Barabasi "Bose-Einstein Condensation in (so called) 'Complex' -Networks" Rediscovery of Siegel Artificial-Neural-Networks "EUREKA" + "SHAZAM" Optimizing Optimization-Problems Optimally (OOPO) Automatic-Mathematical-Catastrophe ("AUTMATHCAT") Crossover from Slow Memory-Hogging "Simulated-Annealing" + "Boltzmann-Machine" to "Bose-Einstein CONDENSATION Machine"

Edward Siegel
("physical-mathematicist")
(a. k. a. Herr Doktor Professor "Sigmund Fraude")
"FUZZYICS", ${ }^{\text {®0 }}{ }^{\text {T }}$
@ Pacific Beach Institute of Simplicity of Complexity Optimality (PBISCO), @ La Jolla Institute of Simplicity of Complexity Optimality (LJISCO) @ La Jolla Institute for Biochemopsychotechnoinformaticsoscientifico(so called)"complexity"...-Babble Spin-Doctoring Media-Hype
P.-R. "Bushwaaaaah" Disambiguation (LaJ-B...A...D)

1101 Hornblende, San Diego, CA. 92109 \& 6333 La Jolla Blvd., La Jolla, CA. 92037
(858) 270-5111
fuzzyics@tnl-online.com

Fuzzy-Logic/Physics "FUZZYICS"" "Fuzzycity" Optimizing Optimization-Problems Optimally (OOPO) of Neural-Networks (N-N's) Via Quantum-Statistics Crossover Equivalence to Switching-Function Sigmoidal \rightarrow Anti-Sigmoidal Crossover Equivalence to "Noise" Power-Spectrum Crossover "Noise-'Induced'/ 'Driven'-Phase-Transitions (NIT's) Vast-Acceleration Control Via "NIT-Picking: "Eureka" and "Shazam" N-N Bose-Einstein Condensation Automatic Optimality

Horsthemke-Lefever-Moss-McClintock-Hongler-Siegel-...) "'noise'-'induced'/‘driven'/ concomitance phase-transition" ("NIT") between power-spectrum critical-exponents: $\mathrm{P}(\omega)=\left[" 1 " / \omega^{\mathrm{n}=0}-\right.$ White $]-\mathrm{to} \rightarrow \mathrm{P}(\omega)=\left(\ldots . .1 " / \omega^{1.000 \ldots}\right.$ - Hyperbolicity..), with control ("NITpicking") implementation two-step application vastly-accelerates neural-network ($\mathrm{N}-\mathrm{N}$) inefficiency. "Eureka": by-rote sigmoid switching-function $1 /\left[1+\mathrm{e}^{-\mathrm{ERT}}\right]=1 /\left[+1+\mathrm{e}^{-\mathrm{E} / \mathrm{T}}\right]$ (Lipmann-Siegel) identification as Fermi-Dirac $(F-D): 1 /\left[\mathrm{e}^{\mathrm{h} \omega \mathrm{KT}}+1\right]=1 /\left[\mathrm{e}^{\mathrm{E} / \mathrm{T}}+1\right]$ quantumstatistics exactly-wrong (Pauli exclusion-principle/Hund's-rule) automatic non-optimal local-minima trapping (a.k.a. "chemicalelements"). Sign-change/crossover to exact-opposite Bose-Einstein ($\boldsymbol{B}-\boldsymbol{E}$) quantum-statistics $(F-D): 1 /\left[\mathrm{e}^{\mathrm{h} \omega \mathrm{KT}}+1\right]=1 /\left[1+\mathrm{e}^{-\mathrm{ETT}}\right]=1 /\left[+1+\mathrm{e}^{-}\right.$ $\mathrm{E} / \mathrm{T}]$-crossover $\rightarrow(\boldsymbol{B}-\boldsymbol{E}): 1 /\left[\mathrm{e}^{\mathrm{H} \omega \mathrm{KT}}-1\right]=1 /\left[\mathrm{e}^{\mathrm{E} / \mathrm{T}}-1\right]$ equivalence to anti-sigmoidal switching-function $1 /\left[+1+\mathrm{e}^{-\mathrm{E} / \mathrm{T}}\right]-$ crossover $\rightarrow 1 /\left[-1+\mathrm{e}^{-\mathrm{E} / \mathrm{T}}\right]$ completely-avoids such inefficiency via Siegel quantum-statistics low-argument/infra-red-($\mathrm{E} \ll \mathrm{T}$)-limit $\mathrm{e}^{\mathrm{E} / \mathrm{T}}$ Taylor/power-seriesexpansion: $(F-D): 1 /\left[\mathrm{e}^{\mathrm{h} \omega \mathrm{KT}}+1\right]=1 /\left[+1+\mathrm{e}^{-\mathrm{E} / \mathrm{T}}\right] \cong 1 /[1+[1+(\mathrm{E} / \mathrm{T})+\ldots]] \cong 1 /[2+(\mathrm{E} / \mathrm{T})] \cong 1 / 2 \cong\left[" 1 " / \omega^{\mathrm{n}=0}-\right.$ White $]-$ crossover $\rightarrow(\boldsymbol{B}-$ $\boldsymbol{E}): 1 /\left[\mathrm{e}^{\mathrm{h} \omega \mathrm{KT}}-1\right]=1 /\left[-1+\mathrm{e}^{-\mathrm{ETT}}\right] \cong 1 /[1+[1+(\mathrm{E} / \mathrm{T})+\ldots]] \cong 1 /(\mathrm{E} / \mathrm{T}) \cong " 1 " / \mathrm{E}=\left(\ldots . .1 " / \omega^{1.000 \ldots}\right.$-Hyperbolicity...). "Shazam": infinite-numerator-limit: $\lim _{\# \rightarrow \infty}\left\{\# /\left[\mathrm{e}^{\mathrm{h} \mathrm{\omega RT}}-1\right]\right\}=\lim _{\# \rightarrow \infty}\left\{\# /\left[-1+\mathrm{e}^{-\mathrm{E} / \mathrm{T}}\right]\right\} \cong \lim _{\# \rightarrow \infty}\{\# / \mathrm{E}\}=\lim _{\# \rightarrow \infty}\left\{\left(\ldots \# / \omega^{1.000 \ldots}\right.\right.$ - Hyperbolicity... $) \equiv \delta(\omega-0)$ effects N-N Bose-Einstein Condensation automatic optimality! (versus both Hsu's long-predicted/never-implemented accidentally/partially Demuth-Beale/Matlab-NN-toolbox (only 5×10^{3}) Gaussian-2 ${ }^{-x \cdot x}$!)

Barabasi-Bianconi[Phys. Rev. Lett. 86, 24, 5632 (2001)] (BB) "Bose-Einstein Condensation in (so called) 'Complex'-Networks" is manifestly-demonstrated to be a rediscovery of Siegel "EUREKA" + "SHAZAM" purposeful Bose-Einstein Condensation of artificial neural-networks (ANNs) via a Horsthemke-Lefever[Noise Induced Phase-Transitions, Springer (1983)]-Moss-McClintock[Noise in Physical-Systems, (1990)]-Hongler[Chaotic and Stochastic Behavior in Automatic Production Lines, Springer (1994)]-Siegel[Symp. on Fractals,..., M.R.S. Fall Mtg., Boston (1989)-5 papers!] "(so called) 'noise'-induced/driven phase-transition" ("NIT") via control "NITpicking" to replace slow cumbersome "simulated-annealing" + "Boltzmann-machine" with a "Bose-Einstein Condensation (BEC)machine" to force ANN from local nonoptimal-minima to the global optimum-minimum (if one exists), to optimize optimization-problems optimally (OOPO).

Subsequently, the Demuth-Beale Mathworks Matlab ANN-Toolbox achieved same by

Barabasi-Bianconi (BB) "Bose-Einstein Condensation in (so called) 'Complex'-Networks"/Random-Graphs Summary and Metamorphosis to Siegel "Bose-Einstein Condensation of (so called) ‘Complex’-Networks"

Barabasi-Bianconi[Phys. Rev. Lett. 86, 24, 5632 (2001)] (BB) "Bose-Einstein Condensation in (so called) 'Complex'-Networks" is summarized and its metamorphosis to a rediscovery of Siegel "Bose-Einstein Condensation of (so called) 'Complex’-Networks" detailed.

Barabasi-Bianconi[Phys. Rev. Lett. 86, 24, 5632 (2001)] (BB) "Bose-Einstein Condensation in (so called) 'Complex’-Networks" Summary

In detail, Barabasi-Bianconi[Phys. Rev. Lett. 86, 24, 5632 (2001)] (BB) "Bose-Einstein Condensation in (so called) 'Complex'Networks" is both summarized, critiqued, and identified as a metamorphosis of/relative to/ vis a vis much-earlier original Siegel[Symp. on Fractals..., M. R. S. Fall Mtg., Boston (1989)-5-papers!; Schrodinger Centenary Symp., Imperial College, London (1987); I. B. M. (a.k.a. "Reich-III") Conf. On Computers and Mathematics, Stanford (1986)] "Bose-Einstein condensation of (so called) 'Complex'Networks".

