PEGylation Reagents for:
- Polymerizable Vesicles
- Anti-Biofouling
- Polymer Synthesis

PEGylation of Biomolecules:
- Improves Water Solubility
- Increases Biostability
- Reduces Renal Filtration
For further information consult our web site at: www.gelest.com

In Europe:

Gelest Inc.
Strooffstrasse 27 Geb.2901
65933 Frankfurt am Main,
Germany
Tel: +49-(0)-69-3800-2150
Fax: +49-(0)-69-3800-2300
e-mail: info@gelestde.com
Internet: www.gelestde.com

In South-East Asia:

Gulf Chemical
39 Jalan Pemimpin
Tai Lee Industrial Building #04-03
Singapore 577182
Tel: 65-6358-3185
Fax: 65-6353-2542
e-mail: support@gulfchem.com.sg

In Japan:

For commercial and research quantities contact:

AZmax Co. Ltd. Tokyo Office
TEKKO KAIKAN 5F
3-2-10 Kayabacho Nihonbashi
Chuo-ku, Tokyo 103-0025
Tel: 81-3-6661-1090
e-mail: sales@azmax.co.jp
on-line catalog: www.azmax.co.jp

In India:

For commercial and research quantities contact:

Gautavik International
Office No 1& 2 Bhavana Palace
Sector 21 Plot No 46 & 47
Near Gamdevi Mandir Ghansoli
Navi Mumba 400701 India
Tel: 91-22-26703175
Fax: 91-96-19190510
e-mail: vasantlyadav@yahoo.co.in

In Taiwan:

For commercial and research quantities contact:

Kelly Chemical Corporation
9F, No.155, Sec.1, Keelung Rd, Taipei.
Taiwan
Tel: +886-2-27621985
Fax: +886-2-27532400
website: http://www.kellychemical.com
e-mail: chem@kellychemical.com

Sales of all products listed are subject to the published terms and conditions of Gelest, Inc.

Commercial Status - produced on a regular basis for inventory

Developmental Status - available to support development and commercialization

© Copyright 2017 Gelest, Inc.
Reactive Polyethers

TABLE OF CONTENTS

What are Heterobifunctional PEGylation Reagents? ... 2

Unsaturated and Polymerizable PEGs

- Allyl, Amine Terminated
- Allyl, Amine Terminated, Silylated
- Allyl, Carboxylate Ester Terminated ... 3
- Allyl, Hydroxyl Terminated ... 4
- Allyl, Hydroxyl Terminated, TMS Protected
- Methacrylate, Hydroxyl Terminated, TMS Protected
- Allyl, Methyl Terminated ... 5
- Diallyl Terminated
- Styryl, Amine Terminated
- Amine, Hydroxyl Terminated ... 6

PEGylated Silanes

- Tipped PEG Silanes .. 7
- Embedded PEG Silanes
- Dipodal PEG Silanes
- Fluorinated PEG Silane ... 9
- Functional PEG Silanes
- PEGylated Silicones (Trisiloxanes) .. 10

Related Products

- Silacrowns .. 11
- Glycol Oligomers ... 12
PEGylation Reagents available from Gelest

Gelest is introducing a unique range of PEG reagents with dual functionality that enable new approaches to PEGylation for bioconjugates, reduction of surface biofouling and the formation of polymerizeable vesicles for drug transport. These “first of a kind” materials are heterobifunctional materials with an amine at one terminus and at the other terminus a choice of two different species, one which can undergo radical reactions and one that can undergo hydrolytic condensation. In addition to reacting directly with appropriate functionality of drug or protein substrates, these materials have the potential to undergo polymerization.

PEGylation, the formation of a conjugate of a protein, peptide, drug or other bioactive material by linking it with one or more poly(ethylene glycol) chains, in many instances imparts desirable properties to a biomolecule: increased solubility, resistance to metabolic degradation and reduced immunogenicity. The combination of amine and polymerizeable functionality on a PEG provides new options for bioconjugate formation. Depending on the application, the conjugation can be at either terminus, leaving the remaining terminus to polymerize or act as a pH responsive endgroup. If the unsaturation is utilized as the conjugation point, the amine can undergo ionic interaction, hydrogen bonding or covalent bond formation with other species. The amine functional PEGs also create a pathway to pH responsive behavior.

