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Simulating sliding wear with finite element method
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Abstract

Wear of components is often a critical factor influencing the product service life. Wear prediction is therefore an important part
of engineering. The wear simulation approach with commercial finite element (FE) software ANSYS is presented in this paper. A
modelling and simulation procedure is proposed and used with the linear wear law and the Euler integration scheme. Good care,
however, must be taken to assure model validity and numerical solution convergence. A spherical pin-on-disc unlubricated steel
contact was analysed both experimentally and with FEM, and the Lim and Ashby wear map was used to identify the wear mech-
anism. It was shown that the FEA wear simulation results of a given geometry and loading can be treated on the basis of wear
coefficient2sliding distance change equivalence. The finite element software ANSYS is well suited for the solving of contact
problems as well as the wear simulation. The actual scatter of the wear coefficient being within the limits of±40–60% led to
considerable deviation of wear simulation results. These results must therefore be evaluated on a relative scale to compare different
design options. 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The most confident knowledge about the friction pair
tribological behaviour can be achieved by making wear
experiments. However, the particular design alternatives
need to be evaluated quickly on a regular in-house rou-
tine basis. A massive amount of research has been car-
ried out to help designers with that respect.

It has been argued that the dominating parameters
contributing to the sliding wear of a given system are
the loading and the relative sliding of the contact. The
velocity is determined by the mechanism kinematics.
The question of how the system load influences the
actual contact stress field is more complicated. The first
relevant analysis of the stress at the contact of two elastic
solids was presented by Hertz. He regarded the con-
tacting bodies as elastic half-spaces and the contact
between them ellipse-shaped, frictionless and non-con-
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forming. This approach has often been used in the con-
tact stress calculations.

Wear takes place when surfaces of mechanical
components contact each other. The question of great
practical importance is, how much of the material will
be lost during the given operation time. The surface
shapes vary due to their functions, manufacturing toler-
ances, etc. and will be changed as a result of wear and
plastic deformation. The pressure distribution is then
strongly dependent on those phenomena. A finite
element method (FEM) is a versatile tool to solve the
stress and strain problems regardless of the geometry of
the bodies. A FEA program ANSYS 5.0A has been used
in this paper for the contact pressure determination as
well as wear simulation.

2. Wear models

The wear process can be treated as a dynamic process,
depending on many parameters and the prediction of that
process as an initial value problem. The wear rate may
then be described by a general equation
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Nomenclature

A apparent contact area (m2)
a0 thermal diffusivity (m2/s)
D stiffness (N/m)
E elastic modulus (Pa)
E* normalised elastic modulus (Pa)
fFr friction coefficient
F load (N)
FN normal load (N)
H hardness (Pa)
HV Vickers hardness (Pa)
h wear depth (m)
k dimensional wear coefficient (Pa21)
K wear coefficient
Km thermal conductivity of steel (J/m/s/K)
KN contact stiffness (N/m)
M time scale factor
p normal contact pressure (Pa)
p̃ dimensionless normalised pressure
Pe Péclet number
q0 heat flux (W/m2)
Q̃ dimensionless normalised wear rate
r0 apparent contact area radius (m)
rp pin sliding track average radius (m)
R pin tip radius (m)
R1 torus profile radius of curvature (m)
s sliding distance (m)
t time (s)
T temperature (K)
u Nodal displacement (m)
v velocity (m/s)
ṽ dimensionless normalised velocity
V volume wear (m3)
x, y Cartesian coordinates (m)
a cone angle (°)
a12 heat distribution coefficient
D difference, increment
j spinning angle (rad)
m Poisson ratio

Subscripts

aver average
Contact belongs to contact
Disc belongs to disc
flash flash temperature
i sampling point encounter
in initial
j solution step encounter
lim maximum allowed
max maximum
Pin belongs to pin

dh
ds

5f (load, velocity, temperature,

material parameters, lubrication, . . . )

whereh is the wear depth (m) ands is the sliding dis-
tance (m). Many wear models are available in the litera-
ture. Their mathematical expressions vary from simple
empirical relationships to complicated equations relying
on physical concepts and definitions [1]. Specific par-
ameters and variables are often involved, valid only for a
particular case and not available in handbooks. Therefore
very few of those models have been used to predict wear
in practice.

