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1 Introduction

Humans are imperfect reasoners. In particular, humans are imperfect mathematical reasoners.
They are fallible, with a non-zero probability of making a mistake in any step of their reasoning.
This means that there is a nonzero probability that any conclusion that they come to is mistaken.
This is true no matter how convinced they are of that conclusion. Even brilliant mathematicians
behave in this way; Poincaré wrote that he was “absolutely incapable of adding without mistakes”
(1910, p. 323).

The banter of Poincaré aside, such unavoidable noise in human mathematical reasoning has some
far-reaching consequences. An argument that goes back (at least) to Hume points out that since in-
dividual mathematicians are imperfect reasoners, the entire community of working mathematicians
must also be one big, imperfect reasoner. This implies that there must be nonzero probability of a
mistake in every conclusion that mathematicians have ever reached (Hume 2012, Viteri and DeDeo
2020). This noise in the output of communal mathematical research is unavoidable, inherent to any
physical system (like a collection of human brains) that engages in mathematical reasoning. Indeed,
one might argue that there will also be unavoidable noise in the mathematics constructed by any
far-future, post-singularity hive of Al mathematicians, or by any society of demi-God aliens whose
civilization is a billion years old. After all, awe-inspiring as those minds might be, they are still
physical systems, subject to nonzero noise in the physical processes that underlie their reasoning.

Traditionally, almost all work on the foundations and philosophy of mathematics has presumed
that mathematics is the result of noise-free deterministic reasoning; Hilbert (1928) famously said
that “mathematical existence is merely freedom from contradiction”. As just pointed out though,
this cannot describe any body of mathematics that will ever be produced in our universe.

In light of this discrepancy, suppose we make a small leap, and identify what might be produced
by any community of far-future, galaxy-spanning mathematicians with mathematics itself. What
are the implications of the view that mathematics itself, in an idealized sense, abstracted from any
particular set of physical reasoners, is a stochastic system? In other words, what if Hilbert engaged
in a category error when he described mathematical existence? What if we ought to represent
mathematics not only as subject to instances of undecidability and uncomputability, as Godel
(1934) showed, but also inescapably unpredictable in its conclusions, since it is actually stochastic?

In fact, if you just ask them, many practicing human mathematicians will tell you that there is
a broad probability distribution over mathematical truths. For example, if you ask them about any



Clay prize question, most practicing mathematicians would say that any of the possible answers has
nonzero probability of being correct. In fact, human mathematicians act somewhat like Bayesian
learners; as mathematicians learn more by investigating open mathematical questions — as their
data set of mathematical conclusions grows larger — they update their probability distributions
over those open questions. For example, modern computer scientists assign a greater probability
to the claim NP # P than did computer scientists of several decades ago. What if mathematicians
are right to behave as though there were a broad prior distribution over mathematical truths, which
changes as they gather more and more mathematical data?

In this paper we present a model of mathematical reasoning as a fundamentally stochastic
enterprise, and therefore of mathematics itself as fundamentally stochastic. Our model has the
following advantages:

o [t allows us to formalize the process by which actual mathematical researchers select questions
to investigate.

e It provides a Bayesian justification for the role that abductive reasoning plays in actual math-
ematical research.

e It provides a Bayesian justification of the idea that a mathematical claim warrants a higher
degree of belief if there are multiple lines of reasoning supporting that claim.

e It can be used to investigate the mathematical multiverse hypothesis (i.e., the hypothesis that
there are multiple physical realities, each of which is isomorphic to a formal system) thereby
integrating the analysis of the inherent uncertainty in the laws of physics with analysis of the
inherent uncertainty in the laws of mathematics.

e It shows that if working mathematicians are even remotely Bayes rational, then their prior
distribution over mathematical universes must assign nonzero probability to the possibility
that the laws of mathematics are noisy, not mistake-free.

2 Formal Systems

The concept of a “mathematical structure” can be formalized in several equivalent ways, e.g., in
terms of model theory, Turing machines, formal systems, etc. Here we will follow Tegmark (1998)
and use formal systems. Specifically, a (recursive) formal system can be summarized as any
triple of the form

1. A finite collection of symbols, (called an alphabet), which can be concatenated into strings.
2. A (recursive) set of rules for determining which strings are well-formed formulas (WFFs).
3. A (recursive) set of rules for determining which WFFs are theorems.

