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SUBTITUTING MATHEMATICS FOR NATURE 

(Wandering towards a goal) 

FQXI ESSAY 

P.W.WANJOHI 

Abstract 

The axiom of extensionality states that two sets which contain the same elements are the same 

set; therefore the converse of the statement “substituting mathematics for nature” is also true. 

This essay, as the title suggests, is an attempt to show that the study of mathematics and that of 

nature, especially its physical descriptions, are intertwined. 

Introduction 

 How can mindless mathematical laws give rise to aims and intentions? Obviously, mathematics 

is too rigorous to be mindless. But does it have any aims or intentions? It is hard for man to 

ignore the usefulness of mathematics in his constant search for solutions to not only practical, 

existential problems and dilemmas but also fundamental and lofty questions of pure science far 

removed from engineering and technological development. But in so far as mindless 

mathematical laws imply pure, abstract reasoning pursued with no apparent practical 

consideration, both the practically useful pursuit of mathematics as well as the apparently 

egotistic one lead one to the other at some point if not now. 

 Mathematical reasoning fits the universe so remarkably well, but does it lead to infallible truths 

or can it wander too far away from reality? Why should the physical world conform to patterns 

of man’s reasoning which mathematics surely is? 

 

Goal of Mathematics 

Many mathematicians pursue the subject simply because they like it. To them the subject offers 

intellectual challenge and values that draw them to it far more strongly than money or power 

attracts people generally. They enjoy the excitement of the quest for new results, the thrill of 

discovery, the satisfaction of mastering difficulties, and the pride in achievement. There are 

moreover delights and aesthetic values to be derived from surveying orderly chains of reasoning, 

such as occur in most proofs, from the contemplation of the results themselves, and from 

grasping the ideas that make the proofs work. Those portions of mathematics which prove 

valuable in the study of nature offer additional satisfaction of unifying a multitude of seemingly 

disorganized facts and of comprehending nature’s ways. 

Nevertheless, great mathematicians throughout history could discern directions of prevailing 

scientific investigations and therefore developed mathematical concepts and techniques that were 

clearly instrumental in the investigation of nature and the entire scientific enterprise. Such was 

the usefulness of their axioms that, today, mathematics is the heart of our best scientific theories 

be it mechanics, relativity and quantum theory. 

Indeed, physical science has reached a level of dalliance with mathematics that they are now 

essentially indistinguishable, one from the other. Science has become a collection of 

mathematical theories adorned with only a few physical facts. Further, the ultimate goal of 
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modern scientific theory is to subsume all its results under one mathematical principle whose 

implications would describe the entire spectrum of nature’s operations. 

The precise manner in which mathematics produces answers to physical problems may be the 

answer. For example, simple arithmetic proves very effective in handling personal day to day 

financial transactions to arrive at the best propositions and avoid imprudent loss of money. With 

some geometry, it is possible to see clearly which plot of land among several of different spatial 

shapes is larger or smaller than the other; and what design of a fence or building wall 

encompasses more area, given an equal amount of fencing or walling material. 

These are just examples of the many problems in which intuition can only be of incidental use 

and mathematics must carry the entire burden. One of the simplest and yet most impressive is 

Eratosthenes’ calculation of the circumference of the earth. Eratosthenes (275-194 BC) knew the 

earth is spherical. He also knew that the city of Alexandria was due north of the city of Syene by 

a distance of 500miles along the surface of the earth (Fig. 1). 

.

 
It was summer time and the noon sun shone directly down into a well at Syene. This means that 

the sun was directly overhead at that time; i.e. the direction of the sun was OBŚ. At Alexandria 

at the same instant, the direction of the sun was AS whereas the overhead direction is OAD. The 

sun being far away, the direction AS is the same as BŚ or AS and BŚ are parallel lines. Hence, it 

follows from an axiom of geometry that angles DAS and AOB are equal. Eratosthenes measured 

angle DAS and found 7.5˚.This then is the size of AOB. But this angle is 7.5/360 or 1/48 of the 

entire angle at O. It follows that arc AB is 1/48 of the entire circumference and since AB is 500 

miles, the entire circumference is 48x500 or 24000 miles. 