A comprehensive wear classification for steels over
the wide range of loads and sliding velocities was given
by Lim and Ashby [2]. They based their work on simpli-
fied wear equations and adjusted them on the basis of
data from a large number of dry pin-on-disc exper-
iments. This work resulted in a wear map, Fig. 1, giving
the contours of wear regimes and the dimensionless wear
rateQ̃ as a function of dimensionless normalised press-
ure p̃ and dimensionless normalised velocityṽ, defined
as

Q̃5
V
As

, p̃5
FN

AH
andṽ5

vr0

a0

(1)

whereV is the volume wear (m3), A is the apparent con-
tact area (m2) and r0 is its radius (m),FN is the normal
load (N), H is the hardness (Pa) of softer material in
contact,v is the relative sliding velocity (m/s) anda0 is
the material’s thermal diffusivity (m2/s). The wear
equations and the parameters used by Lim and Ashby
are shown in Table 1.

The temperature analysis, on which the wear map in
Fig. 1 was based assumed a simple 1-dimensional heat
flow. Further, in the regime in which the flash tempera-
tures play an important role on wear, the heat distribution
coefficient was taken to be equal toa12=0.5. If the con-
tact flash temperature is above 700°C, the oxidational
wear mechanism will prevail in a steel contact. Below
this temperature limit, the wear law was proven to be
linear with respect to load and independent of velocity.

The most frequently used model is the linear wear
equation Q̃=Kp̃, where the volume wear rate is pro-
portional to the normal load. This model is often referred
to as the Archard’s wear law, though its basic form was
first published by Holm [3]. The model was based on
experimental observations and written in the form

V
s
5K

FN

H
(2)

The wear coefficientK was introduced to provide
agreement between theory and experiment. Holm treated
it as a constant, representing the number of abraded
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Fig. 1. Lim and Ashby wear map and its 3-dimensional plot.

atoms per atomic encounter. In Archard’s work it corre-
sponds to the probability that an asperity interaction
results in a wear particle formation [4]. However, that
is not the only possible interpretation. Lim and Ashby
[2] calculated it regarding the delamination or plasticity
dominated wear mechanism as governing. For steels they
suggested to use the values

HK=5·10−5 if p̃,3·10−4

K=5·10−3 if p̃.3·10−4

However, the actual value ofK for a particular contact
should normally be experimentally determined and is
always less than unity.

For engineering applications the wear depth is of more
interest, than wear volume. Here Archard proposed to
divide both sides of Eq. (2) by the apparent contact area
A [4], giving

V
sA

5
h
s
5kp

whereh is the wear depth (m),k is the dimensional wear
coefficient (Pa21) and p is the normal contact pressure
(Pa). The wear process can be regarded as a dynamic
process and its prediction an initial value problem. The
wear model can then be described by a differential
equation, which for the linear case, Eq. (2) can be formu-
lated as

dh
ds

5kp (3)

3. FEA wear simulation procedure

3.1. Finite element theory

The main task of the finite element method (FEM) in
the wear calculations is to compute the fields of contact

stresses. The structure to be analysed is discretised with
a number of elements, assembled at nodes. In FEM the
function in question (displacement, temperature, etc.) is
piecewise approximated by means of polynomials over
every element and expressed in terms of nodal values
[5]. The elements of different type and shape with com-
plex loads and boundary conditions can be used simul-
taneously. In the structural analysis the degrees of free-
dom are defined as nodal displacements. The equations
for every element are assembled into a set, expressed in
the structural level as

[D]{ u} 5{ F}

where [D] is the structural or global stiffness (N/m)
matrix, {u} is the structural nodal displacement or defor-
mation (m) vector and {F} is the vector of structural
nodal loads (N). This equation system can be solved for
{ u}. From deformations the nodal stresses are computed.
The commercial finite element (FE) software ANSYS
can handle several material and structural non-linearities,
such as plasticity, viscoelasticity, friction, etc., [6]. The
coupled-field analyses, for instance thermal–structural,
can be performed as well.

The FE wear calculations involve solving the general
contact problem with the area of contact between the
bodies not known in advance. The analysis is therefore
non-linear. The point-to-surface interface elements are
used in those cases. FEA software is equipped with
many tools, enhancing the non-linear numerical pro-
cedure, the parameters of which are to be chosen with
care.

3.2. Wear simulation routine

The flow-chart of the FE wear simulation procedure,
consisting of a series of structural solution steps com-
bined with additional calculations, is shown in Fig. 2.