For simplicity, we can assume that there is some large set of symbols that contains the alphabets of
all formal systems we consider. Strictly speaking, formal systems are equivalence classes, defined
by all possible automorphisms of the symbols in the alphabet (Tegmark, 1998, 2008). For current
purposes, we do not need to formalize what we mean by the term “rule” in (2, 3); it covers both
what are called “inference rules” and “axioms” in the literature. Note that the set of all possible
recursive formal systems is countably infinite, and so any formal system can be represented by an
integer. As an example, ‘1 + 1 = 2’ is a concatenation of five arithmetic symbols into a string.
In the conventional formal system representing standard arithmetic, ‘1 +1 = 2’ is a WFF and a



theorem. However, ‘+4—’ is not a WFF in that formal system, despite being a string of symbols
from its alphabet.

The community of real-world mathematicians does not spend their days only generating the-
orems in various formal systems. Rather, as mentioned in the introduction, they pose “open
questions” in various formal systems, which they try to “answer”. To model this, here we restrict
attention to formal systems that contain the Boolean ~ (NOT) symbol, with its usual meaning.
If in a given such formal system a particular WFF ¢ is not a theorem, but ~ ¢ is a theorem, we
say that ¢ is an antitheorem. For example, ‘1 +1 = 3’ is an antitheorem in standard arithmetic.
Loosely speaking, the “open questions” of current mathematics are pairs of a formal system S to-
gether with a WFF in S, ¢, and mathematicians would like to conclude that ¢ is either a theorem
or an antitheorem. Sometimes, ¢ will be a WFF in § but neither a theorem nor an antitheorem.
We call such strings ¢ undecidable. As an example, Godel (1934) showed that any formal system
strong enough to axiomatize arithmetic must contain undecidable WFFs.

To capture this focus of mathematicians on “open questions”, in this essay we re-express formal
systems as pairs rather than triples:

1. An alphabet;

2. A set of rules for assigning one of four syntactic valences to all possible strings of symbols
in that alphabet: ‘theorem (t)’, ‘antitheorem (a)’, ‘not a WFF (n)’, or ‘undecidable (u).

It will be convenient to refer to any pair (S, ) where S is a formal system and ¢ is a string in
the alphabet of S as a question, and write it generically as ¢. We will also refer to any pair (g, v)
where v is a valence as a claim.

3 A Noisy Mathematical Computer

The physical Church-Turing thesis states that the set of functions computable by Turing machines
(TMs) include all those functions “that are computable using mechanical algorithmic procedures
admissible by the laws of physics” (Wolpert 2019, p. 17). If we assume that any mathematician’s
brain is bound by the laws of physics, and so their reasoning is also so bound, it follows that
any reasoning by a mathematician may be emulated by a TM. In light of our discussion in the
introduction, we amend this to suppose that any reasoning by a mathematicians may be emulated
by a probabilistic Turing Machine (PTM) (see appendix for discussion of TMs and PTMs).

In this paper we exploit this version of the physical Church-Turing thesis, and model any
mathematical reasoner — human or otherwise — as a special type of PTM, which we call a noisy
deterministic reasoning machine (NDR machine). An NDR machine has several tapes. The
questions tape always contains a finite sequence of questions. We write such a sequence as @),
and interpret it as the set of all “open questions currently being considered by the community of
mathematicians” at any iteration of the NDR machine. The separate claims tape of the NDR
machine always contains a finite sequence of claims, which we refer to as a claims list. We write
the claims list as C, and interpret it as the set of all claims “currently accepted by the community
of mathematicians” at any iteration of the NDR machine.

We assume that the NDR machine is non-repeating, which means that C' cannot ever contain
two claims that have the same question. Intuitively, this means that while there might be hidden
contradictions lurking in the set of all claims currently accepted by mathematicians, there are not
explicit contradictions. In addition to the questions and claims tapes, any NDR machine that
models the community of real human mathematicians in any detail will have many work tapes, but
we do not need to consider such tapes here.