The new polymerizeable PEG materials have the potential to form polymerizeable vesicles, stabilizing PEGylated drugs or act as comonomers for microencapsulated drug delivery. The polymerization can proceed by either free radical organic polymerization or hydrolysis-condensation siloxane polymerization.

Related PEG products included in this brochure include a broad range of discrete allyl terminated PEGs and Silacrown, analogs of crown ethers.

The front cover motif depicts PEGylation of a bioactive substance and the benefits of the PEGylation with a PEG terminated by styryl and amine functionality as well as potential pathways for both stabilized vesicle formation by polymerization and pH responsive release of the bioactive.

Exemplary reactions for heterobifunctional PEG polymerization by radical and hydrolytic mechanisms are shown below.
Unsaturated and Polymerizeable PEGs

Allyl, Amine Terminated

ENE0485
3-(2-AMINOETHOXYPOLY(ETHYLENEOXY)PROPENE (4-7 EO)

- **Name:** Allyl, Amine Terminated
- **MW:** 200-400
- **bp °C/mm:** 1.03 25
- **D$_{4}^{20}$:** 1.462 25
- **Viscosity:** 15-20 cSt
- **Flashpoint:** >110°C (>230°F)
- **HMIS:** 2-1-0-X
- **n$_{D}^{20}$:** 1.0g 480.00

ENE0487
3-(2-AMINOETHOXYPOLY(ETHYLENEOXY)PROPENE (8-12 EO)

- **Name:** Allyl, Amine Terminated, Silylated
- **MW:** 400-600
- **bp °C/mm:** 1.071 25
- **D$_{4}^{20}$:** 1.4660 25
- **Viscosity:** 50 cSt
- **Flashpoint:** >110°C (>230°F)
- **HMIS:** 1-1-0-X
- **n$_{D}^{20}$:** 1.0g 480.00

Allyl, Carboxylate Ester Terminated

ENE0285
ALLYLOXY(POLYETHYLENE OXIDE), ACETATE (6-9 EO)

- **Name:** Allyl, Carboxylate Ester Terminated
- **MW:** ~450
- **bp °C/mm:** 1.078
- **D$_{4}^{20}$:** 1.458
- **Viscosity:** 30-35 cSt
- **Flashpoint:** >110°C (>230°F)
- **HMIS:** 2-1-0-X
- **n$_{D}^{20}$:** 25g 60.00

ENE0287
ALLYLOXY(POLYETHYLENE OXIDE), DODECANOATE (1-6 EO)

- **Name:** Commercial
- **MW:** 400-600
- **bp °C/mm:** 0.942
- **D$_{4}^{20}$:** 1.454
- **Straw to amber liquid**
- **Flashpoint:** >110°C (>230°F)
- **TSCA:**
- **HMIS:** 2-1-0-X
- **n$_{D}^{20}$:** 100g 320.00

ENE0300
ALLYLOXY(POLYETHYLENE OXIDE), DODECANOATE (2-4 EO)