The initial parameters given define the model
geometry, loads, constraints and wear model parameters
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Table 1
Wear models and parameters used by Lim and Ashby [2]

p̃seizure=
1

√1+at f2
Fr

S12
Tbulk−T0

20Tmelt

ln
106

bṽDSeizure: (the real contact area equals the apparent contact area:N=1)

Q̃melt=
(Tmelt−T0)H
T∗Lmeltbṽ

Sa12fFrp̃ṽ
T∗b

Tmelt−T0

21DMelt wear: (the surface bulk temperature equals the melting pointTmelt)

Q̃mild−ox=
C2

0A0r0p̃
ZCa0ṽ

expS2
E0

R0Tflash
DMild-oxidational wear: (the flash temperatures are above 700°C)

Q̃sev−ox=fm
Kox(Tmelt−ox−Tbulk)√p̃N

Lmelt,oxa0bṽ 3 a12fFrHbṽ
Kox(Tmelt,ox−Tbulk)!

p̃
N

214Severe-oxidational wear:

Delamination wear: Q̃delamin=Kp̃

a12=
1

2+b√pṽ/8
b=

lbulk

r0

=6heat distribution coefficient between bodies dimensionless number
1 and 2

number of contacting asperities constant (m3/kg)C0=
3MFe

2MO2
rFe

=3.4·10−6N=Sr0

ra
D2

p̃(12p̃)+1

Tbulk=T0+fFrT∗bp̃ṽ bulk temperature (K) fFr=0.7820.13 log(ṽ) friction coefficient

flash temperature (K) wear coefficient for steelK=
2g0fV

f∗
A

=4·10−5
Tflash=Tbulk+

1
2

fFrT∗
Cbṽ! p̃

N

T∗=
a0H
Km

=222 T∗
C=

aH
KC

=650equivalent temperature for steel (K) effective equivalent temperature for steel
(K)

a0=9.1·10-6 lbulk=9·1023 equivalent linear diffusion distance for bulk
thermal diffusivity of steel (m2/s)

heating (m)
A0=106 Arrhenius constant for oxidation (kg2/m4/s) Lmelt=2.1·109 latent heat of steel melting (J/m3)
at=12 constant Lmelt,ox=3.1·109 latent heat of oxide melting (J/m3)
E0=1.38·105 activation energy for oxidation (J/mol) MFe=56 molecular weight of iron
f *

A=0.5 critical area fraction of voids MO2
=32 molecular weight of oxygen

fm=0.01 volume fraction of the removed molten r0=1.5·1023 radius of contact area (m)
material

fV=10-3 volume fraction of inclusions ra=1025 asperity tip radius (m)
g0=0.01 plastic shear strain ratio per pass R0=8.314 molar gas constant (J/mol/K)

rFe=7800 density of steel (kg/m3)
H=109 hardness of steel (Pa) T0=300 sink temperature (K)
KC=14 effective thermal conductivity (J/m/s/K) Tmelt=1800 melting point for steel (K)
Km=41 thermal conductivity of steel (J/m/s/K) Tmelt,ox=1867 melting point for oxide (K)
Kox=3.2 thermal conductivity of oxide (J/m/s/K) ZC=1025 critical oxide film thickness (m)

along with the element and material data. Special sub-
routines were developed for every configuration to gen-
erate the FE model and define the loads and con-
straints automatically.

A good discretisation must be found for every par-
ticular geometry and loading case. The areas with
expected high stress gradients utilise a finer node mesh.
More elements in the model are likely to provide more
exact results, but contribute to an increased computing
time and use of disk space.

After the FEA iterative stress solution was obtained,

the contact region was located. The status of every con-
tact element (closed or not) was determined. The contact
node coordinates of closed contact elements define the
contact area location. The nodal stresses of the nodes in
the contact region determine the contact pressure distri-
bution.

The Euler method is used to integrate the wear law
with respect to time. For each wear simulation step the
system parameters are assumed to be constant and con-
tributing to the wear depth at every node according to
the following discretised wear model
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Fig. 2. FE wear simulation approach.

hj,n5hj−1,n1Dhj,n (4)

whereDhj,n is the wear increment (m) at noden and j is
the solution step encounter. With the stress distribution
known, the nodal wear incrementsDhj,n (m) were evalu-
ated. The simulation results might however become
erratic, if the difference between the nodal wear
increments of one simulation step is too large. An unex-

pected gap could appear between the bodies in the con-
tact area. A maximum allowed wear incrementDhlim (m)
was therefore introduced and predefined for each model
geometry and loading case on the basis of experience.
Short simulation test runs were made to adjust its value
to be as large as possible.