The NDR machine starts with the questions and claims tapes blank. Then the NDR machine
iterates a sequence of three steps. In the first step, it adds new questions to (). In the second step
the NDR machine “tries” to determine the valences of the questions in ). In the third step, if the
valence v of one or more questions ¢ has been found, then the pair (¢, v) is added to the end of C,
and ¢ is removed from ). The NDR machine iterates this sequence of three steps forever, i.e., it
never halts.

Write |C| for the number of claims in C, and for each counting number n, let C,, be the set
of all sequences of n claims. For any current C' and any n < |C|, define C(n) to be the sequence
of the first n claims in C. As an illustration, for any NDR machine that accurately models the
real community of practicing mathematicians, the precise sequence of questions in C'(n) must be
somewhat random, reflecting randomness in which questions the community of mathematicians
happened to consider first. The NDR machine models that randomness in the update distribution
of the underlying PTM.

We say that a finite claims list C' is mistake-free if for every claim (¢,v) € C, v is either
t,a,n,u, depending on whether the question ¢ is ¢, a,n or u, respectively. In other words, a claims
list is mistake-free if every claim is such that, if ¢ = (S, ¢), then v is the syntactic valence assigned to
p by S. Intuitively, the “current body of mathematics”, as traditionally conceived, is a mistake-free
claims list. However, even if it so happened that the current claims list actually were mistake-free,
we do not assume that humans can determine that fact; in fact, we presume that humans cannot
make that determination in many instances. We say that an NDR machine is mistake-free if for
all finite n, the probability is 1 that the claims list C'(n) produced by the NDR machine will be
mistake-free.

We want to analyze the stochastic properties of the claims list, in the limit that the mathematical
reasoner has been running for very many iterations. To do that, we require that for any n, the
probability distribution of sequences C'(n) € C,, converges in probability in the limit of an infinite
number of iterations of the NDR machine. We further require that for all n > 0, the limiting
distribution over C, is given by marginalizing the last pair in the limiting distribution over C, 1.
This is equivalent to requiring that an NDR machine is a “sequential information source” (Grunwald
and Vitédnyi 2004). We write those limiting distributions as P*°(C'(n)), one such distribution for
each n.

Any sequence of n claims — any C(n) — specifies an associated (unordered) set of claims, which
we write as U(C(n)). So for each n, P*(C(n)) defines an associated distribution over all possible
(unordered) sets of n claims, which we write as P> (U(C(n))). Under the assumptions of this
paper, the n — oo limit of this distribution over claims lists specifies an associated distribution
over all possible lists of claims, i.e., lim;,, o, P>°(U(C(n))) is well-defined. We refer to this as the
claims distribution of the underlying NDR machine. Intuitively, the claims distribution is the
probability distribution over all possible bodies of mathematics that could end up being produced
if current mathematicians kept working forever.

Given a claims distribution of an NDR machine, we refer to the associated conditional distri-
bution P(v|q), defined for all ¢ that have nonzero probability of being on the claims tape of the
NDR machine at some iteration, as the answer distribution of the NDR machine. We will some-
times abuse terminology and refer to the “answer distribution” even if we are implicitly considering
P(v|q) restricted to a proper subset of the questions ¢ that can be produced by the NDR machine.
We write an answer distribution as A. A mistake-free answer distribution is one produced by
a mistake-free NDR machine.

Suppose we have a claims distribution which is a delta function about some formal system S,
where any string ¢ which is a WFF under § has nonzero probability of being on the claims tape
of the NDR machine at some iteration (the reason for this second condition is to ensure that the



answer distribution, A = P(v|S, ¢), is well-defined for any ¢ which is a WFF under §). We refer
to the associated pair (S,.A4) of any such claims distribution as a (NDR) world. Intuitively, it is
the combination of a formal system and the set of answers that some NDR machine would provide
to questions formulated in terms of that formal system, without specifying a distribution over such
questions.

4 Connections to Actual Mathematical Practice

In this section we show how NDR machines can be used to quantify and investigate some of the
specific features of the behavior of human mathematicians (see also Viteri and DeDeo (2020)).

4.1 Generating New Research Questions

Given our supposition that the community of practicing mathematicians can be modeled as an NDR
machine, what is the precise stochastic process that that NDR machine uses in each iteration, in
the step where it adds new questions to Q7 Phrased differently, what are the goals that guide
how the community of mathematicians decides which open questions to investigate at any given
moment?