It is clear from such a simple example that mathematical reasoning can produce knowledge 

which guesswork, intuition and experience can only produce inaccurately or not at all. 
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Mathematical concepts and mathematical methods of obtaining knowledge have been most 

effective in representing and investigating the motions of heavenly bodies and the motions of 

objects on or near the surface of the earth, the phenomena of sound, light, heat, electricity, and 

electromagnetic waves, the structure of matter, the chemical reactions of various substances, the 

structure of the eye, ear and other organs of the body, and dozens of other major scientific 

phenomena. 

The seemingly unprofitable amusements of speculative brains have produced rewards over and 

above the satisfaction of curiosity and the improvement in man’s physical comforts be they 

better crops and animal husbandry, prediction of weather, better marine and aerial navigation, 

more efficient industries, modern transport and infrastrure, trains, airplanes, automobiles, ships, 

movies, radio, television, telephony, highly useful home appliances, electricity, medical 

treatments, computerization, internet, social media platforms among others. 

Many fears and superstitions about the heavens have also been eliminated by just those people 

who studied the skies to satisfy their intellectual curiosity. Modern astronomical doctrines reveal 

an invariable order and a mathematical pattern to which heavenly bodies adhere. Thus such 

events as eclipses can be predicted precisely. 

These  advances and applications surely gives man a good reason to reason about nature; and in 

this regard mathematics was ,is and will be very helpful. Yet it is still not clear how a purely 

human creation, which mathematics is, can give us such insight into and power over nature.  

The idea of the Greeks of 6
th
, 5

th
, and 4

th
 centuries BC was basically simple. They observed 

nature and found that certain simple forms such as lines, triangles, and circles occur repeatedly. 

The heavenly bodies are spheres; light seems to travel in straight lines; the surfaces of lakes are 

flat; the sides of buildings are rectangles. Number or quantity was also suggested repeatedly by 

collections and sizes of objects. These concepts of number and geometrical forms, in view of 

their very prevalence, were deemed worthy of study.  

The Greeks also noted that certain facts about these concepts are obvious and seemingly basic. 

Circles are determined by choosing a centre, and a radius; any two right angles are always equal; 

equal numbers added to equal numbers or equal lengths added to equal lengths yield equals; etc. 

So, they selected the most obvious of these facts to see what reasoning could deduce from them. 

Surely if some new facts could be derived, these facts would apply to all those physical objects 

that possessed the basic properties in the first place. If the area of a circle could be shown by 

reasoning to be ᴨ times the square of the radius, then the area of any circular piece of land should 

also be ᴨ times the square of its radius. Further reasoning unearthed new facts, which observation 

alone could not suggest. Such advantages and many more accrued from reasoning about common 

concepts on the basis of clearly evident facts. Reasoning can therefore produce knowledge that 

not only covers a multitude of cases in one swoop but may produce physically meaningful 

information that is entirely unforeseen. 

The intimate connection between mathematics and events in the physical world is reassuring, for 

it means that we not only can hope to understand the mathematics proper but also expect 

physically meaningful conclusions. 

 

Methodology 

Many methods of reasoning or drawing conclusions are available to man. Of these, the most 

widely used are reasoning by analogy, induction, and deduction. The essence of analogical 

reasoning is to find a similar situation or circumstance and to argue that what is true for the 

similar case applies also to the one in question. Obviously one must be able to find a similar 
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situation and one must take the chance that the differences don’t matter. Despite the uncertainties 

attached to this method of reasoning, it is constantly used because similar situations are usually 

readily available. However, though one starts with some facts that are reliable, he obtains a 

conclusion that is not necessarily reliable. But it is possible to reason in such a manner that 

starting with reliable facts; one is able to draw unquestionable conclusions. 

An experimenter usually reasons by induction. The essence of this method is that one observes 

repeated instances of the same phenomena and concludes that the phenomenon will always 

occur. Conclusions obtained by induction are evidence – based, especially when the instances 

observed is large. Nevertheless, there is much room for error. 

Finally there are ways of combining facts so as to obtain a new but equally sound one. This is 

deductive reasoning. A deductive argument consists in combining accepted facts in ways that 

compel acceptance of the conclusion. This characterization of deductive reasoning does not 

specify exactly what kinds of combinations of accepted facts yield inescapable conclusions. 

Despite these drawbacks, mathematicians ever since Greek times have limited themselves to 

conclusions which can be established deductively on the basis of a thoroughly reliable premise. 

