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ABSTRACT 

 
Our mathematical models may appear unreasonably effective to us, but only if we forget to take into 
account who we are: we are the children of this Cosmos. We were born here and we know our way 
around the block, even if we do not always appreciate just how wonderful an achievement that is. 

___ 
 
 

“[A]ll our science, measured against reality, is primitive and 
childlike – and yet it is the most precious thing we have.” 
– Albert Einstein [1, p. 404] 
 
“*…+ I seem to have been only like a boy playing on the sea-shore, 
and diverting myself in now and then finding a smoother pebble 
or a prettier shell than ordinary, whilst the great ocean of truth lay 
all undiscovered before me.” 
– Isaac Newton1 [2, p. 54] 

 
 
Mathematics may seem unreasonably effective in the natural sciences, in particular in physics [4]. In 
this essay, I argue that this judgment can be attributed, at least in part, to selection effects. In 
support of this central claim, I offer four elements. The first element is that we are creatures that 
evolved within this Universe, and that our pattern finding abilities are selected by this very 
environment. The second element is that our mathematics – although not fully constrained by the 
natural world – is strongly inspired by our perception of it. Related to this, the third element finds 
fault with the usual assessment of the efficiency of mathematics: our focus on the rare successes 
leaves us blind to the ubiquitous failures (selection bias). The fourth element is that the act of 
applying mathematics provides many more degrees of freedom than those internal to mathematics. 
This final element will be illustrated by the usage of ‘infinitesimals’ in the context of mathematics and 
that of physics. But first, I briefly expose my views of science and mathematics, since these form the 
canvass of my central claim. 
 

                                                           
1
 Attributed to Isaac Newton shortly before his death (so in 1727 our shortly before), from an anecdote in turn 

attributed to [Andrew Michael] Ramsey by J. Spence [2]. See also footnote 31 in [3]. 
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1. Toy model of science 
 
Science can be viewed as a long-lasting and collective attempt at assembling an enormous jigsaw 
puzzle. The pieces of the puzzle consist of our experiences (in particular those that are 
intersubjectively verifiable) and our argumentations about them (often in the form of mathematical 
models and theories). The search for additional pieces is part of the game. Any piece that we add to 
the puzzle at one time may be removed later on. Nobody knows how many pieces there are, what 
the shape of the border looks like, or whether the pieces belong to the same puzzle at all. We 
assume optimistically that this is the case, indeed, and we attempt to connect all the pieces of the 
puzzle that have been placed on the table so far.2 
 
So, like Einstein and (allegedly) Newton in the quotes appearing on the title page, I view science as a 
playful and limited activity, which is at the same time a highly valuable and unprecedented one. 
Scientific knowledge is fallible, but there is no better way to obtain knowledge. Hence, it seems wise 
to base our other epistemic endeavors (such as philosophy) on science – a position known as 
‘naturalism’. In addition, there is no more secure foundation for scientific knowledge beyond science 
itself. The epistemic position of ‘coherentism’ lends support to the positive and optimistic project of 
science. It has been phrased most evocatively by Otto Neurath [7, p. 206]: 
 

“Like sailors we are, who must rebuild their ship upon the open sea, without ever being able to 
put it in a dockyard to dismantle it and to reconstruct it from the best materials.”3 

 
We are in the middle of something and we are not granted the luxury of a fresh start. Hence, we 
cannot analyze the apparent unreasonable effectiveness of mathematics in science from any better 
starting point either. Condemned we are to deciphering the issue from the incomplete picture that 
emerges from the scientific puzzle itself, while its pieces keep moving. A dizzying experience. 
 
Since I mentioned “mathematical models and theories”, I should also express my view on those.4 To 
me, mathematics is a long-lasting and collective attempt at thinking systematically about 
hypothetical structures – or imaginary puzzles, if you like. (More on this in section 2.2 below.) 
 
 

2. Selection effects behind perceived effectiveness of mathematics in physics 
 
The four elements brought to the fore in this section collectively support my deflationary conclusion, 
that the effectiveness of mathematics is neither very surprising nor unreasonable. 
 

