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I argue that Einstein overlooked an important aspect of the relativity of time in never quite
realizing his quest to embody Mach’s principle in his theory of gravity. As a step towards that goal, I
broaden the Strong Equivalence Principle to a new principle of physics, the Cosmological Equivalence
Principle, to account for the role of the evolving average regional density of the universe in the
synchronisation of clocks and the relative calibration of inertial frames. In a universe dominated
by voids of the size observed in large-scale structure surveys, the density contrasts of expanding
regions are strong enough that a relative deceleration of the background between voids and the
environment of galaxies, typically of order 10−10ms−2, must be accounted for. As a result one finds
a universe whose present age varies by billions of years according to the position of the observer: a
timescape. This model universe is observationally viable: it passes three critical independent tests,
and makes additional predictions. Dark energy is revealed as a mis-identification of gravitational
energy gradients and the resulting variance in clock rates. Understanding the biggest mystery
in cosmology therefore involves a paradigm shift, but in an unexpected direction: the conceptual
understanding of time and energy in Einstein’s own theory is incomplete.

I. INTRODUCTION

In 1905 Einstein completely changed our understand-
ing of the nature of time. Rather than being an absolute
standard independent of the physical objects in the uni-
verse, time became an intrinsic property of the clocks car-
ried by the objects themselves. In comparing two clocks,
time could stretch and bend depending on the relative
speeds of particles over their histories.

One hundred years later we find ourselves in a circum-
stance with echoes of a century before. Einstein’s first
revolution, special relativity, overthrew the then popular
aether theories which had been invented to try to come to
grips with the difference between Maxwell’s equations for
the propagation of electromagnetic waves on one hand,
and Newton’s mechanics on the other. The historical par-
allels today are striking. Whereas once the Michaelson–
Morley experiment provided evidence that the Newto-
nian worldview was flawed, present cosmological obser-
vations suggest that the expansion rate of the universe
is accelerating, posing a foundational problem for our
understanding of physics. Again the first solution that
physicists have jumped to is to suppose the existence of
some mysterious fluid, “dark energy”, which permeates
the fabric of space, the 21st century aether.

In this essay I will argue that just like 100 years ago,
the real physics needed to solve the conundrum of dark
energy does not involve a fluid in the vacuum of space but
a deepening of our understanding of the nature of time,
in a manner which many physicists find counter-intuitive.
In particular, time as described by Einstein’s second rev-
olution, the general theory of relativity, is deeply more
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subtle than the näıve quasi-Newtonian concept that is
applied in the current standard model of cosmology. The
completion of Einstein’s second revolution will, I argue,
change our understanding of the universe and the foun-
dations of physics, by a better understanding of time.

The reason that physicists are quick to invent new
forces when confronted with “dark energy”, or even to
modify gravity in ways that could change solar system
physics, is that we usually think of general relativity as a
completed theory. Yet without even going to the strong
field regime, where the singularity theorems tell us gen-
eral relativity does break down, there are deep subtleties
in the definition of energy and momentum in general rel-
ativity, which have never been satisfactorily resolved.

The subtleties, which Einstein and many a mathemat-
ical relativist since have wrestled with, have their origin
in the equivalence principle, which means that we can
always get rid of gravity near a point. As a consequence,
the energy, momentum and angular momentum associ-
ated with the gravitational field, which have macroscopic
effects on the relative calibrations of the clocks and rods
of observers, cannot be described by local quantities en-
coded in a fluidlike energy-momentum tensor. Instead
they are at best quasilocal [1].

A simple way to understand this is to recall that in
the absence of gravity energy, momentum and angular
momentum of objects obey conservation laws. A con-
servation law simply means that some quantity is not
changing with time. But whose time? In general rela-
tivity, a dynamical theory of spacetime, where space and
time bend and warp in an evolving manner, a definition
of what is changing or not changing depends on how we
split spacetime into spatial hypersurfaces which evolve
with time, and how we choose particular canonical ob-
servers on such surfaces whose clocks are to measure the
changes. Since the mathematical structure of general rel-
ativity – its diffeomorphism invariance – does not depend
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on such choices of observer frames, there is no unique way
to define conservation laws.