- **Name:** Commercial
- **MW:** 350-400
- **bp °C/mm:** 0.96 25
- **D$_{4}^{20}$:** 1.447 25
- **Forms micelles**
- **Flashpoint:** >110°C (>230°F)
- **TSCA:**
- **HMIS:** 2-1-0-X
- **n$_{D}^{20}$:** 10g 340.00
<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D<sub>4</sub><sup>20</sup></th>
<th>n<sub>0</sub><sup>20</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allyl, Hydroxyl Terminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0200 2-ALLYLOXYETHANOL</td>
<td>102.13</td>
<td>159<sup>°</sup></td>
<td>0.955</td>
<td>1.436</td>
<td></td>
</tr>
<tr>
<td>C<sub>4</sub>H<sub>9</sub>O<sub>2</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint: 66°C (151°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXICITY: oral rat, LD50: 3,050 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[111-45-5] TSCA</td>
<td>1kg</td>
<td>$64.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0170 ALLYLOXY(DIETHYLENE OXIDE), 95%</td>
<td>146.18</td>
<td>90° / 4</td>
<td>1.012</td>
<td>1.444</td>
<td>100g</td>
</tr>
<tr>
<td>2-[2-(Allyloxy)ethoxy]etherethanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>11</sub>H<sub>22</sub>O<sub>4</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 4.7 cSt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint: 102°C (216°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15075-50-0] HMIS: 3-2-0-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0385 ALLYLOXY(TRIETHYLENE OXIDE), tech-95</td>
<td>190.24</td>
<td>115-8° / 2</td>
<td>1.026</td>
<td>1.4530</td>
<td>25g</td>
</tr>
<tr>
<td>2-[2-(Allyloxy)ethoxy]etherethanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>11</sub>H<sub>24</sub>O<sub>4</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[26150-05-0] HMIS: 2-2-0-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0254 ALLYLOXY(POLYETHYLENE OXIDE) (4-7 EO)</td>
<td>~250</td>
<td></td>
<td>1.059</td>
<td>1.458</td>
<td>25g</td>
</tr>
<tr>
<td>~250 1.059 1.458 Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[27274-31-3] TSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0260 ALLYLOXY(POLYETHYLENE OXIDE) (8-12 EO)</td>
<td>~480</td>
<td></td>
<td>1.089 1.465</td>
<td></td>
<td>25g</td>
</tr>
<tr>
<td>~480 1.089 1.465 Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[27274-31-3] TSCA HMIS: 2-1-0-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0261 ALLYLOXY(POLYETHYLENE OXIDE) (12-20 EO)</td>
<td>~750</td>
<td></td>
<td>1.1</td>
<td></td>
<td>25g</td>
</tr>
<tr>
<td>~750 1.1 Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[27274-31-3] TSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEA0264 ALLYLOXY(POLYETHYLENE OXIDE) (35-50 EO)</td>
<td>1,500-2,000</td>
<td></td>
<td>1.1</td>
<td></td>
<td>25g</td>
</tr>
<tr>
<td>1,500-2,000 1.1 Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[27274-31-3] TSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allyl, Hydroxyl Terminated, TMS Protected

SIA0479.0
O-ALLYLOXY(POLYETHYLENEOXY)TRIMETHYLSILANE, tech-95
470-560
Viscosity: 20 - 25 cSt
Average of 10 -(OCH₂CH₂)- units
Hydrophilic monomer
HMIS: 2-3-1-X
25g $36.00

SIM6485.9
O-METHACRYLOXY(POLYETHYLENEOXY)TRIMETHYLSILANE, 95%
335-425
C₆H₅O₃Si, C₇H₆O₃Si, C₈H₇O₃Si
HMIS: 2-3-1-X
store <5°C
100g $96.00

Allyl, Methyl Terminated

ENEA0180
ALLYLOXY(DIETHYLENE OXIDE), METHYL ETHER, 95%
C₆H₉O₃
160.21
[13752-97-1]
TSCA
25g $96.00

ENEA0360
ALLYLOXY(POLYETHYLENE OXIDE), METHYL ETHER (6-8 EO)
mPEG-allyl
~350
>205°
1.03
1.452
Flashpoint: 119°C (246°F)
[27252-80-8]
TSCA
25g $142.00

ENEA0365
ALLYLOXY(POLYETHYLENE OXIDE), METHYL ETHER (10-15 EO)
~550
>205°
1.04
1.457
Flashpoint: 136°C (277°F)
[27252-80-8]
TSCA
25g $142.00

ENEA0366
ALLYLOXY(POLYETHYLENE OXIDE), METHYL ETHER (20-55 EO)
~1,000
1.05
[27252-80-8]
TSCA
HMIS: 2-1-0-X
25g $196.00

ENEA0367
ALLYLOXY(TETRAETHYLENE OXIDE), METHYL ETHER, tech-90
C₇H₉O₃
248.32
[96220-75-6]
1.003
25g $148.00

ENEA0375
ALLYLOXY(TRIETHYLENE OXIDE), METHYL ETHER, 95%
2,5,8,11-Tetraoxatetradec-13-ene
C₇H₉O₃L
204.26
75-85°
0.957
Flashpoint: 80°C (176°F)
[19685-21-3]
HMIS: 2-2-0-X
25g $124.00