BB abstract emphasizes for their object of study, (so called) "complex" -networks/random-graphs, hence their results, universality: - Lawrence-Giles[Nature (London) 400, 107 (1999)] World Wide Web (www) site competition for URLs to enhance their visibility, • Kermin[J. Evol. Econ. 4, 339 (1997)] business world company competition for links to consumers, Redner[Euro. Phys. J. B, 4, 131 (1998)] scientific-community scientists and publications competition for citations as a (false!) measure of their impact on "the" field (typical B. U. - B. S.!),

Common-feature identified is Lawrence-Giles-Redner- Adamic-Huberman[Science 287, 2115 (2000)]-Albert-Jeong-Barabasi [Nature (London) 401, 130 (1999)]-Watts-Strogatz[Nature (London) 393, 440 (1998)] "nodes (so called) 'self-organization' (media-hype P. R. spin-doctoring "bushwaaah!) into (so called) 'complex' -networks/random-graphs, whose 'topology and evolution 'reflect' the dynamics (dynamics $=$ time-dependence is evolution!) and outcome of this 'competition' (a.k.a. (so called) 'frustration' (another trendy Irlon-Anderson-Pines-Laughlin-Frauenfelder-...-'ICAM' [New Scientist 32 (6/11/2001)] buzzword media-hype P.R. spin-doctoring bushwaaah!; known long ago by so very many: Cohen[in Transition-Metal Magnetism, Fermi School in Physics, T. Moriya ed., Academic (1967)]-Moriya[ibid]-Penn[Phys. Rev. ??? (~1966)]-Siegel-Kemeny[Doctoral Dissertation, M. S. U. (1970); Phys. Stat. Sol.: (b) 50, 593 (1972) ; (b) 55, 817 (1973); J. Mag. Mag. Mtls. (1976-1980) - many-papers; Mag. Lett. (1980) -2-papers!;...]".

BB claim to show, despite nonequilibriumness and irreversibility, that evolving/dynamic networks/random-graphs can be "1:1mapped" onto an equilibrium ((so called) "complex"/evolving-network/random-graph nodes/vertices/entities corresponding to quantum energy-levels, with links corresponding to particles) Bose-gas, and in doing so, are actually rederiving a central portion of Siegel[Symp. on Fractals..., M. R. S. Fall Mtg., Boston (1989)-5-papers!; Schrodinger Centenary Symp., Imperial College, London (1987); I. B. M. (a.k.a. "Reich-III") Conf. On Computers and Mathematics, Stanford (1986)] "Synergetics Paradigm \& Dichotomy" (S.P.D.) "FUZZYICS" INEVITABILITY -WEB, and Siegel[(1998); Am. Math. Soc. Mtgs. (1998-2000); SIAM Ann. Mtg., San Diego (2001); Am. Math. Soc. Ann. Mtg., San Diego (2002)] ostensibly "pure-mathematics" DIGITS' "NeWBe"-law inter-digit (on average) statistical logarithmic-correlations INVERSION to only Bose-Einstein quantum-statistics physics!, (DIGITS in decimal-number (so called) "complex"/evolving-network/random-graph nodes/vertices/entities corresponding to quantum energy-levels 'spin(e)lessboZos' (SoBs)", with links ((on average) inter-digit statistical logarithmic-interactions) corresponding to particles), wherein decimal-numbers are a DIGIT-gas with (on average) inter-digit statistical logarithmic-correlations caused by (on average) inter-digit statistical logarithmic-interactions, necessarily in the dual-integral-transform-space inverse ($\underline{\mathrm{k}}, \omega$)-space(s) Hubbard-like Hamiltonian.

BB's "1:1-mapping" predicts common-sense epithets characterizing competition/(so called)"frustration": "winner takes all", "fit get rich" (FGR), "first mover advantage" "emerging"(another/still more media-hype P.R. spin-doctoring buzzword bushwaaah!) naturally as topologically and thermodynamically distinct-phases of underlying (so called)"complex"/evolving-network/random-graph.

BB in particular predict (so called)"complex"/evolving-network/random-graph Bose-Einstein CONDENSATION (BEC), in which a single-node/vertex/entity captures a macroscopic-fraction of links.

BB, falling back upon "specificity-of-(so called)'complexity"' (SoC)-tactics:..., models,..., here their fitness-model[Barabasi-Bianconi, Europhys. Lett. - to be pub.] of a (so called) "complex"/evolving-network/random-graph growing by new nodes/ vertices/ entities acquisition, their generic (SoC)-tactics:..., model,... of:

- new webpages creation,
- new companies emergence,
or
- new papers publication.

Nodes acquisition of links rate can vary widely, as Adamic-Huberman[Science 287, 2115 (2000)] www-network, and Redner [Euro. Phys. J. B, 4, 131 (1998)] citation-networks and economic-networks measurements ascertain.

BB assign a fitness-parameter η, representing nodes'/vertices'/entities' different-ability to compete for/capture links, from a fitness-parameter distribution $\rho(\eta)$, to account for differences in, generically:

- webpages' contents
- products' quality
- companies' marketing,
- a publications' findings importance.

New-node'/vertex'/entity's interconnection one of its m links to a network's/graph's already-present node/vertex/entity i
probability Π_{i} depends on links-number k_{i} and node/vertex/entity-fitness η_{i} via $\Pi_{i}=\frac{\eta_{i}}{\sum_{l} \eta_{l} k_{l}}$, summarizing BarabasifAlbert-
Jeong [Science 286, 509 (1999); Physica 281A, 69 (2000)] tendency for new-nodes/vertices/entities to preferentially link to higher-k (links-number) nodes/vertices/entities, most simply possible:

- connecting to more-visible websites,
- favoring more-established companies,
- citing more-cited papers,
and with larger node/vertex/entity-fitness η_{i} :
- connecting to better-content websites,
- favoring better-products and better-sales-practices companies,
- citing more-novel-results papers.

Node/vertex/entity-fitness η_{i} and links-number k_{i} jointly determine node/vertex/entity attractiveness and evolution/dynamics.

Crucial "1:1-mapping" to only Bose-gas dominated by only Bose-Einstein quantum-statistics is in several steps:

- (1) assign to each node/vertex/entity an energy ε_{i} determined by its node/vertex/entity-fitness η_{i} via $\varepsilon_{i}=-\frac{1}{\beta} \log \eta_{i}$,
inter-nodes i and j , with respectively: energies ε_{i} and ε_{j}, and fitnesses η_{i} and η_{j}, link corresponds to two non-interactingparticles on energy-levels ε_{i} and ε_{j}. Adding a new node/vertex/entity to a network/random-graph corresponds to adding a new energy-level ε_{i} and 2 m particles. Of these $2 \mathrm{~m}, \mathrm{~m}$ occupy energy-level ε_{i} (corresponding to m outgoing links possessed by node i) versus the other m being distributed among the other energy-levels (representing links pointing to existing m-nodes/vertices/entities), with particle landing on level i probability $\Pi_{i}=\frac{\eta_{i}}{\sum_{l} \eta_{l} k_{l}}$. [deposited particles, forbidden to jump to other energy-levels, are inert].

Each-node/vertex/entity/energy-level added at time t_{i} with energy ε_{i} is characterized by occupation-number $k_{i}\left(\varepsilon_{i}, t, t_{i}\right)$ denoting links-number/particles a node/vertex/entity/energy-level occupies at time t.
Rate at which energy-level/node/vertex/entity ε_{i} acquires new particles/links-number k_{i} is $\frac{\partial k_{i}\left(\varepsilon_{i}, t, t_{i}\right)}{\partial t}=m \frac{e^{-\beta \varepsilon_{i}} k_{i}\left(\varepsilon_{i}, t, t_{i}\right)}{Z_{t}}$ in terms of partition-function $Z_{t} \equiv \sum_{j=1}^{t} e^{-\beta \varepsilon_{j}} k_{j}\left(\varepsilon_{j}, t, t_{j}\right)$.

BB assume each-node/vertex/entity "increases its connectivity" [meaning its topological-connectivity dimension $d_{T}^{C} \equiv(2 \cdot$ genus +1$) \equiv(2 \cdot g+1)$ lower-bound on upper-bounded by geometric-embedding dimension $d_{G}^{E} \equiv d^{s t}=\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)$ lower-bound increase $\quad \Delta d_{T}^{C} \equiv(2 \cdot \Delta$ genus +1$\left.) \equiv(2 \cdot \Delta g+1) \leq D_{F R A C T A L} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)\right]$ by a power-law $k_{i}\left(\varepsilon_{i}, t, t_{i}\right)=m\left(\frac{t}{t_{i}}\right)^{f\left(\varepsilon_{i}\right)}$ in terms on an energy-dependent dynamic-exponent $f(\varepsilon)$.

Randomly-chosen node/vertex/entity-fitness η from node/vertex/entity-fitness - distribution $\rho(\eta)$ causes energy-levels/ nodes/ vertices/entities to be chosen from a causes energy-levels/ nodes/ vertices/entities - distribution $g(\varepsilon)=\beta \rho\left(e^{-\beta \varepsilon}\right) e^{-\beta \varepsilon}$, averaging
over which determines partition-function $Z_{t} \equiv \sum_{j=1}^{t} e^{-\beta \varepsilon_{j}} k_{j}\left(\varepsilon_{j}, t, t_{j}\right)$ as average partition-function
$\left\langle Z_{t}\right\rangle=\int d \varepsilon g(\varepsilon) \int_{1}^{t} d t_{0} e^{-\beta \varepsilon_{i}} k\left(\varepsilon, t, t_{0}\right)=\frac{m}{z} t\left[1+O\left(t^{-\alpha}\right)\right]$ in terms of inverse-fugacity $\frac{1}{z}=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}$ and $\alpha=\min _{\varepsilon}[1-f(\varepsilon)]>0$.