The “quasilocality” of gravitational energy and mo-
mentum is very different to a nonlocality of interactions
in flat spacetime which some physicists occasionally pos-
tulate and which is anathema to many, myself included.
General relativity is entirely local in the sense of prop-
agation of the gravitational interaction, which is causal.
Indeed it thereby overcomes the nonlocality problem of
Newtonian gravity: there is no action at a distance. How-
ever, the curved background on which the interaction
propagates may contain its own energy and momentum,
when integrated over sufficiently large regions, and this
has to be understood in the calibration of local rods and
clocks at widely separated events. In dealing with the
structure of the whole universe it is inevitable that we
deal with separations on the largest scales possible.

Since the definition of quasilocal gravitational energy
and momentum [1] depends on spacetime splits that are
inherently noncovariant and nonunique, many questions
of naturalness of any particular definition arise. There
is a dilemma that any spacetime split inevitably breaks
a given particle motion into a motion of the background
and a motion with respect to the background; and this
may involve a degree of arbitrariness.

The question we are faced with is: which choices of
frame have the greatest utility for the physical descrip-
tion of the universe? I adopt the view that since quasilo-
cal gravitational energy gradients have their origin in the
equivalence principle, the primary criterion for making
such identifications is that the equivalence principle it-
self must be properly formulated, and respected, when
making macroscopic cosmological averages.

II. EINSTEIN’S UNFINISHED PRINCIPLE

In laying the foundations of general relativity, Einstein
sought to refine our physical understanding of that most
central physical concept: inertia. As he stated: “In a
consistent theory of relativity there can be be no inertia
relatively to ‘space’, but only an inertia of masses rela-
tively to one another” [2]. This is the general philosophy
that underlies Mach’s principle, which strongly guided
Einstein. However, the refinement of the understanding
of inertia that Einstein left us with in relation to gravity,
the Strong Equivalence Principle, only goes part-way in
addressing Mach’s principle.

Einstein’s conceptual route began with the Weak
Equivalence Principle or the Principle of Uniqueness of
Free Fall, known since the experiments of Galileo, that
all bodies subject to no forces other than gravity will fol-
low the same paths given the same initial positions and
velocities. Realising that this phenomenological obser-
vation implies a universality for gravity unlike that of
other interactions, Einstein sought to establish gravita-
tion as a property of a dynamical spacetime structure.
His first step towards that goal was the 1907 Equivalence

Principle [3]: All motions in an external static homo-
geneous gravitational field are identical to those in no
gravitational field if referred to a uniformly accelerated
coordinate system. In a small sealed region, an observer
on the Earth’s surface cannot perform experiments ob-
servationally distinguishable from those in a rocket mov-
ing with acceleration, g. This is because observers on
the Earth’s surface are not inertial observers, but accel-
erated observers pushed up by the static forces of the
earth beneath our feet. The natural state is free fall.

The Strong Equivalence Principle (SEP) then is the
statement that even in an arbitrary gravitational field,
by a choice of local coordinates we can always always find
a frame corresponding to the natural state of free fall: At
any event, always and everywhere, it is possible to choose
a local inertial frame (LIF) such that in a sufficiently
small spacetime neighbourhood all non-gravitational laws
of nature take on their familiar forms appropriate to the
absence of gravity, namely the laws of special relativity.
Since we can always eliminate the effects of gravity near
a point, instead of being a force in a pre-existing space
gravity becomes a feature of spacetime structure. Space
and time can curve and bend, and the mathematical ob-
ject that describes the bending, the connection, tells us
how to relate clocks and rods of freely falling particles at
widely separated events.

This is not the whole story, however, because as yet
it tells us nothing about the spacetime structure of our
actual universe. For that we need to solve Einstein’s field
equations

Gµν =
8πG

c4
Tµν (1)

to obtain the Einstein curvature tensor, Gµν , correspond-
ing to the distribution of matter sources in the energy-
momentum tensor, Tµν . The connection of general rela-
tivity then depends – via solutions of Einstein’s equations
– on the evolving distribution of matter.