(215) 547-1015 www.gelest.com info@gelest.com
<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D₄²⁰</th>
<th>nₒ²⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEM2050</td>
<td>228.36</td>
<td>100° / 4</td>
<td>0.854</td>
<td>10g $320.00</td>
</tr>
</tbody>
</table>

Diallyl Terminated

ENE3050
POLY(ETHYLENE OXIDE) Diallyl Ether (10-25 EO)

- Viscosity: 25-30 cSt
- Flashpoint: >110°C (>230°F)
- TSCA: HMIS: 2-1-0-X
- 10g $320.00

Styryl, Amine Terminated

ENES4057
STYRYLMETHOXY(POLYETHYLENE OXIDE), AMINOETHYLTERMINATED (8-12 EO)

- Viscosity: 175-225 cSt
- Flashpoint: >110°C (>230°F)
- HMIS: 2-1-0-X, store <5°C
- 0.5g $540.00

Amine, Hydroxyl Terminated

PEG0-AH05
POLY(ETHYLENE OXIDE), AMINOETHYL, HYDROXYLTERMINATED (4-6 EO)

- Viscosity: 150-200 cSt
- Flashpoint: >110°C (>230°F)
- HMIS: 2-1-0-X, store <5°C
- 1.0g $440.00

PEG0-AH11
POLY(ETHYLENE OXIDE), AMINOETHYL, HYDROXYLTERMINATED (8-12 EO)

- Viscosity: 450-550 cSt
- Flashpoint: >110°C (>230°F)
- HMIS: 2-1-0-X, store <5°C
- 1.0g $440.00
PEGylated Silanes

Tipped PEG Silanes

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D<sub>4</sub><sup>20</sup></th>
<th>n<sub>0</sub><sup>20</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIH6188.0</td>
<td>[HYDROXY(POLYETHYLENEOXY)PROPYL]-TRIETHOXYSILANE, (8-12 EO), 50% in ethanol</td>
<td>575-750</td>
<td>0.889</td>
<td>1.401</td>
</tr>
</tbody>
</table>

Flashpoint: 15°C (59°F)
HMIS: 2.4-1-X

SIM6491.5

11-(2-METHOXYETHOXY)UNDECYLTRICHLOROSILANE

C₁₁H₂₃ClO₃Si 363.83 152-3° / 0.3 1.07

Forms self-assembled monolayers with "hydrophilic tips"

[943349-49-3] HMIS: 3-2-1-X

5g $82.00

SIM6491.7

11-(2-METHOXYETHOXY)UNDECYLTRIMETHOXYSILANE

C₁₁H₂₅O₃Si 350.57 152-3° / 0.3 0.947

Flashpoint: >110°C (>230°F)

[1384163-86-3] HMIS: 3-2-1-X

5g $116.00

SIM6492.56

O-[METHOXYPOLY(ETHYLENE OXIDE)]-N-TRIETHOXYSILYL-PROPYL)CARBAMATE (15-20 EO)

Methoxy-PEG-silane

800-1,200 1.1

Employed in PEGylation of surfaces to reduce biofouling

10g $124.00

SIM6492.57

2-[METHOXYPOLY(ETHYLENOXY)6-9PROPYL]-DIMETHYLCHLOROSILANE, tech-90

CH₃O(CH₂CH₂O)₆₋₉(CH₂)₂SiClHMIS: 3-2-1-X

10g $92.00

SIM6492.58

2-[METHOXYPOLY(ETHYLENOXY)6-9PROPYL]-DIMETHYLMETHOXYSILANE, tech-90

CH₃O(CH₂CH₂O)₆₋₉(CH₂)₂Si(OCH₃)HMIS: 2-2-1-X

Flashpoint: >65°C (>150°F)