This is obviously an extremely complicated issue, ultimately involving elements of sociology
and human psychology. Nonetheless, it is possible to make some high-level comments. First, most
obviously, one goal of human mathematicians is that there be high probability that they generate
questions whose valence is either ¢,a or u. Human mathematicians don’t want to “waste their
time” considering questions (S, ¢) where it turns out that ¢ is not a WFF under S. So we would
expect there to be low probability that any such question is added to ). Another goal is that
mathematicians prefer to consider questions whose answer would be a “breakthrough”, leading to
many fruitful “insights”. One way to formalize this second goal is that human mathematicians
want to add questions ¢ to @ such that, if ¢ could be answered (i.e., if the valence v of ¢ could be
determined), then after C' was augmented with that question-answer pair, the NDR machine would
rapidly produce answers to many of the other open questions g € Q.

4.2 A Bayesian Model of Mathematical Abduction

While the community of mathematicians can be modeled as an NDR machine, the members of that
community don’t know the answer distribution of that NDR machine. By definition, the current
community of mathematicians only knows the finite set of claims that they have already placed in
C, without having an agreed answer v to any question ¢ that is currently in @ (or more generally,
without having the answer to any question that is not currently in one of the claims on C). In
other words, the current community of mathematicians is uncertain about the distribution P(v|q) to
which their far-future intellectual descendants will converge. Like any other kind of uncertainty, this
uncertainty can be formalized as a probability distribution, i.e., a posterior distribution P(A|C).
The uncertainty represented by such a distribution is analogous to the uncertainty faced by a
person deliberating over whether, at a given moment in time, they currently have cancer; there is
a matter of fact as to whether the person has cancer or not, but due to their uncertainty, there
is a non-degenerate probability distribution that represents their degree of belief over those two
possibilities.

It can be illuminating to consider whether the community of mathematicians can be seen as
Bayesian reasoners, exploiting the distribution P(A|C') to make inferences. For example, the com-
mon use of abductive reasoning by mathematicians can be justified on Bayesian grounds. To see



this, let ¢ = (S, ), ¢ = (S, ¢’) be two distinct open questions, not contained in C', which share the
same formal system S. For simplicity, assume that mathematicians are quite confident that under
S, both ¢ and ¢’ are WFFs and are decidable. Formally, using generalized integrals, this means that
both point distributions P(v|q,C) = [dA P(A|C)A(v|q) and P(v|¢’,C) = [ dAP(A|C)A(v|¢) are
vanishingly small if evaluated for the valences v = u,n. Suppose as well that if ¢’ were a theorem
under &, that would make it more likely that ¢ was also a theorem, i.e., suppose that

P(v=tlg,CU{(q,t)}) > P(v=t|q,C)

(where “(¢/,t)” is shorthand for the event that the valence of ¢/ turns out to be ¢ if A(v|¢') is
sampled). Then by Bayes’ theorem, no matter what the distribution P(A|C) is, the probability
that ¢’ is true goes up if ¢ is true, i.e.,

P(v=tlg,CU{(q,t)}) > P(v =t|q,C)

Stripped down, this inference pattern can be explicated in two simple steps. First, suppose that
mathematicians believe that some hypothesis H would be more likely to be true if a different
hypothesis H' were true. Next, upon finding out that H actually is true, they assign higher
probability to H’ also being true. This general pattern of reasoning, in which we adopt a greater
degree of belief in one hypothesis because it would lend credence to some other hypothesis that we
already believe to be true, is known as “abduction” (Peirce, 1960), and plays a prominent role in
actual mathematical practice (Viteri and DeDeo, 2020). As we have just shown, it is exactly the
kind of reasoning one would expect mathematicians to use if they were Bayesian reasoners making
inferences about their own answer distribution A.

4.3 The Epistemic Value of Multiple Proof Paths

Note that real human mathematicians often have higher confidence that some question ¢ is a
theorem if many independent paths of reasoning suggest that is the case. To understand why this
might be Bayes-rational, for any question ¢, and any claims list size n, expand the prior probability

P(olg) = [ dA Al P(A)
= /d.AdC(n)dC(n —1)... A(v|q)P(A|C(n))P(C(n)|C(n—1))P(C(n—1)|C(n—2))...

