feature within a specific distance.

Building
Build the geowave tools project, as explained in the "ToolsFramework → Building" section.

Running

The above command will execute <algorithm> (such as dbscan), sourcing the data from the <store> datastore (see config addstore)

Analytic Commands
The full list of GeoWave analytic commands can be found in the GeoWave CLI Appendix
(http://ngageoint.github.io/geowave/commands.html#analytic-commands).

yarn jar geowave-tools.jar analytic <algorithm> <options> <store>
BASH

http://ngageoint.github.io/geowave/commands.html#analytic-commands

Query

Overview

A query in GeoWave currently consists of a set of ranges on the dimensions of the primary index. Up to 3 dimensions (plus
temporal optionally) can take advantage of any complex OGC geometry for the query window. For dimensions of 4 or greater the
query can only be a set of ranges on each dimension (i.e. hyper-rectangle, etc.).

The query geometry is decomposed by GeoWave into a series of ranges on a one dimensional number line - based on a compact
Hilbert space filling curve ordering. These ranges are sent through an Accumulo batch scanner to all the tablet servers. These
ranges represent the coarse grain filtering.

At the same time the query geometry has been serialized and sent to custom Accumulo iterators. These iterators then do a second
stage filtering on each feature for an exact intersection test. Only if the stored geometry and the query geometry intersect does
the processing chain continue.

A second order filter can then be applied - this is used to remove features based on additional attributes - typically time or other
feature attributes. These operators can only exclude items from the set defined by the range - they cannot include additional
features. Think "AND" operators - not "OR".

A final filter is possible on the client set - after all the returned results have been aggregated together. Currently this is only used
for final de-duplication. Whenever possible the distributed filter options should be used - as it splits the work load among all the
tablet servers.

Third Party

GeoServer
Geowave supports both raster images and vector data exposed through Geoserver.

WFS-T

Geowave supports WFS-T for vector data by extending GeoTools. After following the deployment steps, Geowave appears as the
data store types called 'GeoWave Datastore - accumulo' and 'GeoWave Datastore - hbase'.

On the Geowave Datastore - accumulo creation tab, the system prompts for the following connection parameters.

Name Description Constraints

zookeeper Comma-separated list of Zookeeper host
and port.

Host and port are separated by a colon
(host:port).

instance The Accumulo tablet server’s instance
name.

The name matches the one configured
in Zookeeper.

user The Accumulo user name. The user should have administrative
privileges to add and remove
authorized visibility constraints.

password Accumulo user’s password.

gwNamespace The table namespace associated with
this Accumlo data store

Lock Management Select one from a list of lock managers. Zookeeper is required with a multiple
Geoserver architecture.

Authorization Management Provider Select from a list of providers.

Authorization Data URL The URL for an external supporting
service or configuration file.

The interpretation of the URL depends
on the selected provider.

Query Index Strategy The pluggable query strategy to use for
querying geowave tables - a reasonable
default will be used if not supplied.

On the Geowave Datastore - hbase creation tab, the system prompts for the following connection parameters.

Name Description Constraints

enableCustomFilters Allows for the use of custom filters Defaults to true

zookeeper Comma-separated list of Zookeeper host
and port.

Host and port are separated by a colon
(host:port).

enableCoprocessors Allows for the use of HBase co-
processors

Defaults to true

gwNamespace The table namespace associated with
this Hbase data store

verifyCoprocessors Defaults to true

Name Description Constraints

Lock Management Select one from a list of lock managers. Zookeeper is required with a multiple
Geoserver architecture.

Authorization Management Provider Select from a list of providers.

Authorization Data URL The URL for an external supporting
service or configuration file.

The interpretation of the URL depends
on the selected provider.

Query Index Strategy The pluggable query strategy to use for
querying geowave tables - a reasonable
default will be used if not supplied.

Transactions

Transactions are initiated through a Transaction operation, containing inserts, updates and deletes to features. WFS-T supports
feature locks across multiple requests by using a lock request followed by subsequent use of a provided lock ID. The Geowave
implementation supports transaction isolation. Consistency during a commit is not fully supported. Thus, a failure during a
commit of a transaction may leave the affected data in an intermediary state. Some deletions, updates or insertions may not be
processed in such a case. The client application must implement its own compensation logic upon receiving a commit-time error
response. As expected with Accumulo, operations on a single feature instances are atomic.

Inserted features are buffered prior to commit. The features are bulk fed to the data store when the buffer size is exceeded and
when the transaction is committed. In support of atomicity and isolation, flushed features, prior to commit, are marked in a
transient state, only visible to the controlling transaction. Upon commit, these features are 'unmarked'. The overhead incurred by
this operation is avoided by increasing the buffer size to avoid pre-commit flushes.

Lock Management

Lock management supports life-limited locks on feature instances. There are only two supported lock managers: in-memory and
Zookeeper. In-memory is suitable for single Geoserver instance installations.