1.01 1.444

5g $110.00

SIM6492.66

2-[METHOXY(POLYETHYLENOXY)6-9PROPYL]-TRICHLOROSILANE, tech-90

CH₃O(CH₂CH₂O)₆₋₉(CH₂)₂ClSiHMIS: 3-2-1-X

90% oligomers

Forms hydrophilic surfaces

[36493-41-1] TSCA

10g $76.00
<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM6492.7</td>
<td>2-[METHOXY(POLYETHYLENEOXY)6-9PROPYL]-TRIMETHOXY SILANE, tech-90</td>
<td>CH$_3$(C$_2$H4O)${6-9}$(CH$_3$)$_3$Si(OCH$_3$)$_3$</td>
<td>1.076</td>
<td>1.403</td>
</tr>
<tr>
<td></td>
<td>Viscosity: 29 cSt</td>
<td>Flashpoint: 88°C (190°F)</td>
<td>Reduces non-specific binding of proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[65994-07-2]</td>
<td>TSCA</td>
<td>HMIS: 2-2-1-X</td>
<td>25g 76.00</td>
</tr>
<tr>
<td>SIM6492.72</td>
<td>2-[METHOXY(POLYETHYLENEOXY)9-12PROPYL]-TRIMETHOXY SILANE, tech-90</td>
<td>CH$_3$(C$_2$H4O)${9-12}$(CH$_3$)$_3$Si(OCH$_3$)$_3$</td>
<td>1.071</td>
<td>1.451 25</td>
</tr>
<tr>
<td></td>
<td>Flashpoint: 88°C (190°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[65994-07-2]</td>
<td>TSCA</td>
<td>HMIS: 2-2-1-X</td>
<td>25g 76.00</td>
</tr>
<tr>
<td>SIM6492.73</td>
<td>2-[METHOXY(POLYETHYLENEOXY)21-24PROPYL]-TRIMETHOXY SILANE, tech-90</td>
<td>CH$_3$(C$_2$H4O)${21-24}$(CH$_3$)$_3$Si(OCH$_3$)$_3$</td>
<td>1.120-1.250</td>
<td>1.0g 84.00</td>
</tr>
<tr>
<td></td>
<td>For MOCVD of hydrophilic films</td>
<td>HMIS: 3-2-1-X</td>
<td></td>
<td>10g 124.00</td>
</tr>
<tr>
<td>SIM6493.7</td>
<td>METHOXYTRI(ETHYLENEOXY)PROPYLHEXAMETHYL-TRISILOXANYLETHYLTRIETHOXY SILANE, tech-95</td>
<td>C$_9$H$_3$O$_6$Si$_4$</td>
<td>603.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduces protein adsorption on modified substrates</td>
<td>HMIS: 2-1-1-X</td>
<td></td>
<td>10g 86.00</td>
</tr>
<tr>
<td>SIM6493.4</td>
<td>METHOXYTRI(ETHYLENEOXY)PROPYLTRIMETHOXY SILANE</td>
<td>C$_8$H$_3$O$_6$Si</td>
<td>326.46</td>
<td>140° / 0.2</td>
</tr>
<tr>
<td></td>
<td>[132388-45-5]</td>
<td>TSCA-L</td>
<td>HMIS: 3-2-1-X</td>
<td>10g 128.00</td>
</tr>
<tr>
<td>SIM6493.7</td>
<td>METHOXYTRI(ETHYLENEOXY)UNDECYLTRIMETHOXY SILANE</td>
<td>PEG3C11 Silane, 3,3-Dimethoxy-2,15,18,21,24-pentaoxa-3-silapentacosane</td>
<td>C$_9$H$_3$O$_6$Si</td>
<td>438.68</td>
</tr>
<tr>
<td></td>
<td>[1858242-37-1]</td>
<td>HMIS: 3-2-1-X</td>
<td></td>
<td>1.0g 84.00</td>
</tr>
<tr>
<td>SIM6493.9</td>
<td>METHOXYTRI(ETHYLENEOXY)(11-TRIETHOXYSILYL)-UNDECANOATE, tech-95</td>
<td>C${11}$H${23}$O$_6$Si</td>
<td>494.73</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td>Hydrophilic-tipped silane</td>
<td>HMIS: 2-1-0-X</td>
<td></td>
<td>2.5g 186.00</td>
</tr>
</tbody>
</table>
Embedded PEG Silanes