First the initial nodal wear incrementsDhin, j,n (m)
were computed for a constant time incrementDt (s). The
time scale factorMj for every solution stepj was then
evaluated as

Mj 5
Dhlim

Dhin, j,max

where Dhin,j,max is the maximum value (m) among the
nodal wear incrementsDhin,j,n. The actual time interval
for that stepj will then be set equal toMjDt. The model
geometry is thereafter changed by moving the nodes in
contact into the new locations according to Eq. (4) with
Dhj,n=Mj Dhin, j,n. This approach, instead of the use of
constant time step, improved FEA running and speeded
up the analysis. It was considered important to store a
selected output data set into a special file after every
solution step. This enabled quick data reviews afterwards
and saved the previous steps’ data, if the analysis had
to be interrupted for some reason.

3.3. FEA results verification

Perhaps the most convincing way to verify the FEA
results is to compare them with the known analytical
solutions. ANSYS software is also equipped with the
energy error estimation technique, based on the fact that
the FEA structural analysis results in a continuous dis-
placement field from element to element, but a discon-
tinuous stress field [6]. To obtain more acceptable
stresses, the element nodal stresses are averaged. The
nodal stress error vectors are accordingly evaluated,
being a base for the energy error estimation for elements
and over the entire model. When the energy errors are
equal for every element, then that particular model with
its given discretisation is the most efficient one.

3.4. Sphere-on-plane FE model

The wear of the pin-on-disc configuration, Fig. 3, was
analysed with the FEA approach outlined above. The
plastic deformations and the influence of friction on the
contact pressure distribution were considered to be negli-
gible in this case. The structure with a spherical-ended
pin with a radius ofR=5 mm was thus represented in
FEM by an axi-symmetrical sphere-on-plane contact
model. Two-dimensional structural solid elements,
designated as PLANE42 in ANSYS, were used for the
solid parts of the model. The contact surfaces were mod-
elled by two-dimensional point-to-surface contact
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Fig. 3. Pin-on-disc rubbing contact and the FE model structure.

elements CONTAC48. Both the pin and the disc were
considered to be made of steel with elastic moduli and
Poisson ratiosE=210 GPa andm=0.3 respectively. The
two normal loads wereFN=21 N andFN=50 N. Thex-
directional size of the contact region element was 25µm
and 32.5µm respectively, depending on the load. The
correspondingy-directional lengths were 25µm and 42
µm. The ANSYS contact stiffness parameter was set to
KN=5·107 N/m.

In order to check the model validity, the normal con-
tact pressure distributions were calculated by both the
FEA and the Hertz formulae for sphere-on-plane con-
figuration (Fig. 4)

p5pmaxS12
x2

r2
0
D with 5r0=3! 3FNR

4E∗

pmax=
3FN

2pr2
0

whereE∗=E/2(12m2) is the normalised elasticity modu-
lus (Pa). The plastic deformations were disabled and the
friction was neglected in the model. The discrepancy
between the FE numerical and Hertz analytical solutions
did not exceed 5%.

Fig. 4. Hertz (continuous line) and FEA (black dots) sphere-on-plane
normal pressure distributions for steels withR=5 mm.

4. Experimental procedure

Unlubricated pin-on-disc experiments were made with
a spherical steel pin with a radius ofR=5 mm sliding on
a steel disc with normal loadFN=21 N orFN=50 N. The
discs and the pins were hardened toHV=4.6 GPa and
HV=3 GPa, respectively, thus the maximum contact
pressures, calculated by Hertz, were assumed to be
within the elastic limits (Fig. 4). The test rig allowed on-
line measurement of the wear depth and friction torque
(Fig. 5). The sliding velocity in the tests wasv=25 mm/s.

The experimental results are shown in Fig. 6. Two
tests at each load were done. The wear coefficients, Fig.
6(c), were determined from the average wear depths
from both tests, Fig. 6(a), and by using the following
equation

ki5
DVi

DsFN

Fig. 5. Pin-on-disc test rig.
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Fig. 6. Pin-on-disc experiment data for steels as a function of sliding distance: (a) pin wear depth; (b) friction coefficient; (c) normal contact
pressure and wear coefficient; (d) contact flash temperatures.

where the volume wear increments were determined by
the formula [7] (Fig. 7)

DVi5
p
3
[h2

i (3R2hi)2h2
i−1(3R2hi−1)]

where i$1 is the sampling point number andDs=0.15

m is the sliding distance increment. The discs were
harder than pins and the wear test left no measurable
prints on the disc surfaces. The average wear coefficients
were evaluated from experiment data for sliding dis-
tancess=3 m ands=4.5 m [Fig. 6(c)]. These values with
the standard deviation werek=(1.25±0.44)·10213 Pa21
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Fig. 7. Volume wear of pin.