Since fugacity $z=\frac{1}{\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}}>0$ is positive, for any finite-temperature $\beta \neq 0$, BB introduce a chemical-potential
μ as $\quad e^{\beta \mu} \equiv z=\frac{1}{\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}}>0$, i.e. as $\mu \equiv \frac{1}{\beta} \ln z=\frac{1}{\beta} \ln \left[\frac{1}{\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}}\right]>0$ permitting rewriting of
average partition-function $\left\langle Z_{t}\right\rangle=\int d \varepsilon g(\varepsilon) \int_{1}^{t} d t_{0} e^{-\beta \varepsilon_{i}} k\left(\varepsilon, t, t_{0}\right)=\frac{m}{z} t\left[1+O\left(t^{-\alpha}\right)\right]$ and inverse-fugacity
$\frac{1}{z}=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}$ together as $e^{-\beta \mu}=\lim \frac{\left\langle Z_{t}\right\rangle}{m t}$, which self-consistently solves energy-level/node/vertex/entity ε_{i}
acquires new particles/links-number k_{i} acquisition-rate continuum-equation $\frac{\partial k_{i}\left(\varepsilon_{i}, t, t_{i}\right)}{\partial t}=m \frac{e^{-\beta \varepsilon_{i}} k_{i}\left(\varepsilon_{i}, t, t_{i}\right)}{Z_{t}}$ yielding solution of assumed each-node/vertex/entity/ energy-level "connectivity-increase" [meaning itstopological-connectivity dimension $d_{T}^{C} \equiv(2 \cdot$ genus +1$) \equiv(2 \cdot g+1)$ lower-bound on upper-bounded by geometric-embedding dimension $\left.d_{G}^{E} \equiv d^{t}=\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)\right]$ power-law form $k_{i}\left(\varepsilon_{i}, t, t_{i}\right)=m\left(\frac{t}{t_{i}}\right)^{f\left(\varepsilon_{i}\right)}$ with dynamical-exponent $f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$, which combined with $\frac{1}{z}=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{1-f(\varepsilon)}$ yields chemical-potential as solution of $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$.

BB stress the properties of just-above system that make it unsuitable to be an equilibrium Bose-gas:

- particles'/links'-number inertness is a nonequilibrium-feature, versus quantum-gas particles' inter-level/node/vertex/entity jumps causing a temperature-driven equilibrium,
- both eligible energy-levels/nodes/vertices/entities and populating particles/links-number increase linearly in time
["FUZZYICS" (relative)-1=time-(...GLOBALITY...) asymptotic-limit antipode], versus quantum-system fixed system-size ["FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode].

Yet $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$ indicates that in $(t \rightarrow \infty)$ thermodynamic-limit their BB "fitness-model" SoC-tactics "1:1-maps" onto an only Bose-gas obeying only Bose-Einstein quantum-statistics!

Since in an ideal-gas of unit-volume ($v=1$) Huang[Statistical-Mechanics, Wiley (1987)] states a normalization sum-rule $\int d \varepsilon g(\varepsilon) n(\varepsilon)$ in terms of energy-level/node/vertex/entity occupation-number/density-of-states in energy/quantum-statistic $n(\varepsilon)$, BB's just-above derived fitness-model SoC-tactics inspired inert-gas $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$ yields only Bose-Einstein quantum-statistics $n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}-1}$.

Thus BB conclude that their evolving/dynamic-network/random-graph "1:1-maps" onto only Bose-Einstein quantum-statistics, the evolving/dynamic-network/random-graph irreversibility and inertness are resolved by the asymptotic-distribution's stationarity, permitting in $t \rightarrow \infty$ thermodynamic-limit occupation-numbers/link-numbers to obey only Bose-Einstein quantum-statistics.

Bose-Einstein quantum-statistics uniquely admit possibility of Bose-Einstein CONDENSATION.
BB solutions: $k_{i}\left(\varepsilon_{i}, t, t_{i}\right)=m\left(\frac{t}{t_{i}}\right)^{f\left(\varepsilon_{i}\right)},\left\langle Z_{t}\right\rangle=\int d \varepsilon g(\varepsilon) \int_{1}^{t} d t_{0} e^{-\beta \varepsilon_{i}} k\left(\varepsilon, t, t_{0}\right)=\frac{m}{z} t\left[1+O\left(t^{-\alpha}\right)\right]$, and $f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$
can exist only when there exists a chemical-potential satisfying $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$.
But this exhibits a maximum at $\mu=0$, i. e. when $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}<1$ (for given β and $g(\varepsilon)$) there is no solution, a well-known signature of Bose-Einstein CONDENSATION, indicating finite-fraction $n_{0}(\boldsymbol{\beta})$ of particles/links condense into lowest energy-level/node/vertex/entity.

Due to mass-conservation at time t, there are t energy-levels/nodes/vertices/entities populated by 2 mt particles/links, i. e.
$2 m t=\sum_{t_{0}=1}^{t} k\left(\varepsilon_{t_{0}}, t, t_{0}\right)=m t+m t I(\beta, \mu)$, such that, when $I(\beta, 0)=I(\beta, \mu=0)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-(\mu=0))}-1}<1$,
$2 m t=\sum_{t_{0}=1}^{t} k\left(\varepsilon_{t_{0}}, t, t_{0}\right)=m t+m t I(\beta, \mu)$ is replaced by $2 m t=m t+m t I(\beta, \mu)+n_{0}(\beta)$ with $\frac{n_{0}(\beta)}{m t}=1-I(\beta, 0)$.
Lowest energy-level/node/vertex/entity occupancy corresponds to links-number/particles of energy-level/node/vertex/entity with maximal-fitness in their BB SoC-tactics fitness-model. Thus BB conclude that their Bose-Einstein CONDENSATION corresponds to non-zero $n_{0}(\beta)$ emergence represents their evolving/dynamical-networks/random-graphs "winner-takes-all" phenomenon, the fittest energy-level/node/vertex/entity/energy-level acquiring a finite-fraction of links/particles, independent of network-
size/radius/extent/scale! ["FUZZYICS" (relative)-(...GLOBALITY...) asymptotic-limit antipode].
BB then predict existence of three "distinct" phases characterizing (so called) "complex"/random-graphs/networksdynamics/evolution [all equivalently identically "FUZZYICS" (relative)-(...GLOBALITY...) asymptotic-limit antipode!]:

- (a) Scale-free/Invariance ,
["FUZZYICS" (relative)-(...(SCALE-Invariance Symmetry-RESTORING...) asymptotic-limit antipode].
versus
- (b) "Fit-Get-Rich" (FGR),
["FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode].
"versus"
- (c) Bose-Einstein CONDENSATION .
["FUZZYICS" (relative)-(... $\frac{\text { "1" }}{\omega^{1.000 \ldots}}$ - HYPERBOLICITY...) asymptotic-limit antipode].
(more correctly ["FUZZYICS" (relative) $-\left(\ldots \lim _{\# \rightarrow \infty} \frac{" \# "}{\omega^{1.000 \ldots}}=\delta(\omega-0)\right.$ - $\underline{\text { HYPERBOLICITY } . . .) ~ a s y m p t o t i c-l i m i t ~ a n t i p o d e])!~}$

BB's SoC-tactics has blinded them to the reality that all three phases are equivalent, and caused by only $\boldsymbol{E V E N}$-integer degrees-of-freedom/spacetime-dimensionality, via Siegel "FUZZYICS"!!!

BB claim three "distinct"-phases, which the "Parsimony-of-Dichotomy" (PoD)-STRATEGY of Siegel S.P.D. "FUZZYICS" automatically integrates (a) to (c), versus exact-opposite (b), together optimally!:

- (a) Scale-free/Invariance (so called) "phase":
[Siegel S.P.D. "FUZZYICS" (relative)-(...GLOBALITY...) asymptotic-limit antipode on different S.P.D. "FUZZYICS" logic-levels!: here for (a) both the equivalent]:
when all-nodes/vertices/entities/energy-levels have same "fitness", i. e. homogeneity, i. e. [Siegel S.P.D. "FUZZYICS" (relative)-(...GLOBALITY...) asymptotic-limit antipode on different S.P.D. "FUZZYICS" logic-levels!: here for (a) both the equivalent $]$: , i. e.

$$
\rho(\eta)=\delta(\eta-1) \text { i.e. }[g(\varepsilon)=\delta(\varepsilon)] \text {, their "fitness"-model "first-mover-wins" }
$$

SoC-tactics reduce to their [Science, 286, 509 (1999); Physica 281A, 69 (2000)]
Scale-free/Invariance model SoC-tactics, introduced to account for diverse-systems power-law connectivity-distribution!:

- www [Albert-Jeong-Barabasi, Nature (London) 401, 130 (1999), Albert-Barabasi, Phys. Rev. Lett. 85, 5234 (2000)],
- coauthorship-networks[Newman, con.-mat./0011144; Barabasi-Jeong-Neda-Ravasz-Schubert-Vicsek, cond.-mat./0104162],
- Internet[Faloutsos x 3,, Comput. Commun. Rev. 29, 251 (1999); Barabasi-Albert-Jeong, Nature (London) 406, 378 (2000)],
- citation-networks[Redner, Euro. Phys. B4, 131 (1998)].