                                                           
2
 Ultimately, science is about storytelling. “The anthropologists got it wrong when they named our species 

Homo sapiens (‘wise man’). In any case it's an arrogant and bigheaded thing to say, wisdom being one of our 

least evident features. In reality, we are Pan narrans, the storytelling chimpanzee.” ― Ian Stewart, Jack Cohen, 

and Terry Pratchett (2002) [6, p. 32]. 

3
 This is my translation of the German quote [7, p. 206]: 

“Wie Schiffer sind wir, die ihr Schiff auf offener See umbauen müssen, ohne es jemals in einem Dock zerlegen 

und aus besten Bestandteilen neu errichten zu können.” 

4
 In the current context, I differentiate little between ‘models’ and ‘theories’. For a more detailed account of 

scientific models, see [5]. 
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2.1 A natural history of mathematicians 
 
This section addresses the two following questions. What enables us to do mathematics at all? And 
how is it that we cannot simply describe real-world phenomena with mathematics, but even predict 
later observations with it? I think that we throw dust in our own eyes if we do not take into account 
to which high degree we – as a biological species, including our cognitive abilities that allow us to 
develop mathematics – have been selected by this reality. 
 
To address the matter of whether mathematical success in physics is trick or truth (or something 
else), and in the spirit of naturalism and coherentism (section 1), we need to connect different pieces 
of the scientific puzzle. In the ancient Greek era, the number of available pieces was substantially 
lower than it is now. Plato was amongst the first to postulate parallel worlds: alongside our concrete 
world, populated by imperfect particulars, he postulated a world of universal Ideas or ideal Forms, 
amongst which the mathematical Ideas sat on their thrones of abstract existence.5 In this view, our 
material world is merely an imperfect shadow of the word of perfect Forms. Our knowledge of 
mathematics is then attributed to our soul’s memories from a happier time, at which it had not yet 
been incarcerated in a body and its vista had not yet been limited by unreliable senses. 
 
This grand vision of an abstract world beyond our own has crippled natural philosophy ever since. 
The time has come to lay this view to rest and to search for better answers, guided by science. 
Although large parts of the scientific puzzle remain missing in our time, I do think that we are in a 
better position than the ancient Athenian scholars to descry the contours of an answer to the 
questions posed at the beginning of this section. 
 
Let us first take stock of what is on the table concerning the origin of our mathematical knowledge. Is 
mathematical knowledge innate, as Plato’s view implied? According to current science, the matter is 
a bit more subtle: mathematical knowledge is not innate (unfortunately, since otherwise we would 
not have such a hard time learning or teaching mathematics), but there are robust findings that very 
young children (as well as newborns of non-human animals, for that matter) possess numerical 
abilities [8, 9]. So, we possess innate cognitive abilities, that allow us to learn how to count and – 
with further effort – to study and to develop more abstract forms of mathematics. 
 
This raises the further question as to the origin of these abilities. To answer it, we rely on the 
coherent picture of science, which tells us this: if our senses and reasoning did not work at all, at 
least to an approximation sufficient for survival, our ancestors would not have survived long enough 
to raise offspring and we would not have come into being. Among the traits that have been selected, 
our ancestors passed on to us certain cognitive abilities (as well as associated vices: more on this 
below). On this view, we owe our innate numerical abilities to the biological evolution of our species 
and its predecessors. 
 
Let me give a number of examples to illustrate how our proto-mathematical capacities might have 
been useful in earlier evolutionary stages of our species. Being able to estimate and to compare the 
number of fruits hanging from different trees contributes to efficient foraging patterns. So does the 
recognition of regional and seasonal6 patterns in the fruition of plants and the migration of animals. 
And the ability to plan future actions (rather than only being able to react to immediate incentives) 
requires a crude form of extrapolation past observations. These traits, which turned out to be 

                                                           
5
 I will have more to say on the ancient Greek view on mathematics and science in section 3. 

6
 Or ‘spatiotemporal’, if you like to talk like a physicist. 
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advantageous during evolution, lie at the basis of our current power to think abstractly and to act 
with foresight. 
 