Index Selection

Data written through WFS-T is indexed within a single index. The adapter inspects existing indices, finding one that matches the
data requirements. A geo-temporal index is chosen for features with temporal attributes. The adapter creates a geospatial index
upon failure of finding a suitable index. A geotemporal index is not created, regardless of the existence of temporal attributes.
Currently, geotemporal indices lead to poor performance for queries requesting vectors over large spans of time.

Authorization Management

Authorization Management provides the set of credentials compared against the security labels attached to each cell.
Authorization Management determines the set of authorizations associated with each WFS-T request. The available Authorization
Management strategies are registered through the Server Provider model, within the file META-
INF/services/mil.nga.giat.geowave.vector.auth.AuthorizationFactorySPI .

The provided implementations include the following

Empty - Each request is processed without additional authorization.

JSON - The requester user name, extracted from the Security Context, is used as a key to find the user’s set of authorizations
from a JSON file. The location of the JSON file is determined by the associated Authorization Data URL (e.g.
file://opt/config/auth.json). An example of the contents of the JSON file is given below.

Fred has three authorization labels. Barney has one.

 {
 "authorizationSet": {
 "fred" : ["1","2","3"],
 "barney" : ["a"]
 }
 }

JSON

file://opt/config/auth.json

Visibility Management

Visibility constraints, applied to feature instances during insertions, are ultimately determined in
mil.nga.giat.geowave.store.data.field.FieldWriter , of which there are writers for each supported data type in
Geoserver. By default, the set visibility expression attached to each feature property is empty. Visibility Management supports
selection of a strategy by wrapping each writer to provide visibility. This alleviates the need to extend the type specific
FieldWriters.

The visibility management strategy is registered through the Java Server Provider model, within in the file META-
INF/services/mil.nga.giat.geowave.vector.plugin.visibility.ColumnVisibilityManagement . The only provided
implementation is the JsonDefinitionColumnVisibilityManagement . The implementation expects an property within each
feature instance to contain a JSON string describing how to set the visibility for each property of the feature instance. This
approach allows each instance to determine its own visibility criteria.

Each name/value pair within the JSON structure defines the visibility for the associated feature property with the same name. In
the following example, the geometry property is given a visibility S ; the eventName is given a visibility TS .

JSON attributes can be regular expressions, matching more than one feature property name. In the example, all properties except
for those that start with 'geo' have visibility TS .

The order of the name/value pairs must be considered if one rule is more general than another, as shown in the example. The
rule . matches all properties. The more specific rule geo. must be ordered first.

The system extracts the JSON visibility string from a feature instance property named GEOWAVE_VISIBILITY . Selection of an
alternate property is achieved by setting the associated attribute descriptor 'visibility' to the boolean value TRUE.

Statistics

The adapter captures statistics for each numeric, temporal and geo-spatial attribute. Statistics are used to constrain queries and
answer inquiries by GeoServer for data ranges, as required for map requests and calibration of zoom levels in OpenLayers.

{ "geometry" : "S", "eventName": "TS" }
JSON

{ "geo.*" : "S", ".*" : "TS" }
JSON

Installation from RPM

Overview
There is a public GeoWave RPM Repo (http://ngageoint.github.io/geowave/packages.html) available with the following packages. As
you’ll need to coordinate a restart of Accumulo to pick up changes to the GeoWave iterator classes the repos default to be disabled
so you can keep auto updates enabled. When ready to do an update simply add --enablerepo=geowave to your command. The
packages are built for a number of different hadoop distributions (Cloudera, Hortonworks and Apache) the RPMs have the
vendor name embedded as the second portion of the rpm name (geowave-apache-accumulo, geowave-hdp2-accumulo, geowave-
cdh5-accumulo, geowave-apache-hbase, etc.)

Examples

GeoWave RPMs

Name Description

geowave-*-accumulo Accumulo Components

geowave-*-hbase Hbase Components

geowave-*-core Core (home directory and geowave user)

geowave-*-docs Documentation (HTML, PDF and man pages)

geowave-*-tools Command Line Tools (ingest, etc.)

geowave-*-jetty GeoServer components installed into
/usr/local/geowave/geoserver and available at
http://FQDN:8000/geoserver/web

geowave-*-puppet Puppet Scripts

geowave-*-single-host All GeoWave Components installed on a single host
(sometimes useful for development)

geowave-repo GeoWave RPM Repo config file

geowave-repo-dev GeoWave Development RPM Repo config file

RPM Installation Notes
RPM names contain the version in the name so support concurrent installations of multiple GeoWave and/or vendor versions. A
versioned /usr/local/geowave-$GEOWAVE_VERSION-$VENDOR_VERSION directory is linked to /usr/local/geowave using
alternatives ex: /usr/local/geowave → /usr/local/geowave-0.9.3-hdp2 but there could also be another /usr/local/geowave-0.9.2.1-
cdh5 still installed but not the current default.