Oldest-nodes/vertices/entities/lowest energy-levels acquire most-links/particles, (historical-precedence), "first-mover-wins" SoCtactics, has $f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$ predicting $f(\varepsilon)=\frac{1}{2}$, i. e. via $k_{i}\left(\varepsilon_{i}, t, t_{i}\right)=m\left(\frac{t}{t_{i}}\right)^{f\left(\varepsilon_{i}\right)}$, all nodes exhibit connectivity-increase

[topological-connectivity dimensionality lower-bound increase:

$$
\Delta d_{T}^{C} \equiv(2 \cdot \Delta \text { genus }+1) \equiv(2 \cdot \Delta g+1) \leq D_{F R A C T A L} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)
$$

of form:
$\Delta d_{T}^{C}(t) \equiv\left(2 \cdot \Delta\right.$ genus $\left.\sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \leq D_{\text {FRACTAL }} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)$,
i. e.

$$
\left.\Delta d_{T}^{C}(t) \equiv\left(2 \cdot \Delta g e n u s \sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \sim t^{1 / 2}\right]
$$

i. e. the oldest-nodes/vertices/entities/energy-levels with the smaller t_{i} have the larger k_{i}.

But the oldest and "richest" node/ vertex/ entity/energy-level is not the absolute winner, since its share of links/particles $\frac{k_{\max }(t)}{m t} \sim \frac{1}{t^{1 / 2}} \equiv t^{-1 / 2}$ decays to zero in the thermodynamic- $(t \rightarrow \infty)-\operatorname{limit}: \lim _{t \rightarrow \infty} \frac{k_{\max }(t)}{m t} \sim \lim _{t \rightarrow \infty} \frac{1}{t^{1 / 2}} \equiv \lim _{t \rightarrow \infty} t^{-1 / 2}=0$, creating a coexisting continuous-hierarchy of large-nodes/vertices/entities/energy-levels, such that the probability to have a [Barabasi -AlbertJeong: Science 286, 509 (1999); Physica 281A, 69 (2000); Dorogovisev-Mendes-Samukhin, Phys. Rev. Lett. 85, 4633 (2000)] k-links/particles per node/vertex/entity/energy-level, the "degree-distribution" exhibits a power-law decay: $P(k) \sim \frac{1}{k^{3}} \equiv k^{-3}$, wherein: rewiring, ageing, and other local-processes [Siegel S.P.D. "FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode] can modify scaling-exponents or introduce [Albert-Barabasi, Phys. Rev. Lett. 85, 5234 (2000); Dorogovisev-Mendes-Samukhin, Phys. Rev. Lett. 85, 4633 (2000); Amaral-Scala-Barthelemy -"Stanley", Proc. Nat. Acad. Sci. (U.S.A) 97, 11,149 (2000); Krapivsky-Redner-Leyvraz, Phys. Rev. Lett. 85, 4629 (2000); Krapivsky-Redner, cond.-mat/0011094] links/particles-number k-cutoffs, versus leaving their claimed (so called) "phase" unchanged.
versus

- (b) "Fit-Get-Rich" (FGR) (so called) "phase":
[Siegel S.P.D. "FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode on different S.P.D. "FUZZYICS" logic-levels!]:
supposedly distinct "versus" Scale-free/Invariance(so called) "phase" (so called buzzword!) "emerges" when nodes/vertices/entities/energy-levels possess different-fitnesses, i. e. [Siegel S.P.D. "FUZZYICS" (relative)-[LOCALITY] asymptoticlimit antipode on different S.P.D. "FUZZYICS" logic-levels], i. e. heterogeneity, and an equation exists
$I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$ having a solution. $\frac{k_{\max }(t)}{m t} \sim \frac{1}{t^{1 / 2}} \equiv t^{-1 / 2}$ which indicates that each node/vertex/ entity/energy-level has a connectivity-increase in time:
[Siegel S.P.D. root-cause ultimate-origin at $\mathbf{0}$. Dimensionality/Degrees-of-Freedom Logic-Level O.]
topological-connectivity dimensionality lower-bound increase:
$\Delta d_{T}^{C} \equiv(2 \cdot \Delta$ genus +1$) \equiv(2 \cdot \Delta g+1) \leq D_{\text {FRACTAL }} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)$
of form:
$\Delta d_{T}^{C}(t) \equiv\left(2 \cdot \Delta\right.$ genus $\left.\sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \leq D_{\text {FRACTAL }} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)$,
i. e.

$$
\Delta d_{T}^{C}(t) \equiv\left(2 \cdot \Delta \text { genus } \sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \sim t^{1 / 2}
$$

i. e. the oldest-nodes/vertices/entities/energy-levels with the smaller t_{i} have the larger k_{i}]
but the [Bianconi-Barabasi, Europhys. Lett. (to be pub.)] dynamic-exponent is larger for highest-fitness nodes/vertices/entities/ energy-levels, allowing for [Adamic-Huberman, Science 287, 2115 (2000)] fitter-nodes/vertices/entities/energy-levels to join the network at some later time, and to surpass the older but less-fit nodes/vertices/entities/energy-levels by acquiring links/particles at higher-rates, this claimed (so called) "phase" describing their [BB] "get-rich-quick" phenomenon in which, with time, the fitter prevails. But, even though there exists a clear-winner similar to their Scale-free/Invariance(so called) "phase", their fittest-
node's/vertex's/entity's/energy-level's share of all links/particles decreases to zero in thermodynamic- $(t \rightarrow \infty)$-limit.
Since $f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}<1$, the fittest-node's/vertex's/entity's/energy-level's relative-connectivity decreases as
$\frac{k\left(\varepsilon_{\min }, t\right)}{m t} \sim t^{f\left(\varepsilon_{\text {min }}\right)-1}$, such competition again leading to a hierarchy of a few larger-"hubs" accompanied by many less-connected nodes/vertices/entities/energy-levels.
[Siegel S.P.D. "FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode on different S.P.D. "FUZZYICS" logic-levels!]. such that [Bianconi-Barabasi, Europhys. Lett. (to be pub.)] $P(k ; \gamma[\rho(\eta)]) \sim \frac{1}{k^{\gamma[\rho(\eta)]}} \equiv k^{-\gamma[\rho(\eta)]}$ holds.
"versus"

- (c) Bose-Einstein CONDENSATION (so called) "phase":
["EUZZYICS" (relative)-(... $\frac{"^{1 "}}{\omega^{1.000 . . .}}$ - $\underline{\text { HYPERBOLICITY } \ldots \text {...) asymptotic-limit antipode]. }}$
(more correctly ["EUZZYICS" (relative)-(... $\lim _{\# \rightarrow \infty} \frac{\text { "\#" }}{\boldsymbol{\omega}^{1.000 . . .}}=\delta(\omega-0)$ - $\underline{\text { HYPERBOLICITY...) asymptotic-limit antipode])! }}$
$I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}<1$ inequality precludes any (BB) solutions:
$k_{i}\left(\varepsilon_{i}, t, t_{i}\right) \neq m\left(\frac{t}{t_{i}}\right)^{f\left(\varepsilon_{i}\right)},\left\langle Z_{t}\right\rangle=\int d \varepsilon g(\varepsilon) \int_{1}^{t} d t_{0} e^{-\beta \varepsilon_{i}} k\left(\varepsilon, t, t_{0}\right) \neq \frac{m}{z} t\left[1+O\left(t^{-\alpha}\right)\right]$, and $f(\varepsilon) \neq e^{-\beta(\varepsilon-\mu)}$,
equalities could only exist only when there exists a chemical-potential satisfying $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}=1$, versus here
this exhibits a maximum at $\mu=0$, i. e. when $I(\beta, \mu)=\int d \varepsilon g(\varepsilon) \frac{e^{-\beta \varepsilon}}{e^{\beta(\varepsilon-\mu)}-1}<1$ (for given β and $g(\varepsilon)$) there is no solution, a well-known signature of Bose-Einstein CONDENSATION, indicating finite-fraction $n_{0}(\beta)$ of particles/links condense into lowest energy-level/node/vertex/entity.

Inter-node/vertex/entity/energy-level competition for links/particles favors largest-fitness - nodes/vertices/entities/energylevels, those attracting a finite-fraction $\left[n_{0}(\beta)\right]$ of links/particles-number. BB interpret this to mean that their Bose-Einstein CONDENSATION (so called) "phase" "predicts" a "real" "winner-take-all" phenomenon, wherein the fittest-node/vertex/entity/ energy-level is not only the largest, but that which also acquires a finite-fraction of links/particles-number $\frac{n_{0}(\beta)}{m t}=1-[I(\beta, 0)<1]>0$ despite continual-"emergence"/acquisition of new nodes/vertices/entities/energy-levels that compete for new links/particles acquisition.

BB claim to demonstrate a "FGR"- (so called) "phase" to Bose-Einstein CONDENSATION (so called) "phase" phase-transition critical-phenomenon.