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIT8186.3</td>
<td>536.82</td>
<td>0.977</td>
<td>1.4479</td>
<td></td>
</tr>
<tr>
<td>TRIETHOXYSLYLPROPOXY(POLYETHYLENEOXY)-DODECANOATE, tech-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C${20}$H${40}$O$_5$Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides embedded hydrophilicity with oleophilic compatibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1041420-54-5]</td>
<td>TSCA-L</td>
<td>HMIS: 2-1-1-X</td>
<td>25g $48.00</td>
<td></td>
</tr>
<tr>
<td>SID4472.0</td>
<td>391.88</td>
<td>165° / 0.7</td>
<td>1.028</td>
<td>1.4523</td>
</tr>
<tr>
<td>4,7-DIOXOAODECYLTRICHLOROSILANE, 95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C${17}$H${35}$Cl$_2$O$_7$Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forms C$_{18}$ bonded phases with embedded hydrophilicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMIS: 3-1-1-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIB1543.0</td>
<td>500.70</td>
<td>1.060</td>
<td>1.4158</td>
<td></td>
</tr>
<tr>
<td>BIS[METHOXY(TRIETHYLENEOXY)PROP]DIMETHOXYSilane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C${12}$H${25}$O$_7$Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMIS: 3-2-1-X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dipodal PEG Silanes

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIB1824.81</td>
<td>700-1,000</td>
<td>1.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N'-BIS-[(3-TRIOETHOXYSLYLPROP)AMINOCARBONYL]-POLYETHYLENE OXIDE (7-10 EO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipodal hydrophilic silane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[178884-91-8]</td>
<td>TSCA</td>
<td>HMIS: 1-1-1-X</td>
<td>25g $24.00</td>
<td></td>
</tr>
<tr>
<td>SIB1824.82</td>
<td>1,000 - 1,200</td>
<td>1.088</td>
<td>1.4583</td>
<td></td>
</tr>
<tr>
<td>N,N'-BIS-[(3-TRIOETHOXYSLYLPROP)AMINOCARBONYL]POLYETHYL Ureasil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 300-350 cSt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipodal hydrophilic silane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antifog coatings can be formed from combinations of polyalkylene oxide functional silanes and film-forming hydrophilic silanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[178884-91-8]</td>
<td>TSCA</td>
<td>HMIS: 1-1-1-X</td>
<td>25g $56.00</td>
<td></td>
</tr>
<tr>
<td>SIB1824.84</td>
<td>1,400 - 1,600</td>
<td>1.24</td>
<td>1.397</td>
<td></td>
</tr>
<tr>
<td>BIS(3-TRIOETHOXYSLYLPROP)POLYETHYLENE OXIDE (25-30 EO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolytically stable hydrophilic silane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[666829-33-0]</td>
<td></td>
<td>HMIS: 2-1-1-X</td>
<td>25g $84.00</td>
<td></td>
</tr>
</tbody>
</table>

Fluorinated PEG Silanes

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIT8171.2</td>
<td>775-910</td>
<td>1.24</td>
<td>1.397</td>
<td></td>
</tr>
<tr>
<td>(TRIDECACFLUORO-1,1,2,2-TETRAHYDROOCTYL)-(METHOXYPOLY-(ETHYLENEOXY)PROP]DIMETHOXYSilane (6-9 EO), tech-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1936462-94-0]</td>
<td></td>
<td>HMIS: 2-1-0-X</td>
<td>0.5g $520.00</td>
<td></td>
</tr>
</tbody>
</table>
Functional PEG Silanes

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA0078.0</td>
<td>500 - 700</td>
<td>1.071</td>
<td>1.4527</td>
<td></td>
</tr>
<tr>
<td>2-[(ACETOXYPOLYETHYLENEOXY)PROPYL]TRIETHOXYSiLANE, 95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 50 cSt</td>
<td>HMIS: 2-1-1-X</td>
<td>25g $78.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA0766.0</td>
<td>[2079045-60-4]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZIDOETHYLPOLY(ETHYLENEOXY)PROPYLTRIETHOXYSiLANE (16-20 EO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5g $480.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PEGylated Silicones (Trisiloxanes)