Of course the conclusions deduced from such premises are themselves reliable and hence maybe 

used in turn as premises for further deductive reasoning. This means that theorems already 

established may be used as evidence for new proofs. No matter how many successive deductive 

arguments are involved, each yields certain conclusions. We see therefore why it is that 

mathematics has attained its reputation for the certainty of its results. 

This contrasts with the methodology of physical and social sciences which includes induction 

and analogy in addition to deductive proof. Thus, where no facts are available, direct trial, 

experimentation and even sheer guess work are employed in order to supply likely conclusions 

more rapidly than would be the case if deductive proof is needed. The scientist feels free to draw 

conclusions based on observation, experimentation and experience. For example he may reason 

that sound waves behave like water waves or test a possible cure for human disease through 

animal trials. At some stages of his work, the scientist may reason deductively, employing the 

concepts and methodology of mathematics proper, but he certainly does not confine himself to 

deductive arguments only. A famous example of this contrast is the Goldbach’s hypothesis 

which conjectures that every even number can be expressed as the sum of two prime numbers. 

Thousands of even numbers have been tested over a period of three centuries and the conjecture 

has been verified in each case. Inductive reasoning could conclude that every even number is the 

sum of two prime numbers. But deductive reasoning requires that all possible even numbers 

must be tested first before the conjecture is accepted as a theorem of mathematics. 

Mathematics therefore achieves a reputation for precise reasoning at the expense of limiting its 

results to those that can be established deductively. But far from being shortsighted, mathematics 

is infinitely wise. By relying upon and exploiting deductive reasoning, it has routinely obtained 

results that would have been very difficult or even impossible to obtain by other methods. Its 

objectivity has accomplished far more than we would hope to obtain by observation, experience 

and experimentations. This is because our senses are limited. The eye sees only a small range of 

light waves and is easily deceived as to sizes and locations of objects. The ear hears only a 

limited range of sound waves. Touch, smell and taste are even more imprecise. On the other 

hand, man’s deductive reasoning can encompass distances, sizes, sounds, and temperatures 

beyond the range of senses and even imagination. Mathematics has been able to create spaces of 

arbitrary dimensions and predict the existence of imperceptible radio waves and such 

uncharacteristic phenomena as black holes. 
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But mathematics is not entirely a deductive science. Though it derives conclusions that follow 

from axioms, these initial premises cannot be obtained deductively. They are derived from 

observation and experience. Deciding what to prove and how to go about making the proofs is 

also not deductive. 

 The most fertile source of mathematical ideas is nature herself. The clearest of such a process is 

elementary geometry. Precise statements of theorems could be proved from direct experience 

with physical objects. Thus theorems on area, perimeter and angle sum of common figures were 

developed at the earliest by mathematicians such as Pythagoreans and Euclid. To determine the 

area of a complex figure, Galileo used to make another out of cardboard and compared its weight 

with a cardboard model of a figure whose area is known. The relative weights of course 

corresponded with relative area. 

 After some theorems have been proved suggestions for others are obtained by the process of 

generalization. In arithmetic and algebra, direct calculations with numbers, which is analogous to 

measurement in geometry, suggests possible theorems. For example, simple calculations show 

that the sum of the first n odd numbers where n is any integer, is the square of n. Of course no 

mortal man could make the infinite set of calculations required to establish the conclusion for 

every n. However, the endless calculations give the mathematician something to work on. 

However, one cannot account for the discovery of what to prove or how to make deductive proof 

entirely by sheer observation, measurement or calculations. Therefore some methods of proof 

seem so artificially ingenious that they are devious, mean and underhand. Yet on the basis of 

such abstractions mathematics are created others that are even more remote from anything real. 

Negative numbers, irrational numbers, complex numbers, equations involving unknowns, 

formulas, derivatives, integrals and other such concepts are abstractions built upon abstractions. 

Surprisingly, the process of abstraction is far more natural than it appears at first. Such abstract 

concepts are actually derived from properties of physical objects. Physical straight lines have 

thickness, color, molecular structure and rigidity. Mathematical straight lines have none of these, 

and so do other geometrical forms, concepts of numbers, arithmetic, algebra etc. 