Provided we have solved (1) over cosmological scales
for the observed universe, we have addressed Mach’s prin-
ciple which may be stated [4, 5]: “Local inertial frames
are determined through the distributions of energy and
momentum in the universe by some weighted average of
the apparent motions”. But Einstein never completed the
task of addressing Mach’s principle, as he did not specify
what is to be understood by the “suitable weighted aver-
age” of the evolving distribution of all the matter fields
that can influence the geometry at any event.

My thesis here is that a further refinement in the
understanding of inertia needs to be made to clarify
Mach’s principle in relating local frames to the global uni-
verse and to solve equations (1) on cosmological scales.
If one views the Einstein equations as specifying a 4–
dimensional continuum completely determined for all
space and all time, if we only knew the distribution of
matter, then the need for further refining the equivalence
principle is easily overlooked. However, general relativ-
ity is a causal theory, and the universe had a beginning.
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The geometry at any event can only depend on processes
within its past light cone, limited by the finite age of the
universe. Thus the Einstein equations should be viewed
as dynamical evolution equations for the geometry, lim-
ited by initial conditions with statistical fluctuations.

Einstein overlooked the possibility of further refining
the notion of inertia via the equivalence principle, since
the idea that the universe had a beginning only became
widely accepted decades after he first thought about gen-
eral relativity. His first journey through the founda-
tional questions of cosmological relativity had him wor-
rying about boundary conditions at spatial infinity in-
stead [2]. But events at spatial infinity outside the past
light cone are irrelevant if the universe had a beginning.
Although the problem of defining gravitational energy
troubled Einstein greatly, and the relation of the geome-
try of bound systems to expanding space was one whose
foundational significance was obvious to him [6], once the
expanding universe became accepted he never returned to
the equivalence principle with thought experiments like
those he had posed in 1907. I will take such steps, but
first let us recall current standard practice in cosmology.

III. AVERAGING IN COSMOLOGY

To define a “suitable weighted average of the apparent
motions” for Mach’s principle requires that we under-
stand the relation between local regional geometry and
average geometry on cosmological scales [7]. In solving
Einstein’s equations for the universe our standard cos-
mology still takes the simplifying assumption, made in
the first models of Einstein, Friedmann and Lemâıtre
80–90 years ago, that the structure of the universe can
be ignored on average, and matter treated as a homoge-
neous isotropic fluid. By the evidence of the uniformity of
the cosmic microwave background (CMB) radiation, the
universe certainly did satisfy this approximation when
the universe was a few hundred thousand years old and
the first atoms formed. The perturbations in baryons
and photons then had an amplitude δρ/ρ∼ 10−5 above
the mean density, and the amplitude of perturbations in
nonbaryonic dark matter was probably only one to two
orders of magnitude stronger.

At the present epoch, however, following the growth
of complex structures from gravitational collapse, the
universe is only statistically homogeneous if sampled on
large scales of order 150–300 Mpc. A box of the size of
statistical homogeneity may be as small as 100h−1 Mpc,
where h is the dimensionless parameter related to the
Hubble constant by H

0
= 100h km sec−1 Mpc−1. But

within such a box density contrasts δρ/ρ∼−1 are ob-
served over scales 30h−1Mpc, which is the typical di-
ameter of voids which form 40%–50% of the volume of
the present universe [8]. If we include the numerous
minivoids of smaller diameters, then the volume of the
present universe is dominated by empty voids, while clus-
ters of galaxies are spread in a cosmic web of bubble-like

sheets that surround the voids, and thin filaments that
thread them.

Over the scales on which |δρ|/ρ∼ 1 in expanding re-
gions, we can expect commensurate gradients in Ricci
spatial curvature. Our standard cosmology by contrast
assumes a uniform Ricci scalar curvature, and in apply-
ing it we implicitly assume we can ignore spatial curva-
ture gradients and variations of the relative calibrations
of clocks and rods of observers within cells coarse grained
at the scale of statistical homogeneity, 100h−1 Mpc. Such
an assumption, which effectively assigns one single cos-
mic time to the whole universe, has been made for con-
venience for 80–90 years but is not deeply grounded in
theoretical concepts or observational fact.