But, with identification of BB "FGR"- (so called) "phase" as ["FUZZYICS" (relative)-[LOCALITY] asymptotic -limit antipode].
versus
BB Bose-Einstein CONDENSATION (so called) "phase" as
["EUZZYICS" (relative)-(... $\frac{\text { "1" }}{\omega^{1.000 . .}}$ - $\underline{\text { HYPERBOLICITY } \ldots \text {...) asymptotic-limit antipode]. }}$
(more correctly ["黄UZZYICS" (relative)-(... $\lim _{\# \rightarrow \infty} \frac{" \# "}{\omega^{1.000 . . .}}=\delta(\omega-0)$ - $\underline{\text { HYPERBOLICITY }}$...) asymptotic-limit antipode])!,
But BB's claimed ostensibly-disparate (so called) phases:

- (a) Scale-free/Invariance ,
["FUZZYICS" (relative)-(...(SCALE-Invariance Symmetry-RESTORING...) asymptotic-limit antipode].
versus
- (b) "Fit-Get-Rich" (FGR),
["FUZZYICS" (relative)-[LOCALITY] asymptotic-limit antipode].
versus
\bullet (c) Bose-Einstein CONDENSATION .
["EUZZYICS" (relative)-(... $\frac{\text { "1" }}{\omega^{1.000 . .}}$ - HYPERBOLICITY...) asymptotic-limit antipode],
(more correctly ["EUZZYICS" (relative)-(... $\lim _{\# \rightarrow \infty} \frac{" \# "}{\omega^{1.000 . .}}=\delta(\omega-0)$ - $\underline{\text { HYPERBOLICITY...) asymptotic-limit antipode])! }}$

but/versus

- (a) Scale-free/Invariance,
["FUZZYICS" (relative)-(...(SCALE-Invariance Symmetry-RESTORING...) asymptotic-limit antipode],
at the S.P.D. "FUZZYICS" logic-levels:

I. Radius/Extent/Scale/... Logic-Level I.

and
IV. Symmetries/Invariances/Noether's-Theorem Conservation-Laws Logic-Level IV. star of possibilities
(most especially in particular here the:

SCALE-Invariance Symmetry-Restoring / Noether's-Theorem SCALE-4-Current Conservation-Law Logic-Level IV.)

exact equivalence to

- (c) Bose-Einstein CONDENSATION
["FUZZYICS" (relative)-(... $\frac{\text { "1" }}{\omega^{1.000 . . . ~}}$ - - HYPERBOLICITY...) asymptotic-limit antipode],
(more correctly ["FUZZYICS" (relative) $-\left(\ldots \lim _{\# \rightarrow \infty} \frac{" \# "}{\omega^{1.000 \ldots}}=\delta(\omega-0)\right.$ - $\underline{\text { HYPERBOLICITY } \ldots \text {) asymptotic-limit antipode] })!, ~}$ at the S.P.D. "FUZZYICS" logic-levels:

II. Power-Spectrum Logic-Level II. and
 III. Critical-Exponents Logic-Level III.

Thus BB's (so called) phase-transition critical-phenomenon is seen to be simply a restatement of the Siegel [Symp. on Fractals,..., M. R. S. Fall Mtg., Boston (1989)-5-papers!; I. B. M. (a.k.a. Reich-III) Conf. On Computers and Mathematics, Stanford (1986); Schrodinger Centenary Symp., Imperial College, London (1987)] "automatic-mathematical-catastrophe" ("AUTMATHCAT") CROSSOVER between the two asymptotic-limit antipodes, most easily seen in S.P.D. "FUZZYICS" tabular/list-format analysis!: (below)

BB demonstrate this "FRG" (so called) phase to Bose-Einstein CONDENSATION (so called) "phase" by assuming an energy-(fitness)-distribution class $g(\varepsilon)=C e^{\theta}$ follows, with free-parameter θ and energies/fitnesses chosen such that $\varepsilon \in\left(0, \varepsilon_{\max }\right)$, with normalization giving $C=\frac{(\theta+1)}{\varepsilon_{\max }^{\theta+1}}$, yielding a Bose-Einstein CONDENSATION criterion/condition :

$$
\frac{(\theta+1)}{\left(\beta \varepsilon_{\max }\right)^{\theta+1}} \int_{\beta \varepsilon_{\min }(t)}^{\beta \varepsilon_{\max }(t)} \frac{x^{\theta}}{e^{x}-1} d x<1
$$

where $\varepsilon_{\text {min }}(t)$ is the lowest-energy-level/fittest-node/vertex/entity/energy-level existing in the network at time t.
Extension of integration-limits respectively to 0 and ∞ BB claim to find critical-temperature's lower-bound:
$T_{B E}=\frac{1}{\beta_{B E}}>\frac{\varepsilon_{\max }}{[\zeta(\theta+1) \Gamma(\theta+2)]^{1 /(\theta+1)}} \equiv \varepsilon_{\max }[\zeta(\theta+1) \Gamma(\theta+2)]^{-1 /(\theta+1)}$

BB's numerical-simulation SoC-tactics reveals a chemical-potential μ indicating a sharp-transition from positive $\mu>0$ to negative $\mu<0$ corresponding to "their" predicted phase-transition critical-phenomenon between "FGR" (so called) "phase" to Bose-Einstein CONDENSATION (so called) "phase", i. e. between most-connected node's/vertex's/entity's/energy-level's relative occupation-number as a function of temperature. BB claim to find time-independence of ratio
$\left[\frac{k_{\max }(t)}{m t}\right]_{\in \text { BOSE-EINSTEIN CONDENSATION }}=\frac{k_{\max }}{m t}$ indicating that largest-node/vertex/entity/ energy-level maintains a finite-fraction of total-links/particles-number even as network continues to evolve/expand temporally, a signature of Bose-Einstein CONDENSATION!

Versus for $T<T_{B E}=\frac{1}{\beta_{B E}}>\frac{\varepsilon_{\max }}{[\zeta(\theta+1) \Gamma(\theta+2)]^{1 /(\theta+1)}} \equiv \varepsilon_{\max }[\zeta(\theta+1) \Gamma(\theta+2)]^{-1 /(\theta+1)}$ the most-connected node/vertex/entity/energy-level gradually loses its share of links, $\left[\frac{k_{\max }(t)}{m t}\right] \sim t^{?}$.

Since real-networks exhibit temperature T-independent fitness-distribution $\rho(\eta)$, thus real-networks' occupancy of either BB's "FGR (so called) "phase" or/versus BB's Bose-Einstein CONDENSATION (so called) "phase" is similarly temperature T-independent. BB give as example, choosing $\rho(\eta)=(\lambda+1)(1-\eta)^{\lambda}$ and $\lambda>\lambda_{\text {BOSE-EINTEIN CONDENSATION }}=1$, BB find network BoseEinstein CONDENSATION with temperature T vanishing from all topologically-relevant quantities.
[in Siegel S.P.D. "FUZZYICS", this would mean that:
[topological-connectivity dimensionality lower-bound increase:

$$
\begin{aligned}
& \Delta d_{T}^{C} \neq \Delta d_{T}^{C}(T) \equiv(2 \cdot \Delta \text { genus }+1) \neq(2 \cdot \Delta \operatorname{genus}(T)+1) \equiv(2 \cdot \Delta g+1) \neq(2 \cdot \Delta g(T)+1) \\
& \leq D_{\text {FRACTAL }} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)
\end{aligned}
$$

of form:

$$
\begin{aligned}
& \Delta d_{T}^{C}(t) \neq \Delta d_{T}^{C}(t ; T) \equiv\left(2 \cdot \Delta g \text { enus } \sim t^{1 / 2}+1\right) \neq\left(2 \cdot \Delta g e n u s(T) \sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \neq\left(2 \cdot \Delta g(T) \sim t^{1 / 2}+1\right), \\
& \leq D_{\text {FRACTAL }} \leq d^{s t} \equiv\left(d^{s}+d^{t}\right)=\left(d^{s}+1\right)
\end{aligned}
$$

i.e.

$$
\Delta d_{T}^{C}(t) \neq \Delta d_{T}^{C}(t, T) \equiv\left(2 \cdot \Delta g e n u s \sim t^{1 / 2}+1\right) \neq\left(2 \cdot \Delta g e n u s(T) \sim t^{1 / 2}+1\right) \equiv\left(2 \cdot \Delta g \sim t^{1 / 2}+1\right) \neq\left(2 \cdot \Delta g(T) \sim t^{1 / 2}+1\right) \sim t^{1 / 2}
$$

].

Thus BB argue that temperature T is only a simple control-parameter in their SoC-tactics model, (rooted in their technically-simpler choice of defining $g(\varepsilon) \neq g(\varepsilon, T)$, but in their Fig. 2b inset, changing θ iso-T still does this, so T is not necessary), but whose "tuning" performs their phase-transition critical-phenomenon
[Siegel S.P.D. "AUTMATHCAT" CROSSOVER, but root-cause ultimate-origin (a la [Menger's, Dimensiontheorie, Teubner (1929)] dimension-theory) 0. Dimensionality/ Degrees-of-Freedom Logic-Level 0. is decidedly not "just a simple control-parameter", but the root-cause ultimate-origin!!!!].