 

Arithmetic 

The Pythagorean school of mathematics inaugurated arithmetic by use of pebbles or dots, there 

being no number symbols at that ancient time. They classified these numbers according to shapes 

produced by the arrangement of the dots or pebbles. 3,6,10 and so on were called triangular 

numbers because they could be arranged to form triangles. Numbers 4,9,16 and so on were called 

square numbers because they could be arranged in perfect square shapes. From these simple 

geometric arrangements, some properties of whole numbers became evident e.g. the sum of two 

triangular numbers is always a square number. Or that if n² is any square number, then 

n²+2n +1= (n+1)² 

Thus, to the rudimentary Pythagoreans’ concept of whole numbers was later added the concept 

of zero which enabled the representation of large quantities in tens of tens  of tens of tens etc. 

Other improvements were the now familiar methods of operating with fractions and decimal 

representation of fractions. Arithmetic enables the usual operations of, addition, subtraction, 

multiplication and division. This is in addition to such practical applications such as ratios and 

rates which enabled the study of relationships such as air/water pressure; blood pressure/heart 

beat etc. Relative distances of the then known planets from the sun enabled the discovery of 

other by- then- unknown planets such as Neptune. The asteroids orbiting the sun between Mars 

and Jupiter  are now known to be remnants of an exploded planet that lay in that position. 
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About 1860, Dmitri Ivanovich Mendeleev, by use of simple numbers and fractions, framed one 

of the leading ideas of modern chemistry: the Periodic Table. By arranging elements according 

to their atomic weights, he found that every eighth element among the first sixteen had similar 

chemical properties to the first one of that set of eight. Such periodicity has been used to discover 

new elements, their atomic weights and properties such as ability to combine with other elements 

to form new molecules.  

The theory of number sets that has been investigated for many years solely because of its 

intrinsic interest has proved immensely useful today. For curiosity’s sake, mathematicians have 

considered writing quantities in bases other than ten. Thus in base 6 , the symbol 10 can mean 

6.To write 7 in base 6, we would write 11 i.e. 1x6+1,just as 11 in base 10 means 1x10+1. 

Moreover we can perform the usual arithmetic operations in this base, only we would have to 

learn new addition and multiplication tables such that if, in base ten 4+5=9, in base six 9 would 

be written 13. Base two especially impressed seventeenth century mathematician Gottfried 

Wilhelm Leibniz. In that base, all numbers are written in terms of 0 and 1 only. Thus eleven, 

which equals 1x2
3
+0x2

2
 +1x2+1, would be written 1011. 

The subject of bases other than ten was regarded until recently as an intellectual amusement but 

with advent of computing machines, it is no longer purely an academic, aesthetic or amusing 

idea. All electronic computers perform their various operations in base two. The results are then 

converted to base 10 on which our mathematics and life experience is based. As a biological 

computing machine, the brain also most likely operates in this base.  

 

Irrational Numbers 

The Pythagorean Theorem states the general fact that the square of the hypotenuse of any right 

angled triangle equals the sum of the squares of the arms (Fig, 2). 

 
This result was very pleasing to the Pythagoreans. But ,as mathematicians, they liked 

combinations so much that they engaged in an endless search for all possible triples of the form 

a
2
+b

2
=c

2
. One Pythagorean decided one day to examine the simplest case of the geometric 

theorem: Suppose a right-angled triangle has arms each 1 unit long. This curiosity caused untold 

woes to later generations of mathematicians. 

It turned out that 1
2
+1

2
=2 therefore the hypotenuse is √2. There was no simple fraction whose 

square is 2. The nearest was 49/25.This meant that √2 could not equal a fraction and therefore no 

precise decimal number. In geometrical terms, it meant that the hypotenuse of a right angled 

triangle whose arms are 1 respectively cannot be ascertained to whole numbers or fractions of 

whole numbers by any physical measurement no matter how precise. Therefore was born the 

irrational number, a number not expressible as a ratio of whole numbers. Therefore the square 
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root of any whole number that is not a perfect square e.g. √3,√5√6,the cube  of any whole 

number that is not a perfect cube e.g. 
3
√2,

3
√3 etc are irrational. Irrational numbers, including ᴨ, 

though seemingly meaningless in geometrical terms are increasingly useful and convenient in the 

fields of algebra and calculus and perhaps proves the reality of the Planck length, the smallest 

unit or subdivision of length below which precise measurement becomes impossible.   