One reason that the assumptions of the standard cos-
mology are not often questioned, despite the evidence of
our telescopes, is that cosmological gravitational fields
are weak due to low average densities of matter. It is
commonly believed that as long as we are in the weak-
field limit that we do not have to worry about the space
and time distorting complications of general relativity, as
they only become important near very compact objects
such as neutron stars or black holes. What is forgot-
ten, however, is that the weak-field limit is always taken
about a background, and once inhomogeneities develop
in the universe there are no exact symmetries to describe
the background.

In the absence of an exact symmetries, mathematically
described by Killing vectors, there is no general solution
to the problem of how to keep two clocks synchronized in
general relativity. Our usual intuition about strong and
weak gravitational fields is based on asymptotically flat
solutions such as the Schwarzschild and Kerr geometries
which have an exact time symmetry. Since the universe
is expanding, however, no time symmetry exists abso-
lutely. I will argue that in the absence of such a sym-
metry a small relative deceleration of average regional
backgrounds can cumulatively lead to large variations in
the clock rates of canonically defined observers.

Numerical simulations of cosmic structure made on
large supercomputers today assume only Newtonian
gravity in the background of an expanding homogeneous
universe, whose expansion rate is given by that of a
Friedmann–Lemâıtre–Robertson–Walker (FLRW) model
put in by hand. The deceleration of the local expansion
is not directly coupled to the motion of the mass particles
as it would be in Einstein’s equations.

At this point I believe we have overlooked a crucial
foundational question. To make the Newtonian approx-
imation, we must first make the weak field approxima-
tion about a suitable static Minkowski space. But given
that the universe is not static, in choosing an appropri-
ate Minkowski frame we first have to answer the ques-
tion: what is the largest scale on which the SEP can be
applied?
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IV. THE COSMOLOGICAL EQUIVALENCE
PRINCIPLE

My proposal for applying the equivalence principle on
cosmological scales is to deal with the average effects of
the evolving density by extending the SEP to larger re-
gional frames while removing the time translation and
boost symmetries of the LIF as follows [9]:

At any event, always and everywhere, it is possible to
choose a suitably defined spacetime neighbourhood, the
cosmological inertial frame (CIF), in which average mo-
tions (timelike and null) can be described by geodesics in
a geometry that is Minkowski up to some time-dependent
conformal transformation,

ds2

CIF
= a2(η)

[

−dη2 + dr2 + r2(dθ2 + sin2 θ dφ2)
]

. (2)

This statement of the Cosmological Equivalence Prin-
ciple (CEP) reduces to the standard SEP if a(η) is con-
stant, or alternatively over very short time intervals dur-
ing which the time variation of a(η) can be neglected. In
those cases the CIF (2) reduces to a LIF. The spatially
flat FLRW metric (2) is to be viewed as a regional frame,
not a geometry for the whole universe.

The SEP says nothing about the average effect of grav-
ity, and therefore nothing about the “suitable weighted
average of the apparent motions” of the matter in the
universe. Since gravity for ordinary matter fields obey-
ing the strong energy condition is universally attractive,
the spacetime geometry of a universe containing mat-
ter is not stable, but is necessarily dynamically evolving.
Therefore, accounting for the average effect of matter to
address Mach’s principle means that the relevant frame
is one in which time symmetries are removed.

Furthermore, if we are to demand a smooth Newtonian
gravitational limit in all circumstances, then we have to
accommodate the fact that Newtonian gravity deals with
just one scalar source, the density, whereas general rela-
tivity is tensorial. This means that we must be dealing
with an average spacetime with symmetries in taking a
Newtonian gravity limit. The metric (2) removes the
time symmetries while preserving the isotropy and ho-
mogeneity of space regionally within a CIF.