View geowave-home installed and default using alternatives

Use GeoWave repo RPM to configure a host and search for GeoWave RPMs to install
Several of the rpms (accumulo, jetty and tools) are both GeoWave version and vendor version specific
In the examples below the rpm name geowave-$VERSION-VENDOR_VERSION would be adjusted as needed
rpm -Uvh http://s3.amazonaws.com/geowave-rpms/release/noarch/geowave-repo-1.0-3.noarch.rpm
yum --enablerepo=geowave search geowave-0.9.3-apache

Install GeoWave Accumulo iterator on a host (probably a namenode)
yum --enablerepo=geowave install geowave-0.9.3-apache-accumulo

Update
yum --enablerepo=geowave install geowave-0.9.3-apache-*

BASH

http://ngageoint.github.io/geowave/packages.html
http://fqdn:8000/geoserver/web

geowave-*-accumulo: This RPM will install the GeoWave Accumulo iterator into the local file system and then upload it into HDFS
using the hadoop fs -put command. This means of deployment requires that the RPM is installed on a node that has the correct
binaries and configuration in place to push files to HDFS, like your namenode. We also need to set the ownership and permissions
correctly within HDFS and as such need to execute the script as a user that has superuser permissions in HDFS. This user varies
by Hadoop distribution vendor. If the Accumulo RPM installation fails, check the install log located at
/usr/local/geowave/accumulo/geowave-to-hdfs.log for errors. The script can be re-run manually if there was a problem
that can be corrected like the HDFS service was not started. If a non-default user was used to install Hadoop you can specify a
user that has permissions to upload with the --user argument /usr/local/geowave/accumulo/deploy-to-geowave-to-hdfs.sh
--user my-hadoop-user

 This only applies to the Accumulo RPM. There is no such requirement for the HBase RPM.

With the exception of the Accumulo RPM mentioned above there are no restrictions on where you install RPMs. You can install
the rest of the RPMs all on a single node for development use or a mix of nodes depending on your cluster configuration.

alternatives --display geowave-home
geowave-home - status is auto.
 link currently points to /usr/local/geowave-0.9.3-hdp2
/usr/local/geowave-0.9.3-hdp2 - priority 90
/usr/local/geowave-0.9.2.1-cdh5 - priority 89
Current `best' version is /usr/local/geowave-0.9.3-hdp2.

BASH

Maven Repositories

Overview
There are public maven repositories available for both release and snapshot GeoWave artifacts (no transitive dependencies).
Automated deployment is available, but requires a S3 access key (typically added to your ~/.m2/settings.xml)

Maven POM fragments

Releases

Snapshots

Maven settings.xml fragments
(you probably don’t need this unless you are deploying official GeoWave artifacts)

Snapshots

 <repository>
 <id>geowave-maven-releases</id>
 <name>GeoWave AWS Release Repository</name>
 <url>http://geowave-maven.s3-website-us-east-1.amazonaws.com/release</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>

XML

 <repository>
 <id>geowave-maven-snapshot</id>
 <name>GeoWave AWS Snapshot Repository</name>
 <url>http://geowave-maven.s3-website-us-east-1.amazonaws.com/snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>

XML

 <servers>
 <server>
 <id>geowave-maven-releases</id>
 <username>ACCESS_KEY_ID</username>
 <password>SECRET_ACCESS_KEY</password>
 </server>
 <server>
 <id>geowave-maven-snapshots</id>
 <username>ACCESS_KEY_ID</username>
 <password>SECRET_ACCESS_KEY</password>
 </server>
 </servers>

XML

Installation from Source

GeoServer

GeoServer Versions

GeoWave has to be built against specific versions of GeoWave and GeoTools. To see the currently supported versions look at the
build matrix section of the .travis.yml file in the root directory of the project. All of the examples below use the variable
$BUILD_ARGS to represent your choice of all the dependency versions.

Example build args:

1 Examples of current build args can be seen in the top level .travis.yml file in the env/matrix section

GeoServer Install

First we need to build the GeoServer plugin - from the GeoWave root directory:

1
You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true -DskipITs=true -
DskipTests=true

let’s assume you have GeoServer deployed in a Tomcat container in /opt/tomcat

and re-start Tomcat


If you used the RPMs to build and install GeoWave then GeoSever will have already been deployed via Jetty. The
jar file is installed in /usr/local/geowave/geoserver/webapps/geoserver/WEB-INF/lib/

You can restart Jetty by restarting the GeoWave service.