 

Algebra 

A good example of the role of algebra in investigating quantitative physical problems is 

furnished by the exploits of Archimedes, the greatest mathematician of antiquity. Wishing to 

complete an assignment given to him of determining how much silver and how much gold was in 

the King’s crown, he supposed that the crown which, for example, weighed 10 pounds was made 

up of W1 pounds of silver and W2 pounds of gold. He found that 10 pounds of pure silver 

displaced 30 cubic inches of water. Hence W1 pounds of silver would displace (W1/10) x30 

=3W1 cubic inches of water. Since ten pounds of pure gold displaced 15 cubic inches of 

water,W2 pounds of gold would displace (W2 /10)x15 = 2/3W2 cubic inches of water.  

On measuring the volume of water displaced he found it to be, say, 20 cubic inches of water, 

hence, 

 

1) 3W2 +3/2W2=20 

2)  W1+W2 =10 

3) 3W1+3W2 =30 

4) 3/2W2=10 

5) W2=6
2

3
 

6) W1=3
1

3
 

Therefore the crown contained 3
1

3
 pounds of silver and 6

2

3
 pounds gold. 

Many such real world problems are now routinely resolved through algebra. It is a machine that 

mechanizes thinking. 

Algebra’s series of powerful techniques apply to large classes of numbers and hence are useful 

for thousands of applications where arithmetic would deal with only one at a time. Apart from 

such first degree equations, similar techniques can solve more complex second and third, fourth, 

fifth and even higher degree equations involving much more complex problems. But the 

Frenchman Evariste Galois (1811-1832) showed that general equations of degrees higher than 

fourth cannot be solved by algebraic operations. Thus he created the theory of groups a subject 

now at the base of modern abstract algebra. The mathematician may also tackle general problems 

out of curiosity and therefore inadvertedly develop formulae for solving many similar and 

intractable special cases. The theory investigated for its own sake finds new applications never 

intended and certainly not foreseen. 

 

Study of Light 

To the mathematically minded scientist, light offers another domain of inquiry in his search for 

laws of nature. Though progress in the discovery of the mathematical laws of light has been 

slow, some remarkable laws have nevertheless been obtained and continue to be obtained. The 

depths of these laws continue to keep pace with mathematics proper. These include the straight 

line motion of light, its angles of reflection and refraction, the wave function of light, radio 

waves and other electromagnetic waves. 
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Astronomy 

A combination of simple algebra, simple geometry and trigonometry has enabled man to master 

astronomy, so much so that, though it is the most physically unreachable domain of nature, our 

understanding of it is quite precise. 

Trigonometric ratios based on the concept of similar right triangles are used to triangulate the 

heavens, determine the velocity of light and express the precise law of refraction for light when it 

passes from one medium to another. Copernicus’ heliocentric theory and Kepler’s laws on 

gravitation and motions of heavenly bodies, which opened heavenly secrets to the human mind, 

were all based on sound mathematical reasoning. Because we today accept the heliocentric 

theory and Kepler’s laws, we no longer appreciate the full significance of Copernicus’ and 

Kepler’s achievements and what their mathematics really accomplished. 

 

Curve and Equation 

Curves represent geometrically the quantitative and numerical information needed for many 

practical applications. Fermat and Descartes developed algebraic expressions to ease the 

obtaining of information contained in curves such the path followed by a projectile, area of 

curved surfaces, the elliptical orbits of the planets, the paths followed by a bent or refracted light 

beam among others. This branch of geometry came to be known as analytical geometry. Thus 

was created the X and Y coordinates, being distances in numbers of each point on the curve, 

from two arbitrarily chosen but fixed axes, to be used as means of deducing facts about curves. 

Hence, for example, x
2
+y

2
=r

2
 is the equation for a circle, a circle being no more than a collection 

of points that are at the same distance from the centre 0, and r being the radius. 

When idealized, all physical objects are curves and surfaces. Therefore they can be represented 

by equations and the shapes and motions studied by applying algebra to these equations. This 

method is very basic to science and engineering. 