BB close cryptically by referring to [Krapivsky-Redner-Leyvraz Phys. Rev. Lett. 85, 4629 (2000); P. Krapivsky and S. Redner, cond.-mat/0011094] prediction of a gelation-phenomenon for "nonlinear preferrential attachment" $\Pi(k) \sim k^{v>1}$. In comparing this "gelation" vs. Bose-Einstein CONDENSATION in single-node/vertex/entity/energy-level success of links/particles-capture, BB conclude cryptically that Bose-Einstein CONDENSATION can exist only if fitness exists!(?)
"EUREKA" and "SHAZAM" For Artificial Neural-Networks' via A-NN BRILLOUIN-IZATION / FOURIER-IZATION (BoANN) /(FoANN): BOSE-EINSTEIN CONDENSATION of "BOSE-EINSTEIN MACHINE" to Optimize Optimization-Problems Optimally (OOPO) "NIT-PICKING" CONTROL For the Right-Reasons via "FUZZYICS" S.P.D. "INEVITABILITY -WEB" AUTOMATICALLY with OPTIMALITY Efficiency VIA QUANTUM-STATISTICS DICHOTOMY PARSIMONY-of-DICHOTOMY (PoD)-STRATEGY versus Hobbling Sigmoidal Switching-Function Crutch "Boltzmann-Machine" "SimulatedAnnealing" INefficiency Useless Slow/Costly/Memory-Hogging Brute-Force Flailing-Away "Specificity-of-Complexity" (SoC)-Tactics: Brillouin-ization (BoANN/ Fourier-ization(FoANN) /Bose-Einstein-ization (Condensation) (B-E-CoANN) of Artificial-Neural-Networks

Artificial neural-networks' (A-NN's) Achilles'-heel, the wrong sigmoidal switching-function, via "EUREKA" + "SHAZAM" softwares, without any radial-basis -functions, can be made to undergo "noise-induced/driven phase-transitions (NITs) which permit control via "NIT-picking" to effect forced quantum-tunneling to global-minimum (if such exists) via " Bose-Einstein CONDENSATION" to automatically optimize optimization-problems optimally (OOPO) with optimality via "FUZZYICS"" Synergetics Paradigm \& Dichotomy (S.P.D.) "INEVITABILITY_-WEB" list-format analysis!

Fuzzy-logic/physics "FUZZYICS"" "fuzzycity" Optimizing Optimization-Problems Optimally (OOPO) of neural-networks (A-N-Ns) Via quantum-statistics crossover equivalence to switching-function sigmoidal $\rightarrow \boldsymbol{A n t i}$-sigmoidal crossover equivalence to (so called) "noise" power-spectrum crossover "Noise-'Induced'/ 'Driven'-Phase-Transitions" (NIT's) vast-acceleration control via "NITPicking": "Eureka" and "Shazam" A-N-N Bose-Einstein Condensation AUTOMATIC OPTIMALITY!

Siegel[Symp. on Fractals, Scaling,..., MRS Fall Mtg., Boston (1989)-5-papers !; I. B. M.(a.k.a. "Reich-III") Conf. On Computers and Mathematics, Stanford (1986); J. Noncryst. Sol. 40, 453 (1980); Aristotle Birthday Symposium on Mechanics and Physics, Thessoloniki (1990); Bull. A. P. S. March Mtgs.: Anaheim (1990); Indianapolis (1992);...] S.P.D. "FUZZYICS" automatically with optimality is, in listformat:

SYNERGETICS PARADIGM \& DICHOTOMY(SPD) "COMMON-FUNCTIONING-PRINCIPLE" PARSIMONY-of-DICHOTOMY (POD)-STRATEGY DIMENSIONALITY-DOMINATION (DD)INEVITABILITY

ROOT-CAUSE ULTIMATE-ORIGIN

(0.$)$
DIMENSIONALITY/ DEGREES-of-FREEDOM LEVEL-0. LOGIC:

AUTMATHCAT
$\mathrm{d}-\mathrm{o}-\mathrm{f}=\mathrm{d}^{\text {st }}=\underline{\text { ODD }}$-INTEGER
<------DIM-CAT------>> EVEN-INTEGER $=d^{\text {st }}=\mathrm{d}-\mathrm{o}-\mathrm{f}$
CROSSOVER
via
INTERMEDIATE
CONTINUOUS
INTERPOLATING
FRACTIONAL
FRACTAL-DIMENSIONALITY
UNCERTAINTY
FLUCTUATIONS
$\mathrm{d}^{\mathrm{st}}=\underline{\text { ODD }}-\mathrm{Z}<\mathrm{D}^{\mathrm{st}}<\underline{\text { EVEN }}-\mathrm{Z}=\mathrm{d}^{\text {st }}$
cau \Downarrow ses
(I.)
EXTENT/SCALE/RADIUS
LEVEL-I. LOGIC:
(relative)
[BOUNDARYFUL]=[LOCALITY]
\{Kallen-Lehmann
\&/\|
AUTMATHCAT
<------DIM-CAT------->
(relative)
$(\ldots$ GLOBALITY...) $=(. . . B O U N D A R Y \underline{L E S S} . .)$.
CROSSOVER
\&/||
representation-equivalence\}
cau $\Downarrow_{\text {ses }}$
representation-equivalence)
(II.)

POWER-SPECTRUM
["1"/ ω^{0}-WHITE/
FLAT/FUNCTIONLESS]
\&/II

> | (III.) |
| :--- |
| CRITICAL-EXPONENT |
| LEVEL-III.LOGIC: |

$\mathrm{n}=0$
\Uparrow
\Downarrow

```
<------DIM-CAT-------> CROSSOVER
```

AUTMATHCAT

AUTMATHCAT
<------DIM-CAT-------> CROSSOVER
\Uparrow
\Downarrow

DIMENSIONALITY
DEGREES-of-FREEDOM INDEPENDENT

ALSO
ROOT-CAUSE
ULTIMATE-ORIGIN
(IV.)

NOETHER'S - THEOREM :
CONTINUOUS-LIE-GROUP
SCALE-INVARIANCE SYMMETRY LEVEL-IV.LOGIC:

SCALE - INVARIANCE
SYMMETRY - RESTORING
\Uparrow
causes
\Downarrow

$$
\begin{aligned}
& \partial_{\mu} J_{\text {SCALE }}=\mathbf{0} \\
& \underline{\text { SCALE-4-CURRENT }} \\
& \text { 4-[CONVERGENCE] } \\
& \text { 4-[CONSERVATION] }
\end{aligned}
$$

whose frequency-derivative defines at least necessary-condition for socalled "complexity" as Noether'stheorem SCALE-4-current 4CONvergence/ CONSERVATION: $(\mathrm{d} / \mathrm{d} \omega)\left[\left[\partial_{\mu}{ }^{\mathrm{J}}{ }^{\text {SCALE }}=0\right](\omega)\right]=1 / \omega$ $=($ for arbitrary base $)=" 1 " / \omega$
(..." $1>/ \omega^{1.000 \ldots}$ HYPERBOLICITY...) whose frequency-integral defines at least necessarycondition for so-called "complexity" as Noether's-theorem $\underline{\boldsymbol{S C A L E}}$-4-current 4CONvergence /CONSERVATION:
$(\mathrm{d} / \mathrm{d} \omega)\left[\left[\partial_{\mu}{ }^{\mathrm{J}} \underline{\text { SCALE }}=\mathbf{0}\right](\omega)\right]=1 / \omega=($ for arbitrary base $)=" 1 " / \omega$
\&/||

$$
\mathrm{n}=1.000 . . .
$$

\Uparrow

\Downarrow

SCALE - INVARIANCE SYMMETRY - BREAKING

```
        \Uparrow
            causes
                \Downarrow
            0\not= \mp@subsup{\partial}{\mu}{\prime}\mp@subsup{J}{\underline{SCALE}}{\mu}
        SCALE-4-CURRENT
        4-(... DIVERGENCE...)
4-(...NON-CONSERVATION...)
```


DIMENSIONALITY

 \[$$
\begin{aligned}
& \frac{\text { NOETHER'S - THEOREM: }}{\text { CONTINUOUS-LIE-GROUP }} \\
& \frac{\text { SYMMETRIES-SET }}{\text { LEVEL-IV. LOGIC }(S)}:
\end{aligned}
$$
\]
 \section*{NOETHER'S - THEOREM:
 \section*{NOETHER'S - THEOREM: CONTINUOUS-LIE-GROUP CONTINUOUS-LIE-GROUP SYMMETRIES-SET SYMMETRIES-SET LEVEL-IV. LOGIC(S): LEVEL-IV. LOGIC(S):
 \qquad}

SYMMETRY - RESTORINGS

-SET

\Uparrow
causes
\Downarrow
$\left\{\partial_{\mu} J^{\mu}{ }^{\mu}=0\right\}-\underline{S E T}$
\{ ...-4-CURRENTS $\}$-SET
\{4-[CONVERGENCES]\}-SET
\{4-[CONSERVATIONS]\}-SET

$$
\begin{gathered}
\text { DEGREES-of-FREEDOM - } \\
\text { INDEPENDENT } \\
\text { ALSO } \\
\text { ROOT-CAUSE } \\
\text { ULTIMATE-ORIGIN } \\
\text { (V.) } \\
\underline{\text { STAR-\{SET\} }} \\
\underline{O F} \\
\text { OTHER-POSSIBLE }
\end{gathered}
$$

$<-------C R O S S O V E R S--------\gg$	SYMMETRY - BREAKINGS
$-\underline{S E T}$	

-SET
\Uparrow
causes
\Downarrow
$\left\{0 \neq \partial_{\mu} J^{\mu} \ldots\right\}$-. $\underline{\text { SET }}$
\{..-4-CURRENTS $\}$-SET
\{4-(... DIVERGENCES...$)\}$-SET
$\{4-(. .$. NON-CONSERVATIONS....) $\}$-SET
[fluctuation-dissipation theorem-equivalent] noise \cong generalized-susceptibility $[\chi(\omega)=\mathrm{d}($ OUTPUT $) / \mathrm{d}($ INPUT $)=\mathrm{d}($ EFFECT or RESULT)/d(CAUSE)] power-spectrum qualitative-type functional-form and quantitative critical-exponent "automatic-mathematical-catastrophe" (AUTMATHCAT) "dimensionality-catastrophe" (DIM-CAT) crossover second-order phasetransition critical-phenomenon.
[the Kallen-Lehmann representation-equivalence, reviewed succinctly by Bjorken \& Drell, are that extant measures of asymptotic-limit antipodes of the PARSIMONY-of-Dichotomy (relative) [LOCALITY] $=$ [BOUNDARYFUL] versus (relative) $(\ldots$ BOUNDARYLESS...$)=(\ldots$ GLOBALITY...$)$ propagators \cong Green's-functions \cong diffusivity $\cong \ldots$ are equivalent to extant measures of asymptotic-limit antipodes of the PARSIMONY-of-Dichotomy (relative) ["l"/ ω^{0}-WHITE/FLAT/FUNCTIONLESS] versus (relative) (..." $1 / / \omega^{1.000 \ldots-F L I C K E R ~ H Y P E R B O L I C I T Y . . .): ~\{f l u c t u a t i o n-d i s s i p a t i o n ~ t h e o r e m-e q u i v a l e n t ~\} ~ n o i s e ~} \cong$ generalized-susceptibility power-spectrum as complex-functions of complex-variable $\omega=\omega^{\prime}+i \omega^{\prime \prime}$ in first even-integer criticaldimensionality complex-plane C in their pure-mathematics analyticity].