Accumulo

Accumulo Versions

GeoWave has been tested and works against accumulo 1.5.0 through 1.7.2 . Ensure you’ve set the desired version in the
BUILD_ARGS environment variable

Accumulo Install

1
You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true -DskipITs=true -
DskipTests=true

export BUILD_ARGS="-Daccumulo.version=1.7.2 -Daccumulo.api=1.7 -Dhbase.version=1.3.0 -Dhadoop.version=2.7.3 -
Dgeotools.version=16.0 -Dgeoserver.version=2.10.0"

BASH

1

mvn package -P geotools-container-singlejar $BUILD_ARGS
BASH

1

cp deploy/target/*-geoserver-singlejar.jar /opt/tomcat/webapps/geoserver/WEB-INF/lib/
BASH

mvn package -P accumulo-container-singlejar $BUILD_ARGS
BASH

1

Running from EMR


This is meant to be a high level overview for those already familiar with AWS EMR. For a step by step
walkthrough of setting up GeoWave on an EMR cluster, please see our Quickstart Guide
(http://ngageoint.github.io/geowave/quickstart.html).

Provisioning
The configuration files needed to use GeoWave from EMR are automatically generated and stored in an s3 bucket at
s3.amazonaws.com/geowave/latest/scripts/emr/accumulo/ and s3.amazonaws.com/geowave/latest/scripts/emr/hbase/. EMR
expects that all config files are available from S3 so the first step would be to create an S3 bucket and then copy the bootstrap-
geowave.sh script into your own S3 bucket adjusting the path used in the command as needed. Alternatively, you can just
reference the bootstrap-geowave.sh script in your command without transferring it into a separate bucket.

The command below is an example of using the API to launch an EMR cluster, you could also provide this same information from
the console. There are a number of fields that are unique to each deployment most of which you’ll see with a placeholder like
YOUR_KEYNAME in the command below. If running from a bash script you can use variable replacement to collect and substitute
value such as the number of worker instances. Use the command below as a starting point, it will not work if you try to cut and
paste.

Once the process of cluster initialization has started you will see the cluster appear in the EMR console immediately. The
GeoWave portion of the process does not occur until the Hadoop and Spark portions of the initializations have completed which
takes approximately 4-5 minutes. Once the GeoWave components have been installed there is an optional volume initialization
step that will read every block of each volume to clear any initialization flags that may have been set. This option should be used
when you want to benchmark an operation but can probably be skipped if you’re primarily interested in quickly setting up a
cluster to test some capability.

Connecting
To connect to the cluster you’d use ssh to connect to the console and another ssh connection setting up a SOCKS proxy to connect
via a web browser to the various web consoles. The key you’d use in both cases would be the one you specified in the ec2-
attributes KeyName portion of the command.

Example SSH Console connection: ssh -i YOUR_KEYFILE ec2-user@MASTER_FQDN

Example SOCKS Proxy connection: ssh -i YOUR_KEYFILE -ND 5556 ec2-user@MASTER_FQDN

After establishing the SOCKS proxy you’d then configure your browser to use the port you specified. A more detailed explanation
can be found in the AWS docs here (https://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-ssh-tunnel.html).

Links
After setting up a SOCKS proxy to the master node you should be able to connect to any of the following web consoles hosted from
the cluster. The name of the master node can be found in the description of the EMR job in the AWS console. Example: Master
public DNS: ec2-52-91-31-196.compute-1.amazonaws.com (This is refered to as the MASTER_FQDN in the links below)

Accumulo: http://${MASTER_FQDN}:50095

Ganglia Monitoring: http://${MASTER_FQDN}/ganglia/

aws emr create-cluster \
 --name "geowave-emr" \
 --instance-groups InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge
InstanceGroupType=CORE,InstanceCount=${NUM_WORKERS},InstanceType=m3.xlarge \
 --ec2-attributes "KeyName=${YOUR_KEYNAME},SubnetId=${YOUR_SUBNET_ID}" \
 --region ${YOUR_REGION} \
 --release-label emr-5.1.0 \
 --applications Name=Hadoop\
 --use-default-roles \
 --no-auto-terminate \
 --bootstrap-actions Path=s3://${BOOTSTRAP_SCRIPT_DIR}/bootstrap-geowave.sh,Name=Bootstrap_GeoWave_Node \
 --tags "Name=geowave-emr-worker"

BASH

http://ngageoint.github.io/geowave/quickstart.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-ssh-tunnel.html
http://%24%7Bmaster_fqdn%7D:50095/
http://%24%7Bmaster_fqdn%7D/ganglia/

GeoWave GeoServer: http://${MASTER_FQDN}:8000/geoserver/web

HDFS: http://${MASTER_FQDN}:50070

HUE: http://${MASTER_FQDN}:8888

YARN: http://${MASTER_FQDN}:8088

Con�guration
After the cluster has finished initializing you should be able to ssh into the master node and perform the final bits of project
specific GeoWave configuration. The root password for Accumulo is set at the top of the bootstrap-geowave.sh script. You’d want
to log into Accumulo and perform steps listed in the Accumulo Configuration section of the documentation (Not needed for
HBase). The latest iterator built for Apache Hadoop will have been uploaded into HDFS but no user accounts, namespaces or VFS
contexts will have been configured. All of these are described with examples in both the GeoWave and Accumulo documentation.

http://%24%7Bmaster_fqdn%7D:8000/geoserver/web
http://%24%7Bmaster_fqdn%7D:50070/
http://%24%7Bmaster_fqdn%7D:8888/
http://%24%7Bmaster_fqdn%7D:8088/

Accumulo Con�guration

Overview
The two high level tasks to configure Accumulo for use with GeoWave are to ensure the memory allocations for the master and
tablet server processes are adequate and to add the GeoWave Accumulo iterator to a classloader. The iterator is a rather large file
so ensure the Accumulo Master process has at least 512m of heap space and the Tablet Server processes have at least 1g of heap
space.