Our current abilities are advanced, yet limited. Let us first assess our extrapolative capacities: we are 
far from perfect predictors of the future. Sometimes, we fail to take into account all the factors that 
are relevant, or we are faced with deterministic, yet intrinsically chaotic systems. Consider, for 
example, the solar eclipse of March 20, 2015. This impending occultation was predicted many years 
ahead. However, whether the weather will be such that we can view the phenomenon from a 
particular position on the Earth’s surface, that is something we cannot predict reliably a week ahead. 
Let us then turn to the more basic cognitive faculty of recognizing patterns. We are prone to 
patternicity, which is a bias that makes us see patterns in accidental correlations [10]. This 
patternicity also explains why we like to play ‘connect the dots’ while looking at the night sky: our 
brains are wired to see patterns in the stars, even though the objects we thus group into 
constellations are typically not in each other’s vicinity; the patterns are merely apparent from our 
earthbound position. 
 
In our evolutionary past, appropriately identifying many patterns yielded a larger advantage than the 
disadvantage due to false positives. In the case of a tiger, it is clear that one false negative can be 
lethal. But increasing appropriate positives invariable comes at the cost of increasing false positives 
at well.7 
 
As a species, we must make do without venom or an exoskeleton, alas, but we have higher cognitive 
abilities that allow us to plan our actions and to devise mathematics. These are our key traits for 
survival (although past success does not guarantee our future-proofness). In sum, mathematics is a 
form of human reasoning – the most sophisticated of its kind. When this reasoning is combined with 
empirical facts, we should not be perplexed that – on occasions – this allows us to effectively 
describe and even predict features of the natural world. The fact that our reasoning can be applied 
successfully to this aim is precisely why the traits that enable us to achieve this were selected in 
biological evolution. 
 

2.2 Mathematics as constrained imagination 
 
In my view, mathematics is about exploring hypothetical structures. Where do these structures come 
from? Well, they may be direct abstractions of objects or processes in reality, but they may also be 
inspired by reality in a more indirect fashion. For instance, we could start from an abstraction of an 
actual object or process, only to negate one or more of its properties – just think of mathematics’ 
ongoing obsession with the infinite (literally the non-finite). Examples involving such an explicit 
negation clearly demonstrate that the goal of mathematics is not representation of the real world or 
advancing natural science. Nevertheless, this playful and free exercise in pure mathematics may – 
initially unintended and finally unexpected – turn out to be applicable to abstractions of objects and 
processes in reality (completely different from the one we started from). Stated in this way, the 
effectiveness of mathematics surely seems unreasonable. However, I argue that there are additional 
factors at play that can explain this success – making these unintentional applications of mathematics 
more likely after all. 
 
Let us return to the toy metaphor, assuming, for definiteness, that the puzzle of natural science 
appears to be a planar one. Of course, this is no reason for mathematicians not to think up higher 
dimensional puzzles, since their activity is merely imaginative play, unhindered by any of the 

                                                           
7
 The same trade-off occurs, for instance, in medical testing and law cases. 
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empirical jigsaw pieces. However, it is plausible that the initial inspiration for considering, say, 
toroidal or hypercubic puzzles has been prompted by difficulties with fitting the empirical pieces into 
a planar configuration.8 In addition, and irrespective of its source, this merely mathematical construct 
may subsequently prompt speculations about the status of the scientific puzzle. Due to feedback 
processes like these, the imaginative play is not as unconstrained as we might have assumed at the 
outset. The hypothetical structures of mathematics are not concocted in a physical or conceptual 
vacuum. Even in pure mathematics, this physical selection bias acts very closely to the source of 
innovation and creativity. 
 
Mathematics evolves by considering variations on earlier ideas and selection.  Just like in biology, this 
variation produces many unviable results. Evolution is squandermanious – quite the opposite of 
efficient. The selection process is mainly driven by cultural factors, which are internal to mathematics 
(favoring theories that exhibit epistemic virtues such as beauty and simplicity). But, as we saw in the 
previous paragraph, empirical factors come into play as well, mediated by external interactions with 
science. Although mathematics is often described as an a priori activity, unstained by any empirical 
input, this description itself involves an idealization. In reality, there is no a priori. 
 