QUANTUM-STATISTICS DICHOTOMY

Siegel[Schrodinger Centenary Symposium, Imperial College, London (1987); The Copenhagen Interpretation Fifty Years After The Como Lecture, Joensuu (1987); Bull. A. P. S. March Mtgs.: Anaheim (1990); Indianapolis (1992);...] manifestly-demonstrated, for quantum-statistics/NWB-law Dichotomy, generic: Takagi[Prog. Theo. Phys. Suppl. 88, 1 (1986)]-Oguri[Phys. Rev. (1985)]Brout[Colloquium, U. C. Berkeley (1986)]-Susskind[Colloquium, U. C. Berkeley (1986)]- ...
$1 /\left[\mathrm{e}^{\hbar \omega / \mathrm{k}_{\mathrm{B}} \mathrm{T}}-(-1)^{\left(\mathrm{d}^{\mathrm{st}}+2 \cdot \operatorname{spin}\right)}\right]=1 /\left[\mathrm{e}^{\hbar \omega / k^{B} T}-(-1)^{\mathrm{D}(\notin \mathrm{Z})}\right]$ dimensionality-dependent/dominated (DD)-INEVITABILITY, in SPD "CFP" PoD-STRATEGY (DD)-INEVITABILITY list-format:

OUANTUM-STATISTICS DICHOTOMY
[D. Lichtenstein and M. Rubenstein, J. Math. Phys. (~1966)]
Takagi-Oguri-Brout-Susskind-...

$$
\begin{aligned}
& 1 /\left[\mathrm{e}^{\hbar \omega / \mathrm{k}_{\mathrm{B}} \mathrm{~T}}-(-1)^{\left(\mathrm{d}^{\mathrm{t}}+2 \text { spin }\right)}\right]= \\
& 1 /\left[\mathrm{e}^{\hbar \omega / k_{B} T}-(-1)^{\mathrm{D}(\notin \mathrm{Z})}\right]
\end{aligned}
$$

GENERIC
DIMENSIONALITY-
DEPENDENT/DOMINATED
QUANTUM-STATISTICS
DD-INEVITABILITY

FERMI-DIRAC (FERMIONS):

AUTMATHCAT
<-------DIM-CAT------->
CROSSOVER
via
$\begin{array}{lcc}1 /\left[\mathrm{e}^{\hbar \omega / k_{B} T}-(-1)^{\mathrm{D}=\mathrm{ODD-Z}}\right] \cong & 1 /\left[\mathrm{e}^{\hbar \omega / k_{B} T}-(-1)^{\mathrm{D}(\notin \mathrm{Z})}\right] \cong & 1 /\left[\mathrm{e}^{\hbar \omega / k_{B} T}-(-1)^{\mathrm{D}=\mathrm{EVEN}-\mathrm{Z}}\right] \cong \\ 1 /\left[\mathrm{e}^{\hbar \omega / k_{B} T}+1\right]\end{array}$

$$
\begin{gathered}
\downarrow \\
\text { via } \\
\text { Euler-formula } \\
e^{i \pi}=-1
\end{gathered}
$$

$\mathrm{e}^{\hbar \omega / k_{B} T}$ Taylor/power-series expansion

BOSE-EINSTEIN (BOSONS):

ELLIPSE
in infra-red-($\left.\hbar \omega \ll k_{B} T\right)$-limit

$$
\downarrow
$$

$$
\begin{gathered}
\downarrow \\
1 /\left[+1+\left[1+\left(\hbar \omega / k_{B} T\right)+\ldots\right]\right] \cong \\
\downarrow \\
1 /\left[+1+\left[1+\left(\hbar \omega / k_{B} T\right)+\ldots\right]\right] \cong
\end{gathered}
$$

$$
1 /\left[e^{\hbar \omega / k_{B} T}-e^{i \pi D}\right] \cong
$$

deMoivre-formula:

$$
\begin{gathered}
\downarrow \\
1 /\left[2+\left(\hbar \omega / k_{B} T\right)+\ldots\right] \cong 1 / 2 \cong \\
\downarrow \\
{\left[" 1 " / \omega^{0}-W H I T E / F L A T\right]}
\end{gathered}
$$

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$$
\begin{gathered}
1 /\left[e^{\hbar \omega / k_{B} T}-(\cos (\pi D)+i \sin (\pi D))\right] \cong \\
\downarrow
\end{gathered}
$$

via

POWER-SPECTRUM

$$
\mathrm{e}^{\hbar \omega / k_{B} T} \text { Taylor/power-series }
$$

expansion

$$
\text { in infra-red- }\left(\hbar \omega \ll k_{B} T\right) \text {-limit }
$$

with
$\mathrm{n}=0$
CRITICAL-EXPONENT

$$
\begin{gathered}
\downarrow \\
1 /\left[1+\left(\hbar \omega / k_{B} T\right)+\ldots\right. \\
\quad(\cos (\pi D)+i \sin (\pi D))] \cong
\end{gathered}
$$

GEOMETRICALLY
 RECTANGLE
 HOMOTOPY

$$
\begin{array}{r}
1 /\left[\left[1+\left(\hbar \omega / k_{B} T\right)+\ldots+\cos (\pi D)\right]+\right. \\
+i \sin (\pi D)] \cong
\end{array}
$$

to
COMPLEX

QUANTUM-STATISTICS

$\mathrm{e}^{\hbar \omega / k_{B} T}$ Taylor/power-series
expansion in infra-red- $\left(\hbar \omega \ll k_{B} T\right)$-limit $1 /\left[-1+\left[1+\left(\hbar \omega / k_{B} T\right)+\ldots\right]\right] \cong$ $1 /\left(\hbar \omega / k_{B} T\right)=\left(k_{B} T / \hbar\right) \cdot 1 / \omega \cong$

POWER-SPECTRUM
with
$\mathrm{n}=\underline{1.000 \ldots}$
CRITICAL-EXPONENT

GEOMETRICALLY
HYPERBOLA
obeying equation:

manifestly-
demonstrating that quantum-statistics Dichotomy follows exactly SPD "CFP" (PoD)-STRATEGY (DD)-INEVITABILITY!

ARTIFICIAL-NEURAL-NETWORKS (A-NN's): OPTIMIZING OPTIMIZATION-PROBLEMS OPTIMALLY (OOPO)

"Engineering" by-rote brute-force on-node hobbling sigmoidal switching-function crutch implementation leads to "Boltzmannmachine" "simulated-annealing" inefficiency useless unimplementable-hardware slow/costly/memory-hogging flailing-away software "specificity-of-(so-called) 'complexity""(SoC)-tactics with little/no all-important understanding of meaning !!!

All-important understanding of meaning starts with:

- (1) realization that an A-NN is a statistics:

Lippmann[Lincoln Labs. Repts. (~1978- ~1982)] ab initio first review of artificial neural-networks (A-NN's) defined a neural-network as a "statistics" (hence amenable to Newcombe(1881)-Weyl(1916)-Benford(1938)-Kac(1955) inter-digit statistical (on-average) correlations $P(d)=\log _{10}\left(1+\frac{1}{d}\right)$ analysis, but this is not our subject here yet).

- (2) realization that an A-NN with "engineering" by-rote brute-force on-node hobbling sigmoidal switching-function crutch is a quantum-statistics.

Many Rogers [IEEE J. Neural Networks (~1990s)-Hsu[A.-I. N.-N. Assn. Mtgs.(~1980s); SPIE Mtgs.(~1980s)] have called for "1"/f-'noise'" acceleration of A-NN's functioning to converge to the global-minimum optimum-solution, iff one exists.

Demuth-Beale[Matlab "Neural-Network Tool Box", The Math Works (~1990s)] have come closest, via artificial "radial-basis functions", but with lack of any understanding, for the wrong reasons!

They use an on-(A-NN)-node radial-basis-functions to concoct a Gaussian switching-function $f(E, T)=2^{-x^{2}} \approx\left(b^{-x^{2}} \approx e^{-x^{2}} \approx 10^{-x^{2}}\right)$ (to other possible bases b or e or 10 or...) to replace standard by-rote sigmoidal
switching-function (to other possible bases b or 2 or 10 or \ldots): $f(E, T)=\frac{1}{1+e^{\frac{-E}{T}}} \approx\left(\frac{1}{1+b^{\frac{-E}{T}}} \approx \frac{1}{1+2^{\frac{-E}{T}}} \approx \frac{1}{1+10^{\frac{-E}{T}}}\right)$ in terms
of "energy" E and "temperature" T and claim some five thousand (three orders-of-magnitude) less-memory/faster-convergence to some global-minimum optimization.