What has this got to do with inertia? Let us first recall
the well-known property that in the case of the volume
expanding motions illustrated by Fig. 1, we cannot locally
distinguish the case of comoving particles at rest in an
expanding metric (2) from the case of particles in motion
in the static Minkowski space of the relevant LIF if we
were to choose Riemann normal coordinates. On local
scales, both yield the Hubble law redshift

z '
H0`r

c
, H0 =

ȧ

a

∣

∣

∣

∣

t
0

where `r is the radial proper distance from an observer at
the origin to a source, and an overdot denotes a derivative
with respect to t, where c dt = a dη. This is true whether
the exact relation, z + 1 = a

0
/a, is used or the radial

t

FIG. 1: A set of particles undergoes an isotropic spatial 3–
volume expansion in a spatially flat local region. It is im-
possible to locally distinguish the case of particles at rest in
a dynamically expanding cosmological space from particles
moving isotropically in a static Minkowski space. One spatial
dimension is suppressed.

Doppler formula z + 1 = [(c + v)/(c − v)]1/2 of special
relativity is used, before making a local approximation.

Rather than simply invoking static special relativistic
LIFs over short time intervals, the CEP demands that we
can always find regional frames (2) for arbitrarily long
time intervals during which the motion of the particles
is decelerated, ä < 0, by the average density of matter.
As Einstein demanded, there should only be inertia of
masses relative to masses. Since the deceleration of the
volume expansion is due to the backreaction of the av-
erage density of matter particles in defining their own
background, the CEP thus represents a refinement in the
understanding of inertia. We can always find regional
frames (2) in which the average volume-expanding mo-
tion with deceleration is such that we cannot tell whether
particles subject to such motion are at rest in an expand-
ing space, or moving in a static space. The argument
about whether particles are moving or space is expand-
ing is an argument about something that is fundamen-
tally indistinguishable.

V. THOUGHT EXPERIMENTS

Just as with the original 1907 Einstein equivalence
principle, the order of magnitude of relevant effects can
be determined from thought experiments. To demon-
strate this, I will first show that a suitable equivalent
of decelerated Minkowski space particles can always be
found for the motion of a congruence of comoving parti-
cles in (2), even for arbitrarily long time intervals.
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A. Semi-tethered lattices

Let us construct what I will call the semi-tethered lat-
tice by the following means. Take a lattice of Minkowski
observers, initially moving isotropically away from each
nearest neighbour at uniform initial velocities. The lat-
tice of observers are chosen to be equidistant along mu-
tual oriented x̂, ŷ and ẑ axes. Now suppose that the
observers are each connected to six others by strings of
negligible mass and identical tension along the mutually
oriented spatial axes, as in Fig. 2. The strings are not
fixed but unwind freely from spools on which an arbitrar-
ily long supply of string is wound. The strings initially
unreel at the same uniform rate, representing a “reces-
sion velocity”. Each observer carries synchronised clocks,
and at a prearranged local proper time all observers ap-
ply brakes to each spool, the braking mechanisms having
been pre-programmed to deliver the same impulse as a
function of local time.

FIG. 2: The semi-tethered lattice. (See text for description.)
The time evolution of the lattice follows a course similar to
that of the spatial grid in Fig. 1, with deceleration.

The semi-tethered lattice experiment is directly anal-
ogous to the decelerating volume expansion of (2) due
to some average homogeneous matter density, because it
maintains the homogeneity and isotropy of space over a
region as large as the lattice. Work is done in applying
the brakes, and energy can be extracted from this – just
as kinetic energy of expansion of the universe is converted
to other forms by gravitational collapse. Since brakes are
applied in unison, however, there is no net force on any
observer in the lattice, justifying the inertial frame inter-
pretation. Even if the braking function has an arbitrary
time profile, provided it is applied uniformly at every
lattice site the clocks will remain synchronous in the co-
moving sense, as all observers have undergone the same
relative deceleration.