Examining the integrand, we see that if many sequences C'(1),C(2),...,C(n) with high joint prior
probability all result in a value A(v|q)P(A|C(n)) that is peaked about v = ¢, then the probability
that ¢ is a theorem is high. This simple result can be seen as a justification of why real human
mathematicians should have higher confidence that ¢ is a theorem if “many independent paths of
reasoning” — many sequences C(1),C(2),...,C(n) — all suggest that ¢ is a theorem. This shows
how, as we mentioned in the introduction, the NDR machine model of human mathematicians lends
formal justification to the idea that, everything else being equal, a mathematical claim should be
believed more if there are multiple distinct lines of reasoning supporting that claim.

5 Measures over Multiverses

The mathematical universe hypothesis (MUH) argues that our physical universe is just one particu-
lar formal system, namely, the one that expresses the laws of physics of our universe (Schmidhuber,



1997; Tegmark, 1998; Hut et al., 2006; Tegmark, 2008, 2009, 2014). Similar ideas are advocated
by Barrow (1991, 2011), who uses the phrase “pi in the sky” to describe this view. Somewhat
more precisely, the MUH is the hypothesis that any physical world (i.e., any world bound by the
laws of physics) is isomorphic to a formal system. A key advantage of the MUH is that it allows
for a straightforward explanation of why it is the case that, to use Wigner’s (1960) phrase, math-
ematics is “unreasonably effective” in describing the natural world. If the natural world is, by
definition, isometric to mathematical structures, then the isometry between nature and mathemat-
ics is no mystery; rather, it is a tautology. While the MUH is accepted (implicitly or otherwise) by
many theoretical physicists working on cosmology, some disagree with various aspects of it; for an
overview of the controversy, see Hut et al. (2006).

Rephrased in terms of the NDR machine framework, previous versions of the MUH hold that
our physical universe is a mistake-free NDR world. That is, the physical universe is isomorphic
to a particular formal system S which in turn assigns, with certainty, a specific syntactic valence
to each possible string in the alphabet of S. Our approach allows for an additional possibility;
namely, we allow for the possibility that the physical world is isomorphic to an NDR world that
is not mistake-free. In such a world, some strings have their syntactic valence not because of
the perfect application of the rules of some formal system, but rather because of the stochastic
application of those very rules. Thus, our augmented version of the MUH allows for the possibility
that mathematical and physical reality are both fundamentally stochastic.

An idea closely related to the MUH as just defined is the mathematical multiverse hypothesis
(MMH). The MMH says that some non-singleton subset of formal systems is such that there is a
physical universe that is isomorphic to each element of that subset. Each of these possible physical
universes is taken to be perfectly real, in the sense that the formal system to which that universe
is isomorphic is not just the fictitious invention of a mathematician, but rather a description of
a physical universe. In this view, the world that we happen to live in is unique not because it is
uniquely real, but because it is our actual world. Following Lewis (1973), defenders of the MMH
understand claims about ‘the actual universe’ as indexical expressions, i.e. expressions whose
meaning can shift depending on contingent properties of their speaker (pp. 85-86).

A related concern of people working on the MMH (e.g. Schmidhuber 1997 and Tegmark 2014)
is how to specify a probability measure over the set of all universes, which we will refer to as an
MMH measure. The goal, loosely specified, is to treat such a measure as a prior distribution
over universes, take the associated data to be what we happen to know about our specific physical
universe, and then use Bayes’ theorem to specify the posterior distribution of which physical uni-
verse we inhabit, given what we know about our universe. In existing approaches to MMH, it is
assumed that the nature of physical reality is completely described by a set of recursive rules that
assign, with certainty, a particular syntactic valence to any string. This amounts to the assumption
that all physical universes are mistake-free NDR worlds. So the conventional conception of an
MMH measure is a distribution over mistake-free physical universes, i.e., a distribution over NDR
machines restricted to only allow those that produce mistake-free physical universes. A natural
extension, of course, is to have the MMH measure be a distribution over all NDR worlds, not
just those that are mistake-free. Thus, the probability measure over mathematical universes is a
probability distribution over all possible NDR worlds.