2.3 Mathematics fails science more often than not 
 
For each abstraction, many variations are possible, the majority of which are not applicable to our 
world in any way. The effectiveness perceived by Wigner [4] may be due to yet another form of 
selection bias: one that makes us prone to focus on the winners, not the bad shots. Moreover, even 
scientific applications of mathematics that are widely considered to be highly successful have a 
limited range of applicability and even within that range they have a limited accuracy. 
 
Among the books in mathematical libraries, many are filled with theories for which not a single real 
world application has been found.9 We could measure the efficiency of mathematics for the natural 
science as follows: divide the number of pages that contain scientifically applicable results by the 
total number of pages produced in pure mathematics. My conjecture is that, on this definition, the 
efficiency is very low. In the previous section we saw that research, even in pure mathematics, is 
biased towards the themes of the natural sciences. If we take this into account, the effectiveness of 
mathematics in the natural sciences does come out as unreasonable – unreasonably low, that is.10 
 
Maybe it was unfair to focus on pure mathematics in the proposed definition for efficiency? A large 
part of the current mathematical corpus deals with applied mathematics, from differential equations 
to bio-statistics. If we measure the efficiency by dividing the number of ‘applicable pages’ by the total 
number of pages produced in all branches of mathematics, we certainly get a much higher 
percentage. But, now, the effectiveness of mathematics in the natural sciences appears reasonable 
enough, since research and publications in applied mathematics are (rightfully) biased towards real 
world applicability. 
 

                                                           
8
 In this example, considering the negation of the planar assumption – rather than any of the other background 

assumptions – is prompted by troubles in physics. 

9
 This is fine, of course, since this is not the goal of mathematics. 

10
 Here, I recommend humming a Shania Twain song: “So, you’re a rocket scientist. That don't impress me 

much.” If you are too young to know this song, consult your inner teenager for the appropriate dose of 

underwhelmedness. 
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At this point, you may object that Wigner made a categorical point that there is some part of 
mathematics at all that works well, even if this does not constitute all or most of mathematics. I am 
sympathetic to this objection (and the current point is the least important in my argument), but then 
what is the contrasting case: that no mathematics would describe anything in the Universe? I offer 
some speculations about this in section 3. 
 

2.4 Abundant degrees of freedom in applying mathematics: 
the case of infinitesimals 

 
The natural sciences aim to formulate their theories in a mathematically precise way, so it seems 
fitting to call them the ‘exact sciences’. However, the natural sciences also allow – and often require 
– deviations from full mathematical rigor. Many practices that are acceptable to physicists – such as 
order of magnitude calculations, estimations of errors, and loose talk involving infinitesimals – are 
frowned upon by mathematicians. Moreover, all our empirical methods have a limited range and 
sensitivity, so all experiments give rise to measurement errors. Viewed as such, one may deny that 
any empirical science can be fully exact. In particular, systematic discrepancies between our models 
and the actual world can remain hidden for a long time, provided that the effects are sufficiently 
small, compared to our current background theories and empirical techniques. 
 
To illustrate this point, I will concentrate on the calculus – the mathematics of differential and 
integral equations – and consider the role of infinitesimals in mathematics as well as in physics. 
 
In mathematics, infinitesimals played an important role during the development of the calculus, 
especially in the work of Leibniz [11], but also in that of Newton (where they figure as ‘evanescent 
increments’) *12]. The development of the infinitesimal calculus was motivated by physics: geometric 
problems in the context of optics, as well as dynamical problems involving rates of change. Berkeley 
[13+ ridiculed infinitesimals as “ghosts of departed quantities”. It has taken a long time to find a 
consistent definition of this concept that holds up the current standards of mathematical rigour, but 
meanwhile this has been achieved [14]. The contemporary definition of infinitesimals considers them 
in the context of an incomplete, ordered field of ‘hyperreal’ numbers, which is non-Archimedean: 
unlike the field of real numbers, it does contain non-zero, yet infinitely small numbers 
(infinitesimals). The alternative calculus based on hyperreal numbers, called ‘non-standard analysis’ 
(NSA), is conceptually closer to Leibniz’s original work (as compared to standard analysis). 
 