B. Relative deceleration of regional backgrounds

Let us now consider two sets of disjoint semi-tethered
lattices, with identical initial local expansion velocities,
in a background static Minkowski space. (See Fig. 3(a).)
Observers in the first congruence apply brakes in uni-
son to decelerate homogeneously and isotropically at one
rate. Observers in the second congruence do so similarly,
but at a different rate. Suppose that when transformed

to a global Minkowski frame, with time t, that at each
time step the magnitudes of the 4–decelerations satisfy
α

1
(t) > α

2
(t) for the respective congruences. By special

relativity, since members of the first congruence decel-
erate more than those of the second congruence, at any
time t their proper times satisfy τ

1
< τ

2
. The members

of the first congruence age less quickly than members of
the second congruence.

t

more deceleration
less deceleration

t i

t0

(a)

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

(b)

FIG. 3: Two equivalent situations: (a) in Minkowski space
observers in separate semi–tethered lattices, initially expand-
ing at the same rate, apply brakes homogeneously and isotrop-
ically within their respective regions but at different rates;
(b) in the universe which is close to homogeneous and
isotropic at last-scattering comoving observers in separated
regions initially move away from each other isotropically, but
experience different locally homogeneous isotropic decelera-
tions as local density contrasts grow. In both cases there is a
relative deceleration of the observer congruences and those in
the region which has decelerated more will age less.

By the CEP, the case of volume expansion of two dis-
joint regions of different average density in the actual
universe is entirely analogous. The equivalence of the
circumstance rests on the fact that the expansion of the
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universe was extremely uniform at the time of last scat-
tering, by the evidence of the CMB. At that epoch all
regions had almost the same density – with tiny fluc-
tuations – and the same uniform Hubble flow. At late
epochs, suppose that in the frame of any average cosmo-
logical observer there are expanding regions of different
density which have decelerated by different amounts by
a given time, t, according to that observer. Then by
the CEP the local proper time of the comoving observers
in the denser region, which has decelerated more, will be
less than that of the equivalent observers in the less dense
region which has decelerated less. (See Fig. 3(b).) Con-
sequently the proper time of the observers in the more
dense CIF will be less than that of those in the less dense
CIF, by equivalence of the two situations.

The fact that a global Minkowski observer does not ex-
ist in the second case does not invalidate the argument.
The global Minkowski time is just a coordinate label. In
the cosmological case the only restriction is that the ex-
pansion of both average congruences must remain homo-
geneous and isotropic in local regions of different average
density in the global average t =const slice. Provided
we patch the regional frames together suitably, then if
regions in such a slice are still expanding and have a sig-
nificant density contrast we can expect a significant clock
rate variance.

This equivalence directly establishes the idea of a gravi-
tational energy cost for a spatial curvature gradient, since
the existence of expanding regions of different density
within an average t =const slice implies a gradient in the
average Ricci scalar curvature, 〈R〉, on one hand, while
the fact that the local proper time varies on account of
the relative deceleration implies a gradient in gravita-
tional energy on the other.

VI. THE TIMESCAPE AND “DARK ENERGY”

Given the complex structure of voids, walls and fila-
ments described in Sec. III, then if we model the uni-
verse that we see we must account for its present epoch
inhomogeneity. Buchert’s equations [11] provide a suit-
able framework for describing the average evolution of
Einstein’s equations in an inhomogeneous universe, and
give corrections to the Friedmann equations. The inter-
pretation of Buchert’s equations has been controversial
[12, 13]. The reason for this stems from the fact that
they involve spatial averages. In general relativity we
measure invariants of the local metric, and over the scales
on which the geometry is inhomogeneous the local met-
ric can vary substantially. Thus every observer cannot be
the same average observer. We must account not only for
how inhomogeneity affects average evolution, but also for
how the variance in the geometry affects the calibration
of local clocks and rods relative to the average.

I have developed a new physical interpretation [10] of
solutions to the Buchert equations, from the observation
that structure formation provides us with a natural split

of scales. We and the objects we observe are in galax-
ies which formed from density perturbations that were
greater than critical density, whereas the volume-average
location today is in an underdense void. By the CEP
we must account for the gravitational energy costs of
gradients in spatial curvature between galaxies and the
volume-average voids [8] in the relative calibrations of
regional clocks.