andk=(1.76±0.85)·10213 Pa21 in tests withFN=21 N and
k=(1.42±0.62)·10213 Pa21 andk=(2.26±1.44)·10213 Pa21

with FN=50 N. The overall average wear coefficients
were computed from both test series as
k=(1.33±0.54)·10213 Pa21 andk=(2.01±1.21)·10213 Pa21

for the sliding distancess=3 m ands=4.5 m respectively.
The measured friction coefficients gave the average
value with the standard deviationfFr=0.7±0.2 for both
load cases.

The contact flash temperatures were analysed accord-
ing to the method suggested by Archard [8]. The friction
heat fluxq0 (W/m2) considering the uniform heat gener-
ation

q05fFrpv

was assumed to penetrate separately and without
division into both contacting bodies. The termp denotes
here the average normal contact pressure over the appar-
ent contact area, calculated by neglecting the system
deformations as

p5
FN

p[R22(R2h)2]

The average and maximum flash temperatures were
calculated for both bodies being heated by a circular uni-
form heat source, (Fig. 8). The radiation and convection
were neglected. The following formulae [9]

Fig. 8. Heating of bodies with the uniform circular heat source.

5Tflash,aver=
1.22r 0q0

KmÎp(0.6575+Pe)

Tflash,max=
2r 0q0

KmÎp(1.273+Pe)

were used and the contact flash temperatures were
determined by [8]

1
Tflash,Contact

5
1

Tflash,Pin

1
1

Tflash,Disc

The dimensionless parameterPe=0.5ṽ=vr0/2a0 is the
Péclet number. The calculated flash temperatures did not
exceed the value 6 K [Fig. 6(d)].

The wear test normalised velocities and pressures
were ṽ=0.2, . . ., 1.6, p̃=0.007, . . ., 0.27 and
ṽ=0.3, . . ., 2.0,p̃=0.009, . . ., 0.37 in the cases with nor-
mal loadsFN=21 N and FN=50 N, respectively. The
higher values of dimensionless pressure correspond to
the initial conditions of the contact and are computed on
the basis of average Hertz pressures. The wear mech-
anism could for both load cases be identified as a delami-
nation or adhesive wear, Fig. 1, obeying the linear wear
law, Eq. (3).

5. Wear simulation results

Assuming the linear wear law, the FEA wear simu-
lation results can be treated on the basis of wear coef-
ficient2sliding distance change equivalence. The wear
depth of the given contact geometry with given loading
will not change, if the productks is not changed, regard-
less of the values ofk and s.

5.1. Sphere-on-plane sliding contact

The FE wear simulations were run by the approach
and model given above, assuming the linear wear law
Eq. (3). The dimensional wear coefficients for the wear
simulations were evaluated ask=(1.33±0.54)·10213 Pa21

with both normal loadsFN=21 N andFN=50 N. The
maximum allowed wear increment was fixed to
Dhlim=0.1 µm in both cases. The solution step wear
increments were calculated according to Eq. (3), i.e.
Dh=kpDs. The disc was assumed to be the harder
counterpart as in the experiments and therefore only the
pin suffered wear.

The wear coefficient was treated as a constant. The
FEA wear simulation curves compared with the exper-
imental data are shown in Fig. 9. The bold lines mark
the wear with the average value ofk, thinner lines show
the influence of its deviation on wear. The surface con-
ditions change continuously during the rubbing, influ-
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Fig. 9. FEA sphere-on-plane sliding wear simulation results withk=(1.33±0.54)·10213 Pa21 (continuous lines, bold one shows the average) com-
pared with experimental data (open circles).

encing the actual wear procedure and the value of the
wear coefficient.

5.2. Cone-on-cone conforming spinning contact

A cone on a conical socket spinning contact has been
analysed [10] with both the cone and the socket being
subjected to wear. In the case of the conforming contact
the contact area size does not change during the wear
procedure and the wear characteristic is nearly linear
(Fig. 10). The dimensional wear coefficient
k=(1.33±0.54)·10213 Pa21 was used for the model, as
above. The cone angle wasa=60°, the axial load was
F=40 N and the bodies were made of steel.