While infinitesimals have long been banned from mathematics, they remained in fashion within the 
sciences, in particular in physics: not only in informal discourse, but also in didactics, explanations, 
and qualitative reasoning. It has been suggested that NSA can provide a post hoc justification for how 
infinitesimals are used in physics [15]. Indeed, NSA seems a very appealing framework for theoretical 
physics: it respects how physicists are already thinking of derivatives, differential equations, series 
expansions, and the like, and it is fully rigorous.11 
 
Rephrasing old results in the language of NSA may yield new insights. For instance, NSA can be 
employed to make sense of classical limits in physics: classical mechanics can be modeled as 

                                                           
11

 It has been shown that physical problems can be rephrased in terms of NSA [16], both in the context of 

classical physics (Lagrangian mechanics [17]) and of quantum mechanics (quantum field theory [18], spin 

models [19], relativistic quantum mechanics [20], and scattering [17]). Apart from formal aspects 

(mathematical rigour), such a translation also offers more substantial advantages, such as easier (shorter) 

proofs. 
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quantum mechanics with an infinitesimal Planck constant [21]. Likewise, Newtonian mechanics can 
be modeled as a relativity theory with an infinite maximal speed, c (or infinitesimal 1/c). 
Infinitesimal numbers are indistinguishable from zero (within the real numbers), yet distinct from 
zero (as can be made explicit in the hyperreal numbers). This is suggestive of a physical interpretation 
of infinitesimals as ‘currently unobservable quantities’. The ontological status of unobservables is an 
important issue in the realism–anti-realism debate [22]. Whereas constructive empiricists interpret 
‘observability’ as ‘detectability by the human, unaided senses’ *23+, realists regard ‘observability’ as a 
vague, context-dependent notion [24]. When an apparatus with better resolving power is developed, 
some quantities that used to be unobservably small become observable [25, 26]. This shift in the 
observable-unobservable distinction can be modeled by a form of NSA, called relative analysis, as a 
move to a finer context level [27]. Doing so requires the existing static theory to be extended by new 
principles that constrain the allowable dynamics [28]. 
 
The interpretation of (relative) infinitesimals as (currently) unobservable quantities is suggestive of 
why the calculus is so applicable to the natural sciences: it appears that infinitesimals provide 
scientists with the flexibility they need to fit mathematical theories to the empirically accessible 
world. To return to the jigsaw puzzle analogy of section 1: we need some tolerance at the edges of 
the pieces. If the fit is too tight, it becomes impossible to connect them at all. 
 

3. A speculative question concerning the unthinkable 
 
Could our cosmos have been different – so different that a mathematical description of it would have 
been fundamentally impossible (irrespective of whether life could emerge in it)? Some readers may 
have the impression that I have merely explored issues in the vicinity of this mystery, without 
addressing it directly.  
 
Before I indulge in this speculation, it may be worthwhile to remember that the very notion of a 
‘cosmos’ emerged in ancient Greek philosophy, with the school of Pythagoras, where it referred to 
the order of the Universe (not the Universe itself). It is closely related to the search for archai or 
fundamental ordering principles. It is well known that the Pythagorians took the whole numbers and 
– by extension – mathematics as the ordering principle of the Universe. Their speculations about a 
mathematically harmonious music of the spheres resonated with Plato and Johannes Kepler (the 
great astronomer, but also the last great neoplatonist). Since these archai had to be understandable 
to humans, without divine intervention or mystical revelation, they had to be limited in number and 
sufficiently simple. So, the idea that the laws of nature have to be such that they can be printed on 
the front of a T-shirt, goes back to long before the invention of the T-shirt.12 In this sense, the answer 
to the speculative question at the start of this section is ‘no’ and trivially so, for otherwise it would 
not be a cosmos. Yet, even if we understand ‘our cosmos’ as ‘the Universe’, there is a strong cultural 
bias to answer the speculative question in the negative. 
 