The recommended Accumulo configuration for GeoWave requires several manual configuration steps but isolates the GeoWave
libraries in application specific classpath(s) reducing the possibility of dependency conflict issues. A single user for all of geowave
data or a user per data type are two of the many local configuration options just ensure each namespace containing GeoWave
tables is configured to pick up the geowave-accumulo.jar.

Procedure

1. Create a user and namespace

2. Grant the user ownership permissions on all tables created within the application namespace

3. Create an application or data set specific classpath

4. Configure all tables within the namespace to use the application classpath

1 You’ll be prompted for a password

2 Ensure the user has ownership of all tables created within the namespace

3
The Accumulo root path in HDFS varies between hadoop vendors. For Apache and Cloudera it is /accumulo and for
Hortonworks it is /apps/accumulo

4
Link the namespace with the application classpath, adjust the labels as needed if you’ve used different user or
application names

These manual configuration steps have to be performed before attempting to create GeoWave index tables. After the initial
configuration you may elect to do further user and namespace creation and configuring to provide isolation between groups and
data sets.

Managing
After installing a number of different iterators you may want to figure out which iterators have been configured.

You will get back a listing of context classpath override configurations which map the application or user context you configured
to a specific iterator jar in HDFS.

Versioning
It’s of critical importance to ensure that the various GeoWave components are all the same version and that your client is of the
same version that was used to write the data.

Basic

accumulo shell -u root
createuser geowave
createnamespace geowave
grant NameSpace.CREATE_TABLE -ns geowave -u geowave
config -s general.vfs.context.classpath.geowave=hdfs://${MASTER_FQDN}:8020/${ACCUMULO_ROOT}/lib/[^.].*.jar
config -ns geowave -s table.classpath.context=geowave
exit

BASH

1

2

3

4

Print all configuration and grep for line containing vfs.context configuration and also show the following line
accumulo shell -u root -p ROOT_PWD -e "config -np" | grep -A 1 general.vfs.context.classpath

BASH

The RPM packaged version of GeoWave puts a timestamp in the name so it’s pretty easy to verify that you have a matched set of
RPMs installed. After an update of the components you must restart Accumulo to get vfs to download the new versions and this
should keep everything synched.

Compare version and timestamps of installed RPMs

Advanced

When GeoWave tables are first accessed on a tablet server the vfs classpath tells Accumulo where to download the jar file from
HDFS. The jar file is copied into the local /tmp directory (the default general.vfs.cache.dir setting anyway) and loaded onto the
classpath. If there is ever doubt as to if these versions match you can use the commands below from a tablet server node to verify
the version of this artifact.

Commit hash of the jar in HDFS

1
The root directory of Accumulo in various distributions can vary, check with hadoop fs -ls / first to ensure you have the
correct initial path

Compare with the versions downloaded locally

Example

1 This is the version loaded into hdfs and should be present on all tablet servers once Accumulo has been restarted

2 The find command will probably locate a number of different versions depending on how often you clean out /tmp.

There may be multiple versions copies present, one per JVM, the error scenario is when a tablet server is missing the correct
iterator jar.

[spohnae@c1-master ~]$ rpm -qa | grep geowave
geowave-0.9.3-apache-core-0.9.3-201602012009.noarch
geowave-0.9.3-apache-jetty-0.9.3-201602012009.noarch
geowave-0.9.3-apache-accumulo-0.9.3-201602012009.noarch
geowave-0.9.3-apache-tools-0.9.3-201602012009.noarch

BASH

sudo -u hdfs hadoop fs -cat /accumulo/classpath/geowave/geowave-accumulo-build.properties | grep scm.revision | sed
s/project.scm.revision=

BASH

1

sudo find /tmp -name "*geowave-accumulo.jar" -exec unzip -p {} build.properties \; | grep scm.revision | sed
s/project.scm.revision=//

BASH

[spohnae@c1-node-03 ~]$ sudo -u hdfs hadoop fs -cat /${ACCUMULO_ROOT}/lib/geowave-accumulo-build.properties | grep
scm.revision | sed s/project.scm.revision=//
294ffb267e6691de3b9edc80e312bf5af7b2d23f
[spohnae@c1-node-03 ~]$ sudo find /tmp -name "*geowave-accumulo.jar" -exec unzip -p {} build.properties \; | grep
scm.revision | sed s/project.scm.revision=//
294ffb267e6691de3b9edc80e312bf5af7b2d23f
294ffb267e6691de3b9edc80e312bf5af7b2d23f
25cf0f895bd0318ce4071a4680d6dd85e0b34f6b

BASH

1

2

2

Building
GeoWave will shortly be available in maven central (for tagged releases), but until then - or to get the latest features - building
GeoWave from source is the best bet.