The relevant average cosmic rest frame for the universe
is one in which the underlying regional expansion of CIFs
remains uniform in terms of the rate of change of local
proper distances with respect to local proper times of
ideal observers who measure an isotropic CMB [9, 10].
The relation between proper volume and proper diam-
eter is different in regions of different Ricci curvature.
Consequently, even though voids open up faster when
measured by any one set of clocks, since the clocks of
isotropic observers in voids tick faster due to a weaker
relative deceleration of their background, there can still
be an underlying uniform local Hubble flow.

There is still a Copernican principle: we are aver-
age observers for observers in a galaxy. However, the
local environment of bound systems which have decou-
pled from the expansion of space can differ systematically
from the local environment within freely expanding space
in voids. Observers in both locations can measure an
isotropic CMB, but those in voids will measure a cooler
mean CMB temperature and an angular anisotropy scale
moved to smaller angles on account of differences in grav-
itational energy and spatial curvature respectively.

Cosmic acceleration is an apparent effect [10, 14] which
arises when we mistakenly try to fit a Friedmann model to
the whole universe with the incorrect assumption that the
local spatial curvature and local clock rates of isotropic
observers everywhere are identical to our own. An ob-
server in a void will infer no cosmic acceleration, but ob-
servers in galaxies draw different conclusions when con-
verting measured luminosity distances to an acceleration
using two derivatives of a different time parameter.

The epoch of onset of apparent cosmic acceleration is
intimately tied to the growth of cosmic structure. It be-
gins at a redshift z ' 0.9 when the void fraction reaches
59% [10, 14]. One finds a model universe [14], which by
Bayesian comparison to supernovae data fits at a level
statistically indistinguishable from the standard cosmol-
ogy with a cosmological constant [15]. Furthermore, it
matches the angular scale of the sound horizon seen in
the CMB anisotropy spectrum, and the comoving scale
of the baryon acoustic oscillation [15], and may explain
other puzzles. Several tests will enable the model to be
distinguished from homogeneous models with dark en-
ergy by future experiments [16].

The most startling conclusion is that the age of the
universe can vary by billions of years today depending
on whether one is an isotropic observer in a void or a
galaxy. In a galaxy the best-fit age [15] is about 14.7 bil-
lion years, at a volume-average position about 18.6 bil-
lion years, and in the centre of a void even larger. This
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large variance in clocks is counter-intuitive to physicists
because we are talking about weak fields. However, in
the absence of exact symmetries there is no solution to
the problem of clock synchronization in general relativ-
ity, even for weak fields. The CEP extends the conceptual
principles of general relativity to address this problem in
a natural manner. Computing the effect [9] one finds that
a small relative deceleration of backgrounds of differently
evolving regional densities, typically of order 10−10ms−2,
cumulatively leads to the differences claimed when inte-
grated over the lifetime of the universe .

In 1905 Einstein established that time was relative, but
in assuming simple model universes described by a sin-
gle global frame, and no structure, we have for the past
80–90 years overlooked the deep possibilities of general
relativity, imagining only a universe described by a sin-
gle cosmic time. A universe as inhomogeneous as the one
we observe cannot be adequately described by a single
global frame, but if we extend the equivalence princi-
ple to admit regional frames (2), in a manner consistent
with Mach’s principle, then the universe that is revealed

[10, 14] is a timescape whose age varies with the inhomo-
geneous geometry, a structure much richer in its beauty
and subtleties.

In 1917 Einstein realised that in the presence of mat-
ter the universe must change with time. Faced with the
dilemma that this contradicted the cosmological precon-
ceptions of his time, Einstein introduced a cosmological
constant to try to force the universe to be static [2]. I
believe that the cosmic mystery of our time, dark energy,
requires that we return to first principles and attempt to
think in the way Einstein taught us to think, rather than
compounding his greatest blunder. If I am correct, then
the importance of understanding gravitational energy in
relation to the dynamical nature of time and space is po-
tentially of foundational importance for quantum gravity
too. Einstein’s revolution is not complete.
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