In section 2.1, I considered our proto-mathematical abilities as well as their limits. At least in some 
areas, our predictions do better than mere guesses. This strongly suggests that there are patterns in 
the world itself – maybe not the patterns that we ascribe to it, since these may fail –, but patterns all 
the same. It is then often taken to be self-evident that these patterns must be mathematical, but to 
me this is a substantial additional assumption. On my view of mathematics, the further step amounts 
to claiming that nature itself is – at least in principle – understandable by humans. I think that all we 

                                                           
12

 In case this remark made you wonder: the T-shirt was invented about a century ago. 
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understand about nature are our mathematical representations of it.13 Ultimately, reality is not 
something to be understood, merely to be. (And, for us, to be part of.) 
 
When we try to imagine a world that would defy our mathematical prowess, it is tempting to think of 
a world that is totally random. However, this attempt is futile. Pure randomness is a human 
idealization of maximally unpredictable outcomes (like a perfectly fair lottery [29]). Yet, random 
processes are very well-behaved: they consist of events that may be maximally unpredictable in 
isolation, but collectively they produce strong regularities. It is no longer a mystery to us how order 
emerges from chaos. In fact, we have entire fields of mathematics for that, called probability theory 
and statistics, which inform branches of physics, such as statistical mechanics. 
 
As a second attempt, we could propose a Daliesque world, in which elements combine in 
unprecedented ways and the logic seems to change midgame: rigid clocks become fluid, elephants 
get stilts, and tigers emerge from the mouths of fish shooting from a pomegranate. Yet, even such 
surrealistic tableaus have meta-regularities of their own. Many people are able to recognize a Dalí 
painting instantly as his work, even if they have not seen this particular painting before. Since we 
started from human art works, unsurprisingly, the strategy fails to outpace our own constrained 
imagination. 
 
At best, I can imagine a world in which processes cannot be summarized or approximated in a 
meaningful way. Our form of intelligence is aimed at finding the gist in information streams, so it 
would not help us in this world (in which it would not arise spontaneously by biological evolution 
either). In any case, what I can imagine about such a world remains very vague – insufficient for any 
mathematical description. Maybe there are better proposals out there? 
 
Max Tegmark has put forward an evocative picture of the ultimate multiverse as consisting of all the 
orderings that are mathematically possible [30]. Surely, this constitutes a luscious multiplicity. From 
my view of mathematics as constrained imagination, however, the idea of a mathematical multiverse 
is still restricted by what is thinkable by us, humans. Aristotle described us as thinking animals, but 
for the current purpose ‘mathematizing mammals’ may fit even better. My diagnosis of the situation 
is that the speculative questions asks us to boldly go even beyond Tegmark’s multiverse and thus to 
exceed the limits of our cognitive kung fu: even with mathematics, we cannot think the unthinkable. 
 

4. Conclusion 
 
In this essay, I have argued that: 
- we are selected (2.1); 
- our mathematics is selected (2.2); 
- the application of mathematics has degrees of freedom beyond those internal to mathematics (2.4); 
- and, still, effective applications of mathematics remain the exception rather than the rule (2.3). 
 
Too often, physicists have linearly approximated phenomena and considered themselves gods, only 
to discover much richer overtones of these phenomena later on. Let this be a lesson in modesty. 
While we are playing, things may appear to be very simple, but we should beware that (paraphrasing 
J.L. Austin14): it is not nature, it is scientists that are simple. 
                                                           
13

 My view of mathematics might raise the question: “Why, then, should we expect that anything as human and 

abstract as mathematics applies to concrete reality?” I think this question is based on a false assumption, due 

to prolonged exposure to Platonism – remnants of which are abundant in our culture. 

14
 Original quote by J.L. Austin, 1979 [31+: “It’s not things, it’s philosophers that are simple.” 
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DISCLAIMER 
 
No parallel universes were postulated during the writing of this essay. 
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