6 Do Practicing Mathematicians Believe that Math is Mistake-
Free?

In this section we show that the behavior of working mathematicians can only be Bayes rational if
they have a prior distribution P(A) that assigns positive probability to answer distributions that
are not mistake-free. In other words, either mathematicians are irrational, or they actually believe
it is possible that the mathematical universe is inherently noisy.

To see this, first fix some set of formal systems, 0 = {S}, and a set of questions 2(¢) formulated
in terms of the alphabets of those formal systems. Every mistake-free NDR machine whose claims
distribution ascribes nonzero probability to every subset of o must have the same (delta function)
answer distribution P(v|q) for every string q € 2(o). Therefore, any prior distribution over NDR
machines that only allows mistake-free ones must induce a delta function over the space of all
possible answer distributions A (implicitly restricted to the questions in any subset of 2(0)).
Moreover, that unique allowed answer distribution must be a single-valued map from questions to
answers, which we can write as V(gq). Note that such a “mistakes-free” prior does not only mean
that P(A) is restricted to single-valued functions, allowing any of several such functions; it means
that P(A) is restricted to a unique single-valued function. Intuitively, V' (q) is just the “omniscient”
function that assigns to any question ¢ = (S, ) the actual valence of ¢ under the formal system S.

Under that mistakes-free prior over NDR machines, P(A|C) would be undefined unless the
claims list C of the current community of mathematicians were mistake-free. In other words,
adopting that prior would mean assuming there is zero probability of a mistake in C. On the other
hand, we have just shown that under the mistakes-free prior, even if C' actually were mistake-
free, so that P(A|C) were well-defined, that posterior probability P(A|C) would have to equal
the prior P(A). So under the mistakes-free prior, P(A|C) would be a delta function about V(g).
In other words, loosely speaking, if P(.A) is restricted to mistake-free answer distributions, then
what is currently known by mathematicians forces a single-valued answer to all open questions
mathematicians are currently considering, along with any open questions they might consider in
the future.

Recall though that as described in the introduction, a typical mathematician would respond
to the question, “what is the probability that P = N P?” with an answer far from the extremal
values of 0 and 1. In other words, if you ask them, they will say that P(A|C) is very far from being
a delta function about some single-valued function V(g). In this sense, the behavior of human
mathematicians is only consistent with a prior P(.A) that assigns positive probability to NDR
machines in which strings are assigned their syntactic valences stochastically.

Mathematicians are, of course, free to admit to forming beliefs in way that is (very) far from
Bayes rational. But if they wish to maintain Bayes rationality, then they must admit that they
ascribe strictly positive prior probability to the possibility that the ultimate laws of mathematics
that humans will come up with (i.e., the answer distribution of the NDR machine of the community
of human mathematicians) are not even close to mistake-free. For those familiar with epistemic
logic, assigning zero prior to a mistake free answer distribution provides a novel way to resolve the
problem of logical omniscience, which arises if we assume that the prior over answer distributions
only assigns positive probability to mistake-free answer distributions.

7 Conclusion

Starting from the discovery of non-Fuclidean geometry, mathematics has been greatly enriched
whenever it has weakened its assumptions and expanded the range of formal possibilities that it



considers. Following in that spirit of weakening assumptions, here we have aimed to demonstrate
the potential fruitfulness of weakening the assumption that mathematics itself is fully deterministic.
We believe that this reveals a rich landscape of novel results and subtleties, many still waiting to
be uncovered.
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A Probabilistic Turing Machines

Perhaps the most famous class of computational machines are Turing machines. One reason for
their fame is that it seems one can model any computational machine that is constructable by
humans as a Turing machine. A bit more formally, the Church-Turing thesis states that “a
function on the natural numbers is computable by a human being following an algorithm, ignoring
resource limitations, if and only if it is computable by a Turing machine.”

There are many different definitions of Turing machines (TMs) that are “computationally equiv-
alent” to one another. For us, it will suffice to define a TM as a 7-tuple (R, A, b,v,7%,74, p) where:

1. R is a finite set of computational states;

2. A is a finite alphabet containing at least three symbols;
3. b € A is a special blank symbol;

4. v € Z is a pointer;

5. 7?2 € R is the start state;

6. 74 € R is the halt state; and

7. p: RXZ X A® — R xZ x A is the update function. It is required that for all triples
(r,v,T), that if we write (r/,v', T") = p(r,v,T), then v does not differ by more than 1 from v,
and the vector T” is identical to the vectors T for all components with the possible exception
of the component with index v;!