Application Dependencies
This ultra quickstart assumes you have installed and configured:

Git (http://git-scm.com/)

Java JDK (http://www.oracle.com/technetwork/java/javase/downloads/index.html) (>= 1.8). The OracleJDK is the most thoroughly tested,
but there are no known issues with OpenJDK.

Maven (https://maven.apache.org/) >= 3.2.1

GeoServer (http://geoserver.org/) instance >= 2.5.2

Apache Accumulo (https://accumulo.apache.org/) version 1.5 or greater is required. 1.5.0, 1.5.1, and 1.6.0 have all been tested.

Apache HBase (https://hbase.apache.org/) >= 1.2.1

Apache Hadoop (http://hadoop.apache.org/) versions 1.x and 2.x

Cloudera (http://cloudera.com/content/cloudera/en/home.html) CDH4 and CDH5

Hortonworks Data Platform (http://hortonworks.com/hdp/) 2.1+

Java Advanced Imaging (http://www.oracle.com/technetwork/articles/javaee/jai-142803.html) and Java Image I/O
(https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/) are also both required to be installed on the GeoServer instance(s) as
well as on the Accumulo nodes. The Accumulo support is only required for certain functions (distributed rendering) - so this
may be skipped in some cases.

Maven dependencies
Required repositories not in Maven Central have been added to the parent POM. Specifically the cloudera and opengeo repos.

Build Process
Checkout GeoWave, set your preferred dependencies as build arguments and then run maven install.

1 Examples of current build args can be seen in the top level .travis.yml file in the env/matrix section

2
If you don’t need the complete history and want to speed up the clone you can limit the depth of your checkout with --
depth NUM_COMMITS

3
You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true -DskipITs=true -
DskipTests=true


Integration Tests: Windows

Integration tests are currently not working on Windows out of the box. If you install cygwin and set the
environmental variable CYGPATH to the location of the cygpath binary provided by cygwin then this should work.

Docker Build Process
We have support for building both the GeoWave jar artifacts and RPMs from Docker containers. This capability is useful for a
number of different situations:

Jenkins build workers can run Docker on a variety of host operating systems and build for others

export BUILD_ARGS="-Daccumulo.version=1.7.2 -Daccumulo.api=1.7 -Dhbase.version=1.3.0 -Dhadoop.version=2.7.3 -
Dgeotools.version=16.0 -Dgeoserver.version=2.10.0"
git clone https://github.com/ngageoint/geowave.git
cd geowave
mvn install $BUILD_ARGS

BASH

1

2

3

http://git-scm.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/
http://geoserver.org/
https://accumulo.apache.org/
https://hbase.apache.org/
http://hadoop.apache.org/
http://cloudera.com/content/cloudera/en/home.html
http://hortonworks.com/hdp/
http://www.oracle.com/technetwork/articles/javaee/jai-142803.html
https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/

Anyone running Docker will be able to duplicate our build and packaging environments

Will allow us to build on existing container clusters instead of single purpose build VMs

If building artifacts using Docker containers interests you check out the README in deploy/packaging/docker

Jace JNI Proxies
Using Jace, we are able to create JNI proxy classes for GeoWave which can be used in C/C++ applications.

Boost is required when using the Jace bindings.

Prepackaged Source and Binaries
There is a public GeoWave RPM Repo (http://ngageoint.github.io/geowave/packages.html) where you can download a tarball for the
GeoWave Jace bindings for your desired platform. If your platform is not available, there is a source tarball which can be used in
conjunction with CMake to build the GeoWave Jace bindings for your desired platform.

Generate Proxies and Build from Source
If you want, you can generate and build the Jace proxies yourself.

Step 1 - Checkout Jace and GeoWave

First, we need to clone Jace and GeoWave.

Note: We are using a non-standard Jace implementation.

Step 2 - Install Jace

First, we need to install Jace v1.3.0. This is the software which is used to generate the C++ proxy classes.

Step 3 - Generate GeoWave Jace Proxies

Here, we will specify a Maven profile which specifies that we are building jace proxies.

This generates the source and header files required to build GeoWave. To build the library, simply run cmake, followed by make.

Note: To build static libraries use -DBUILD_SHARED_LIBS=OFF, otherwise use -DBUILD_SHARED_LIBS=ON

Mapnik Plugin Con�guration

Mapnik

Mapnik (http://mapnik.org/) is an open source toolkit for developing mapping applications. GeoWave is supported as a plugin for
Mapnik for reading vector data from Accumulo.