 

Fundamental Principles 

The way to obtain correct and basic principles, Galileo indicated, was to pay attention to what 

nature says rather than what the mind believes. To Leonardo da Vinci, sciences that arise and end 

in thought do not give truths because in these mental considerations, no experience enters, and 

without this nothing is sure. Newton emphasized his reliance upon mathematics and said he used 

experiments largely to make his results physically intelligible and to convince the “vulgar”. Thus 

a few fundamental principles derived from nature and much mathematical reasoning constituted 

Galileo’s and Newton’s scientific method. Galileo idealized just as the mathematician does and 

thereby penetrated the phenomena to obtain the basic principles. Thus one can use the machinery 

of mathematics to deduce new truths, for example by combining several formulas by use of 

proper algebraic steps to obtain a totally new fact. Such is the power of mathematics that science 

absorbs so much mathematics that for the first time, the danger is evident that it is going to 

contain little else. 

Very often a mathematical formula that fits some phenomena of nature will apply far beyond the 

range of conditions under which it was originally derived. If it does apply, there is some heuristic 

evidence in favour of the original theorem. For example there is no reason why the distance d 

that a body falls due to gravity in t seconds d=16t
2
 cannot represent the number of apples a man 

eats each month. This is an example of taking advantage of the abstractness of mathematics. 
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Take the mathematical science of sounds. The mathematical tool that proves to be the key to the 

analysis of sound is the very same function which represents the motion of masses on springs 

and of pendulums: i.e. oscillations or sinusoidal motion of the form y=D sin Ft =D sin 2ᴨ ft 

where y is air displacement, D is the amplitude or maximum displacement, F is the number of 

oscillations in 2ᴨ units of t, and t is the time. F=
𝐹

2ᴨ
 frequency in one second. 

In so far as mathematics is concerned, a periodic function is no more than a periodic relation 

between two variables. Hence for every periodic function, no matter how complex, the shape of 

the graph within the period is a sum of sine functions (Ohm’s Law / Fourier’s theorem).  

Thus based on such exploits, mathematics is on the right track to seek basic quantitative laws. 

However, to describe mathematically what must happen and to make objects actually behave in 

that way are totally different matters. Many decades of ingenious experimental work had to pass 

before electrical phenomena predicted earlier through mathematical work by Michael Faraday 

could be physically realized. James Clerk Maxwell expanded the mathematical foundations of 

electricity into the four keys laws of electromagnetism. But Maxwell’s labor in formulating the 

mathematical laws of electromagnetism paid unexpected dividend: the reciprocal relation 

between a magnetic field and an electrical field, so that the law of conservation of energy could 

hold. This is the electromagnetic field, a combination of changing electric and magnetic fields 

that can travel far out into space. These electromagnetic waves are none other than radio waves, 

now used by modern communication gadgets. 

Differential calculus is another example of fruitful mathematical imagination based on the 

fundamental idea of limits and is used to calculate instantaneous rates of change such as velocity 

and acceleration. For acceleration due to gravity, the derivative of y=16x
2
  holds regardless of the 

physical meaning of y or x. Hence we can apply the derivative to thousands of physical situations 

in which y=16x
2
  applies. 

In science’s aim of deducing all phenomena of nature by application of mathematical reasoning, 

calculus is a major tool. This is through the inverse process of finding original formulas from 

known rates. Some of the greatest developments in mathematics, differential equations, the 

calculus of variations, differential geometry, potential theory and a host of other subjects 

collectively known as analysis were developed and explored by means of calculus.  

The same concept helped solve another class of problems: areas bounded by curves, and the 

volumes of figures bounded by surfaces. The essential mathematical point in this process is that a 

limit of a sum can be obtained by reversing differentiation of the limit of a sum of the form  

    

 

 

Gradually however, mathematicians, scientists and philosophers are increasingly aware of the 

complexity of nature’s simplicity. Thus they persist in the goal of deriving as many facts and 

phenomena from as few principles as possible. And they are willing to pay the mathematical 

price, such as the mastery of differential equations and differential geometry. 

But since reasoning on the basis of axioms contradicting Euclid’s yielded theorems that applied 

to the same physical world where Euclid’s also operates, it is no longer possible to assert that 

mathematics yields truths, for truth is unique. Rather, mathematics produces a representation of 

physical reality. 

 

 

 

Lim h→0 𝑦₁ℎ₁𝑛
𝑖=1  