We sometimes refer to R as the states of the “head” of the TM, and refer to the third argument of
p as a tape, writing a value of the tape (i.e., of the semi-infinite string of elements of the alphabet)
as T

Any TM (R, X, b,v,r?,r4, p) starts with » = 72, the counter set to a specific initial value (e.g,
0), and with T consisting of a finite contiguous set of non-blank symbols, with all other symbols
equal to b. The TM operates by iteratively applying p, until the computational state falls in r4,
at which time it stops, i.e., any ID with the head in the halt state is a fixed point of p.

If running a TM on a given initial state of the tape results in the TM eventually halting, the
largest blank-delimited string that contains the position of the pointer when the TM halts is called
the TM’s output. The initial state of T' (excluding the blanks) is sometimes called the associated
input, or program. (However, the reader should be warned that the term “program” has been
used by some physicists to mean specifically the shortest input to a TM that results in it computing
a given output.) We also say that the TM computes an output from an input. In general, there
will be inputs for which the TM never halts. The set of all those inputs to a TM that cause it to
eventually halt is called its halting set.

The set of triples that are possible arguments to the update function of a given TM are some-
times called the set of instantaneous descriptions (IDs) of the TM. Note that as an alternative
to the definition in (7) above, we could define the update function of any TM as a map over an
associated space of IDs.

In one particularly popular variant of this definition of TMs the single tape is replaced by
multiple tapes. Typically one of those tapes contains the input, one contains the TM’s output (if

!Technically the update function only needs to be defined on the “finitary” subset of R x Z x A*°, namely, those
elements of R x Z x A°® for which the tape contents has a non-blank value in only finitely many positions.
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and) when the TM halts, and there are one or more intermediate “work tapes” that are in essence
used as scratch pads. The advantage of using this more complicated variant of TMs is that it is
often easier to prove theorems for such machines than for single-tape TMs. However, there is no
difference in their computational power. More precisely, one can transform any single-tape TM
into an equivalent multi-tape TM (i.e., one that computes the same partial function), as shown by
Arora and Barak (2009).

A universal Turing machine (UTM), M, is one that can be used to emulate any other TM.
More precisely, in terms of the single-tape variant of TMs, a UTM M has the property that for
any other TM M’, there is an invertible map f from the set of possible states of the tape of M’
into the set of possible states of the tape of M, such that if we:

1. apply f to an input string ¢’ of M’ to fix an input string o of M;
2. run M on o until it halts;
3. apply f~! to the resultant output of M:;

then we get exactly the output computed by M’ if it is run directly on o’.

An important theorem of computer science is that there exist universal TMs (UTMs). Intu-
itively, this just means that there exists programming languages which are “universal”, in that we
can use them to implement any desired program in any other language, after appropriate transla-
tion of that program from that other language. The physical CT thesis considers UTMs, and we
implicitly restrict attention to them as well.

Suppose we have two strings s! and s? where s' is a proper prefix of s2. If we run the TM on
s!, it can detect when it gets to the end of its input, by noting that the following symbol on the
tape is a blank. Therefore, it can behave differently after having reached the end of s! from how
it behaves when it reaches the end of the first £(s') bits in s2. As a result, it may be that both of
those input strings are in its halting set, but result in different outputs. A prefix (free) TM is
one in which this can never happen: there is no string in its halting set that is a proper prefix of
another string in its halting set. For technical reasons, it is conventional in the physics literature
to focus on prefix TMs, and we do so here.

The coin-flipping distribution of a prefix TM M is the probability distribution over the
strings in M’s halting set generated by IID “tossing a coin” to generate those strings, in a Bernoulli
process, and then normalizing. So any string o in the halting set has probability 21 /2 under the
coin-flipping prior, where €} is the normalization constant for the TM in question.

Finally, for our purposes, a Probabilistic Turing Machine (PTM) is a conventional TM as
defined by conditions (1)-(7), except that the update function p is generalized to be a conditional
distribution. In particular, we typically require that there is zero probability that applying such an
update conditional distribution violates condition (7). Depending on how we use a PTM to model
NDR, we may introduce other requirements as well.
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