PDAL Plugin Con�guration

PDAL

The Point Data Abstraction Library PDAL (http://www.pdal.io/index.html) is a BSD licensed library for translating and manipulating
point cloud data of various formats. GeoWave is supported as a plugin for PDAL for both reading and writing data to Accumulo.

Note: These instructions assume that you are using prepackaged binaries.

Con�gure CMake for PDAL

$ git clone git@github.com:jwomeara/jace.git
$ git clone git@github.com:ngageoint/geowave.git

BASH

$ cd jace
$ git checkout tags/v1.3.0
$ mvn clean install -Dsources

BASH

$ cd geowave
$ mvn clean package -pl deploy -am -P generate-geowave-jace -DskipTests

BASH

http://ngageoint.github.io/geowave/packages.html
http://mapnik.org/
http://www.pdal.io/index.html

To configure PDAL to run with GeoWave, there are a few CMake options which need to be configured. While some of the options
(namely the JAVA options) may configure automatically, some will need to be set manually. Refer to the table below to get an idea
for how these options would be configured on Ubuntu 14.04 LTS.

Option Value Automatically Configured?

BUILD_PLUGIN_GEOWAVE ON

BUILD_GEOWAVE_TESTS ON

GEOWAVE_RUNTIME_JAR /path/to/geowave/geowave-runtime.jar

GEOWAVE_INCLUDE_DIR /path/to/geowave/include

GEOWAVE_LIBRARY /path/to/geowave/libgeowave.so

JAVA_AWT_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH /usr/lib/jvm/java-8-oracle/include X

JAVA_INCLUDE_PATH2 /usr/lib/jvm/java-8-oracle/include/linux X

JAVA_AWT_LIBRARY /usr/lib/jvm/java-8-
oracle/jre/lib/amd64/libjawt.so

X

JAVA_JVM_LIBRARY /usr/lib/jvm/java-8-
oracle/jre/lib/amd64/server/libjvm.so

X

Note: As Boost is a PDAL dependency, it should already be included.

Build PDAL

Once CMake is configured, you can proceed with your normal PDAL build process.

Last, but not least, when building shared libraries you should ensure that the libraries specified above are available via PATH or
LD_LIBRARY_PATH.

Within the PDAL documentation, you can see examples of how GeoWave can be used as both a reader
(http://www.pdal.io/stages/readers.geowave.html) and writer (http://www.pdal.io/stages/writers.geowave.html).

http://www.pdal.io/stages/readers.geowave.html
http://www.pdal.io/stages/writers.geowave.html

Puppet

Overview
A GeoWave Puppet module (http://puppetlabs.com/) has been provided as part of both the tar.gz archive bundle and as an RPM. This
module can be used to install the various GeoWave services onto separate nodes in a cluster or all onto a single node for
development.

There are a couple of different RPM repo settings that may need setting. As the repo is disabled by default to avoid picking up new
Accumulo iterator jars without coordinating a service restart you’ll have to enable and then disable in consecutive Puppet runs to
do the initial install.

Options
geowave_version

The desired version of GeoWave to install, ex: '0.9.3'. We support concurrent installs but only one will be active at a time.

hadoop_vendor_version

The Hadoop framework vendor and version against which GeoWave was built. Examples would be cdh5 or hdp2, check the
available packages (http://ngageoint.github.io/geowave/packages.html) site for currently supported hadoop distributions.

install_accumulo

Install the GeoWave Accumulo Iterator on this node and upload it into HDFS. This node must have a working HDFS client.

install_app

Install the GeoWave ingest utility on this node. This node must have a working HDFS client.

install_app_server

Install Jetty with Geoserver and GeoWave plugin on this node.

http_port

The port on which the Jetty application server will run - defaults to 8080.

repo_base_url

Used with the optional geowave::repo class to point the local package management system at a source for GeoWave RPMs. The
default location is http://s3.amazonaws.com/geowave-rpms/release/noarch/

repo_enabled

To pick up an updated Accumulo iterator you’ll need to restart the Accumulo service. As we don’t want to pick up new RPMs
with something like a yum-cron job without coordinating a restart so the repo is disabled by default.

repo_refresh_md

The number of seconds before checking for new RPMs. On a production system the default of every 6 hours should be
sufficient but you can lower this down to 0 for a development system on which you wish to pick up new packages as soon as
they are made available.

Examples

Development

Install everything on a one node development system, use the GeoWave Development RPM Repo and force a check for new RPMs
with every pull (don’t use cached metadata)

http://puppetlabs.com/
http://ngageoint.github.io/geowave/packages.html
http://s3.amazonaws.com/geowave-rpms/release/noarch/

Clustered
Run the application server on a different node, use a locally maintained rpm repo vs. the one available on the Internet and run
the app server on an alternate port so as not to conflict with another service running on that host.