But without any real understanding of the meaning of what they have done!
So-called "simulated-annealing' is often touted as a mindless was to seek a global-minimum optimal-solution, if one exists, from ANN trapping in local-minima non-optimal non-solutions.

But again without any real understanding of the meaning of what is being done, and why, except for its internal "specificity-ofcomplexity" (SoC)-tactics: computer-simulation number-crunchings!

Just what standard by-rote sigmoidal switching-function (to other possible bases b or 2 or 10 or ...):
$f(E, T)=\frac{1}{1+e^{\frac{-E}{T}}} \approx\left(\frac{1}{1+b^{\frac{-E}{T}}} \approx \frac{1}{1+2^{\frac{-E}{T}}} \approx \frac{1}{1+10^{\frac{-E}{T}}}\right)$ is, and ultimately detrimentally means
requires understanding via identification of it as equivalent to quantum-theory Fermi-Dirac quantum-statistics:
$f_{\text {on-node switching-function }}^{N . N / \text { sigmoidal }}(E, T)=\frac{1}{1+e^{\frac{-E}{T}}} \approx\left(\frac{1}{1+b^{\frac{-E}{T}}} \approx \frac{1}{1+2^{\frac{-E}{T}}} \approx \frac{1}{1+10^{\frac{-E}{T}}}\right)$
understanding of the fact that :
$f_{\text {on-node switching-function }}^{N N / \text { sigmoidal }}(E, T)=\frac{1}{1+e^{\frac{-E}{T}}} \approx\left(\frac{1}{1+b^{\frac{-E}{T}}} \approx \frac{1}{1+2^{\frac{-E}{T}}} \approx \frac{1}{1+10^{\frac{-E}{T}}}\right)=$
$f_{\text {on-node switching- function }}^{N N / \text { sigmoidal }}(E, T)=\frac{1}{+1+e^{\frac{-E}{T}}} \approx\left(\frac{1}{+1+b^{\frac{-E}{T}}} \approx \frac{1}{+1+2^{\frac{-E}{T}}} \approx \frac{1}{+1+10^{\frac{-E}{T}}}\right)=$

$f_{\text {Quantum-Statistics }}^{\text {Fermi-Dirac }}(\omega, T) \equiv f^{F .-D .}(\omega, T)=\frac{1}{e^{\frac{\hbar \omega}{k_{B} T}}+1} \approx\left(\frac{1}{b^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{2^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{10^{\frac{\hbar \omega}{k_{B} T}}+1}\right)$
Understanding of the meaning of this is from " the chemical-elements", in which "fermions" Fermi-Dirac quantum-statistics
$f_{\text {Quantum-Statistics }}^{\text {Fermi-Dirac }}(\omega, T) \equiv f^{F .-D .}(\omega, T)=\frac{1}{e^{\frac{\hbar \omega}{k_{B} T}}+1} \approx\left(\frac{1}{b^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{2^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{10^{\frac{\hbar \omega}{k_{B} T}}+1}\right)$ electrons automatically traps the system in any/every local-minima, called "the chemical-elements"!

Exact-opposite/diametrically-opposed "bosons" Bose-Einstein quantum-statistics
$f_{\text {Quantum-Statistics }}^{\text {Bose-Eintin }}(\omega, T) \equiv f^{B .-E .}(\omega, T)=\frac{1}{e^{\frac{\hbar \omega}{k_{B} T}}-1} \approx\left(\frac{1}{b^{\frac{\hbar \omega}{k_{B} T}}-1} \approx \frac{1}{2^{\frac{\hbar \omega}{k_{B} T}}-1} \approx \frac{1}{10^{\frac{\hbar \omega}{k_{B} T}}-1}\right)$ suffer from no such
automatically trapping the system in any local-minima.

- (3) "EUREKA" ("Bosonization") involves this above quantum-statistics Dichotomy understanding of the meaning: that the "fermions" Fermi-Dirac quantum-statistics
$f_{\text {Quantum-Statistics }}^{\text {Ferri-Dirac }}(\omega, T) \equiv f^{F .-D .}(\omega, T)=\frac{1}{e^{\frac{\hbar \omega}{k_{B} T}}+1} \approx\left(\frac{1}{b^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{2^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \frac{1}{10^{\frac{\hbar \omega}{k_{B} T}}+1}\right)$ automatically traps the system in any/every local-minima,
versus
exact-opposite/diametrically-opposed "bosons" Bose-Einstein quantum-statistics
$f_{\text {Quantum-Statistic }}^{\text {Bose-Einstein }}$

$$
(\omega, T) \equiv f^{B .-E \cdot}(\omega, T)=\frac{1}{e^{\frac{\hbar \omega}{k_{B} T}}-1} \approx\left(\frac{1}{b^{\frac{\hbar \omega}{k_{B} T}}-1} \approx \frac{1}{2^{\frac{\hbar \omega}{k_{B} T}}-1} \approx \frac{1}{10^{\frac{\hbar \omega}{k_{B} T}}-1}\right)
$$

suffer from no such automatically trapping the system in any local-minima.

Hence "EUREKA" ("bosonization") quantum-statistics qualitative-type CROSSOVER, from Fermi-Dirac ("fermions") to Bose-Einstein ("boson"), is absolutely mandatory!!!

ARTIFICIAL

$:$

NEURAL-NETWORKS

via
(Siegel)
"FUZZYICS" S.P.D. I.-W.

(A. N.-N.):

$f_{\text {Ounnumum-Statis }}^{\text {Ferin }}$
$(\omega, T ; " 1 "=\#) \equiv$
$\equiv f^{F .-D .}(\omega, T ; " 1 "=\#)=$
$=\frac{" 1 "=\#}{e^{\frac{\hbar \omega}{k_{B} T}}+1} \approx$
$\left(\begin{array}{c}\approx \frac{" 1 "=\#}{\frac{\hbar \omega}{k_{B} T}}+1 \\ \approx \frac{\mathrm{l} l^{\prime \prime}=\#}{2^{\frac{\hbar \omega}{k_{B} T}}+1} \approx \\ \approx \frac{" 1 "=\#}{10^{\frac{\hbar \omega}{k_{B} T}}+1}\end{array}\right)$
(A. N.-N.):
"EUREKA":
VS.
AUTMATHCAT
<-------DIM-CAT-.-.-.->
CROSSOVER
via

OPTIMALITY
ANALYSIS

$$
\begin{aligned}
& =\lim _{\# \rightarrow \infty}\left[\frac{" 1 "=\#}{\frac{L^{\prime} \omega}{e^{k_{B} T}}-1}\right]=\left[\frac{\delta(\omega-0)}{\frac{e^{\frac{k_{B} T}{} T}}{k^{2}}-1}\right] \approx \\
& \approx \underset{\# \rightarrow \infty}{ }\left[\frac{" 1 "=\#}{b^{\frac{k_{B} T}{}}-1}\right]=\left[\frac{\delta(\omega-0)}{b^{\frac{\hbar \omega}{k_{B} T}}-1}\right] \approx \\
& \approx \lim _{\#<\infty}\left[\frac{" 1 " \equiv \#}{2^{2^{k_{B} T}}-1}\right]=\left[\frac{\delta(\omega-0)}{2^{\frac{\hbar \omega}{k_{B} T}}-1}\right] \approx \\
& \approx \lim \left[\frac{\text { "1"=\# }}{\substack{\frac{\hbar \omega}{k_{B} T} \\
\vdots \rightarrow \infty}}\right]=\left[\frac{\delta(\omega-0)}{10^{\frac{\hbar 0}{k_{B} T}}-1}\right]= \\
& =\delta(\omega-0)
\end{aligned}
$$

CONCLUSION

Artificial (by rote) sequential: (so called) "simulated-annnealing" + (so called) "Boltzmann-machine" is replaced and superseded by the herein manifestly-demonstrated "Bose-Einstein Condensation 'machine'"!

Artificial neural-networks' (A-NN's) Achilles'-heel, the wrong sigmoidal switching-function, via "EUREKA" + "SHAZAM" softwares, without any radial-basis -functions, can be made to undergo "noise-induced/driven phase-transitions (NITs) which permit control via "NIT-picking" to effect forced quantum-tunneling to global-minimum (if such exists) via " Bose-Einstein

CONDENSATION" to automatically optimize optimization-problems optimally (OOPO) with optimality via "FUZZYICS", Synergetics Paradigm \& Dichotomy (S.P.D.) "INEVITABILITY_-WEB" list-format analysis!

Fuzzy-logic/physics "FUZZYICS"" "fuzzycity" Optimizing Optimization-Problems Optimally (OOPO) of neural-networks (A-N-Ns) Via quantum-statistics crossover equivalence to switching-function sigmoidal $\rightarrow \boldsymbol{A n t i}$-sigmoidal crossover equivalence to (so called) "noise" power-spectrum crossover "Noise-‘Induced'/ 'Driven'-Phase-Transitions" (NIT's) vast-acceleration control via "NITPicking": "Eureka" and "Shazam" A-N-N Bose-Einstein Condensation AUTOMATIC OPTIMALITY!