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM6492.6</td>
<td>559-691</td>
<td>1.007</td>
<td>1.4416</td>
<td></td>
</tr>
<tr>
<td>2-[(METHOXYPOLYETHYLENEOXY)6-9PROPYL]-HEPTAMETHYLTRISiLOXANE, tech-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$(CH2O)${1-6}$(CH$_2$)$_3$(OSi(CH$_3$)$_3$Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 22 cSt</td>
<td>Flashpoint: 116°C (241°F)</td>
<td>“Super-wetter” Surface tension of 0.1% aqueous solution: 21-22 mN/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[27306-78-1]</td>
<td>TSCA</td>
<td>HMIS: 2-1-0-X</td>
<td>100g $19.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIH6185.0</td>
<td>550-650</td>
<td>1.02</td>
<td>1.446325</td>
<td></td>
</tr>
<tr>
<td>3-[HYDROXYPOLYETHYLENEOXY]PROPYL]-HEPTAMETHYLTRISiLOXANE, 90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO(CH2O)${1-6}$(CH$_2$)$_3$(OSi(CH$_3$)$_3$Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 35 cSt</td>
<td>Flashpoint: 118°C (244°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[67674-67-3]</td>
<td>TSCA</td>
<td>HMIS: 1-1-0-X</td>
<td>25g $19.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D_4^{20}</th>
<th>n_0^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA0075.0</td>
<td>600-750</td>
<td>1.032</td>
<td>1.4461</td>
<td></td>
</tr>
<tr>
<td>3-2-[ACETOXYPOLYETHYLENEOXY]PROPYL]-HEPTAMETHYLTRISiLOXANE, tech-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity: 30 cSt</td>
<td>Flashpoint: 79°C (174°F)</td>
<td>Surfactant</td>
<td>TOXICITY: oral rat, LD50: >2,000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>[125997-17-3]</td>
<td>TSCA</td>
<td>HMIS: 2-1-0-X</td>
<td>25g $22.00</td>
<td></td>
</tr>
</tbody>
</table>
Related Products

Silacrowns

SID4220.4
DIMETHYLSILICA-11-CROWN-4, 95%
1,1-Dimethyl-3,6,9,11-tetraoxa-1-silacycloundecane
\[C_7H_8O_7Si \] 206.31 96° / 9 1.07 1.4487
Flashpoint: 77°C (171°F)
[18339-94-1] HMIS: 3-2-0-X
25g $52.00

SID4220.5
DIMETHYLSILICA-14-CROWN-5, 95%
2,2-Dimethyl-3,6,9,12-pentaoxa-2-silacyclotetradecane
\[C_9H_{18}O_{15}Si \] 250.37 125-9° / 0.5 1.08 1.4522
Potential Li ion electrolyte
Flashpoint: >110°C (>230°F)
TOXICITY: oral rat, LD50: 9,900 mg/kg
[70851-49-9] TSCA HMIS: 2-1-0-X
25g $55.00

SID4220.6
DIMETHYLSILICA-17-CROWN-6, 90%
\[C_{10}H_{22}O_{21}Si \] 294.42 168-70° / 0.3 1.09 1.457
Contains other homologs
Flashpoint: >110°C (>230°F)
[83890-22-6] TSCA HMIS: 2-1-0-X
10g $52.00

SID4220.7
DIMETHYLSILICA-20-CROWN-7, 90%
\[C_{11}H_{26}O_{25}Si \] 338.47 274-7° / 1 1.092
Contains other homologs
Ionophore selective for K⁺ ions
Inhibits ion mobility in electrical resins
Flashpoint: >110°C (>230°F)
[83890-23-7] HMIS: 2-1-0-X
5g $69.00