Puppet script management
As mentioned in the overview the scripts are available from within the GeoWave source tar bundle
(http://ngageoint.github.io/geowave/packages.html) (Search for gz to filter the list) or you could use the RPM package to install and pick
up future updates on your puppet server.

Source Archive

Unzip the source archive, locate puppet-scripts.tar.gz and manage the scripts yourself on your Puppet Server

RPM

There’s a bit of a boostrap issue when first configuring the Puppet server to use the geowave puppet RPM as yum won’t know
about the rpm repo and the GeoWave Repo Puppet class hasn’t been installed yet. There is an RPM available that will set up the
yum repo config after which you should install geowave-puppet manually and proceed to configure GeoWave on the rest of the
cluster using Puppet.

Dev VM
class { 'geowave::repo':
 repo_enabled => 1,
 repo_refresh_md => 0,
} ->
class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_accumulo => true,
 install_app => true,
 install_app_server => true,
}

RUBY

Master Node
node 'c1-master' {
 class { 'geowave::repo':
 repo_base_url => 'http://my-local-rpm-repo/geowave-rpms/dev/noarch/',
 repo_enabled => 1,
 } ->
 class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_accumulo => true,
 install_app => true,
 }
}

App server node
node 'c1-app-01' {
 class { 'geowave::repo':
 repo_base_url => 'http://my-local-rpm-repo/geowave-rpms/dev/noarch/',
 repo_enabled => 1,
 } ->
 class { 'geowave':
 geowave_version => '0.9.3',
 hadoop_vendor_version => 'apache',
 install_app_server => true,
 http_port => '8888',
 }
}

RUBY

rpm -Uvh http://s3.amazonaws.com/geowave-rpms/release/noarch/geowave-repo-1.0-3.noarch.rpm
yum --enablerepo=geowave install geowave-puppet

BASH

http://ngageoint.github.io/geowave/packages.html

How to Contribute
GeoWave is an open source project and we welcome contributions from the community.

Pull Requests
All pull request contributions to this project will be released under the Apache 2.0 license.

Software source code previously released under an open source license and then modified by NGA staff is considered a "joint
work" (see 17 USC 101); it is partially copyrighted, partially public domain, and as a whole is protected by the copyrights of the
non-government authors and must be released according to the terms of the original open source license.

Documentation

Overview
The documentation is writen in AsciiDoc (http://www.methods.co.nz/asciidoc/index.html) which is a plain-text markup format that can
be created using any text editor and read “as-is”, or rendered to several other formats like HTML, PDF or EPUB.

Helpful Links:

What is Asciidoc? (http://asciidoctor.org/docs/what-is-asciidoc/)

Writer’s Guide (http://asciidoctor.org/docs/asciidoc-writers-guide/)

AsciiDoc Syntax Reference (http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/)

Ordering
All of the content stored in the docs/content directory of this project will be rendered into a single web page with an auto-
generated table of contents and a PDF. The order in which the pages appear is determined by the sort order of the file names
given to the ASCIIDOC files in the docs/content directory so a numeric prefix has been given to each file. Gaps can be left in
between the numbers (only the sort order is important) to allow for future edits without having to renumber other documents
that will appear after the new content.

Preview
To preview markup as HTML before making a commit there are plugins available various text editors and IDEs that can be used
while editing. If your preferred text editor has no plugin available there’s a Firefox AsciiDoc Plugin
(https://github.com/asciidoctor/asciidoctor-firefox-addon) available which allows for previewing with a quick refresh of the browser.

Transformation
To preview the entire finished web page or see the generated PDF you’ll need to run the transformation process.

Generate Documentation

1 To generate the documentation in pdf form use the pdf profile instead of the html profile.

2
You can speed up the build by skipping tests by adding -Dfindbugs.skip=true -Dformatter.skip=true -DskipITs=true -
DskipTests=true

The source documents will be transformed and will be available for inspection in the geowave/target/site/ directory.

Javadocs
Generate Javadocs

The Javadocs will be available for inspection in the geowave/target/site/apidocs directory.

 cd geowave
 mvn -P html install

BASH

1 2

cd geowave
mvn -q javadoc:aggregate

BASH

http://www.methods.co.nz/asciidoc/index.html
http://asciidoctor.org/docs/what-is-asciidoc/
http://asciidoctor.org/docs/asciidoc-writers-guide/
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://github.com/asciidoctor/asciidoctor-firefox-addon

Appendices

Version
This documentation was generated for GeoWave version 0.9.4 from commit ffc45cd0b829bd44a20edee4d57629fee77ec55a.

Topics in need of documentation
Ingest Examples

Query Iterators

Query CQL

MapReduce Input Format

Analytics - Kernel Density

Analytics - K-Means Clustering

Examples - Shapefile

Examples - OSM GPX Data

Examples - OSM Feature Data

Index Tuning

Supported Types

Editing from GitHub

Last updated 2017-05-02 15:00:38 +00:00