5.3. Cone-on-cone non-conforming spinning contact

In the case of non-conforming conical contact the con-
tact area increases along with the wear procedure. Two
different cases of non-conformity were analysed with the
angle differencesDa=109 and Da=209. The load and

Fig. 10. Wear of conforming conical spinning contact: (a) contact scheme; (b) FEA wear graphs withk=(1.33±0.54)·10213 Pa21 (bold line shows
the average).

wear coefficient were the same as above with the nomi-
nal cone anglea=60° (Fig. 11).

5.4. Cone-on-torus spinning contact

The spinning contact with the same cone as above
against the torus-shaped socket with the contact surface
radius R1=37.5 mm was also analysed with FEM
assuming the same materials and loading, Fig. 12.

The shape of the particular wear curve for a given
contact geometry and loading is determined by the
change of the apparent contact area during the rubbing.

A relevant question is which wear simulation accuracy
should be expected. It has been reported that the wear
coefficient values differ from test to test at least by about
a factor of two [11]. The present pin-on-disc experiments
gave the wear coefficient values with the standard devi-
ation of ±41%. It is therefore questionable if the simu-
lation results can be used for prediction of life of a par-
ticular contact system. The results can, however, rather
be used to compare different design solutions and
options instead. The influence of the cone and conical
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Fig. 11. Wear of non-conforming conical spinning contact: (a) contact scheme; (b) FEA wear graphs withDa=109; (c) FEA wear graphs with
Da=209; k=(1.33±0.54)·10213 Pa21 (bold lines show the average).

Fig. 12. Wear of cone-on-torus spinning contact: (a) contact scheme; (b) FEA wear graphs withk=(1.33±0.54)·10213 Pa21 (bold line shows
the average).

socket angle differenceDa=209 on the wear, compared
with the conforming conical contact and cone-on-torus
contact wear behaviour, considering the wear coefficient
standard deviation, is shown in Fig. 13.

6. Discussion and conclusions

The FEA numerical solution accuracy depends on the
model discretisation. Finer nodal mesh gives more exact
results, but contributes to a long computing time and use
of greater disk space. Several additional routines are
often needed to enhance the numerical procedure and
validate the results.

The contact analysis in FEM is a non-linear problem.
The FE model discretisation and contact stiffness with
given loading and constraints are directly related to the
iterative procedure’s ability to converge. A good con-
figuration has to be found on the basis of experience.

Fig. 13. FEA wear simulation results of the conical spinning contact
with different configuration,F=40 N,a=60°, k=(1.33±0.54)·10213 Pa21

(bold lines show the average): cone-on-cone conforming (dark grey
pattern); cone-on-cone non-conforming withDa=209 (light grey
pattern); cone-on-torus,R1=37.5 mm (dashed pattern).
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The integration time step is a critical parameter
regarding the reliability of simulation results. Too long
steps cause erratic results and possibly the un-conver-
gence of FEA procedure. Too short intervals take too
much computing time. A simple simulation time step
optimisation routine was developed, evaluating the inte-
gration step duration for every solution step individually
on the basis of the fixed maximum wear increment.

The wear mechanism must be considered and its
changes must be foreseen during the simulation process.
The Lim and Ashby wear map can be used for steels.

Assuming the linear wear law to be valid, the FEA
wear simulation results for a given contact geometry and
a given load can be treated on the basis of wear coef-
ficient2sliding distance change equivalence.

Due to the model simplifications and the real deviation
of input data, the FEA wear simulation results should be
evaluated on a relative scale to compare different design
options, rather than to be used to predict the absolute
wear life.

References

[1] Meng H-C. Wear modelling: Evaluation and categorisation of wear
models. Dissertation, University of Michigan, 1994.

[2] Lim SC, Ashby MF. Wear mechanism maps. Acta metall
1987;35(1):1–24.

[3] Holm R. Electric contacts. Uppsala: Almqvist and Wiksells Bok-
tryckeri AB, 1946.

[4] Archard JF. Wear theory and mechanisms. In: Peterson MB, Winer
WO, editors. Wear control handbook. New York: ASME, 1980.

[5] Cook RD. Concepts and applications of finite element analysis.
New York: John Wiley and Sons, 1981.

[6] ANSYS User’s manual for revision 5.0, vol. 4, theory. Houston
Swanson Analysis System Inc., 1994.

[7] Spiegel MR. Mathematical handbook of formulas and tables. New
York: McGraw-Hill Book Company, 1990.

[8] Archard JF. The temperature of rubbing surfaces. Wear
1959;2:438–45.

[9] Tian X, Kennedy FE. Maximum and average flash temperatures in
sliding contacts. Transactions of the ASME, Journal of Tribology
1994;116:000–0.
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