SID4221.0
DIMETHYLSILACROWNS, mixed
\[C_7H_8O_7Si \] 250-338 125-295° / 0.3 1.09
Contains: 70-75% dimethysila-17-crown-6, 10-20% dimethysila-14-crown-5, 10-20% dimethysila-20-crown-7
Low cost phase transfer catalyst
Flashpoint: >110°C (>230°F)
25g $36.00
Glycol Oligomers

<table>
<thead>
<tr>
<th>Name</th>
<th>MW</th>
<th>bp °C/mm</th>
<th>D$_4^{20}$</th>
<th>n$_0^{20}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG0-HH06</td>
<td>282.33</td>
<td>200-202° / 2</td>
<td>1.127</td>
<td>1.464</td>
</tr>
<tr>
<td>HEXAETHYLENEGLYCOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,6,9,12,15-Pentaoxaheptadecane-1,17-diol</td>
<td>C${20}$H${38}$O$_{7}$</td>
<td>HMIS: 3-2-1-X</td>
<td>25g $180.00</td>
<td></td>
</tr>
<tr>
<td>PEG0-HH07</td>
<td>326.38</td>
<td>244° / 0.6</td>
<td>1.14</td>
<td>1.457</td>
</tr>
<tr>
<td>HEPTAETHYLENEGLYCOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,6,9,12,15,18-Hexaoxaoicosane-1,20-diol</td>
<td>C${21}$H${40}$O$_{8}$</td>
<td>HMIS: 3-1-1-X</td>
<td>10g $190.00</td>
<td></td>
</tr>
<tr>
<td>ENEP3810</td>
<td>~1,500</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLY(PROPYLENE OXIDE) MONOALLYL ETHER (20-30 PO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viscosity: 150-200 cSt</td>
<td>Flashpoint: 264°C(507°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TSCA</td>
<td>HMIS: 1-1-0-X</td>
<td>100g $280.00</td>
<td></td>
</tr>
<tr>
<td>SIB1660.0</td>
<td>600-800</td>
<td>1.00</td>
<td>1.45225</td>
<td></td>
</tr>
<tr>
<td>BIS[(3-METHYLDIMETHOXYSILYL)PROPYL]POLYPROPYLENE OXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viscosity: 6,000-10,000 cSt</td>
<td>Flashpoint: >110°C (>230°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With tin catalyst forms moisture-cross-linkable resins; hydrophilic dipodal silane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TSCA</td>
<td>HMIS: 3-1-1-X</td>
<td>100g $19.00</td>
<td></td>
</tr>
</tbody>
</table>
Metal-Organics for Material & Polymer Technology
The latest Gelest handbook provides many new compounds with applications on optical, microelectronic, diagnostic and materials applications. Highly referenced listings and device applications are presented.

Silicon Compounds: Silanes and Silicones
Detailed chemical properties and reference articles for compounds. The Handbook of silane and silicone chemistry includes scholarly reviews as well as detailed information on various applications.

Reactive Silicones: Forging New Polymer Links
The brochure describes reactive silicones that can be formulated into coatings, membranes, cured rubbers and adhesives for mechanical, optical, electronic and ceramic applications. Information on reactions and cures of silicones as well as physical properties shortens product development time for chemists and engineers.

Silicone Fluids - Stable, Inert Media
Design and Engineering properties for conventional silicone fluids as well as thermal, fluorosilicone, hydrophilic and low temperature grades are presented in selection guide. The brochure provides data on thermal, rheological, electrical, mechanical and optical properties for silicones. Silicone fluids are available in viscosities ranging from 0.65 to 2,500,000 cSt.

Silicon-Based Blocking Agents
These silicon reagents are used for functional group protection, synthesis and derivatization. The 52 page brochure presents detailed application information on silylation reagents for pharmaceutical synthesis and analysis. Detailed descriptions are presented on selectivity for reactions, resistance to chemical transformations and selective de-blocking conditions. Over 1200 references are provided.

Silane Coupling Agents
Silane coupling agents enhance adhesion, increase mechanical properties of composites, improve dispersion of pigments and fillers and immobilize catalysts and biomaterials. This brochure describes chemistry, techniques, applications and physical properties of silane coupling agents.