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Abstract

By combining the complex analytic Cauchy-Riemann derivative with
the Cayley-Dickson construction of a quaternion, possible formulations
of a quaternion derivative are explored with the goal of finding an ana-
lytic quaternion derivative having conjugate symmetry. Two such analytic
derivatives can be found. This unanticipated finding may have significance
in areas of quantum mechanics where quaternions are fundamental, espe-
cially regarding the enigmatic phenomenon of complementarity, where a
quantum process seems to present two essential aspects.

Introduction

Early progress in complex analysis was due to the realization, by Cauchy and
Riemann in the nineteenth century, that a function of a complex variable has two
complex derivatives. One derivative is called analytic, the other non-analytic.
The analytic derivative is taken with respect to the complex variable, and the
non-analytic derivative is taken with respect to its conjugate, corresponding to
opposite directions of rotation of the variable. A quaternion variable can be
formed from two complex variables by the Cayley-Dickson construction. It is
proposed that quaternionic and octonionic analysis ought to be based on these
two foundations, and constructed to satisfy a presumed symmetry shared by
analycity and conjugation. Under this hypothesis there are four branches of a
quaternion derivative, two of which are analytic.

A function of a real or complex variable is analytic if its Taylor series converges to
the function. Proving analycity entails a suite of techniques involving derivatives
and limits of power series, but a simpler meaning will suffice for this essay - an
analytic function is one that is capable of being analyzed. The issue of analycity
gained importance with the development of complex analysis and the difficulties
encountered due to different directions of rotation of a complex variable. These
difficulties were overcome when it was found that there are two branches of a
function of a complex variable. Each branch has a complex derivative associated
with it according to the variable’s direction of rotation. These are the analytic
and non-analytic branches. Recognition of this separation allows a complex
function to be analyzed in two parts, each complex variable having opposite
rotation.
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An analytic function can then be defined as one whose complex variables rotate
in only one direction. Non-analycity is related to conjugation which reverses the
rotational direction of a complex variable. The non-analytic derivative is the
derivative of a function with respect to the conjugate of a complex variable. The
non-analytic derivative of an analytic function is zero. For example, consider
a complex variable, z, and its conjugate, z∗, and their derivatives (analytic
derivatives on the left),

dz/dz = 1 dz/dz∗ = 0 (1)

dz∗/dz = 0 dz∗/dz∗ = 1 (2)

The variable, z, is an analytic function, so the non-analytic derivative, dz/dz∗, is
zero. On the other hand, z∗ is a non-analytic function whose analytic derivative
is zero. Thus, the conjugate of a variable can be treated as a constant when
taking a complex derivative. Quaternion and octonion analogs for (1)-(2) will
be presented, but corresponding analycity is not investigated beyond that.

It is the symmetry shared by analycity and conjugation shown in the above
equations that is the focus of this essay. In the conventional approach to quater-
nionic analysis due to Fueter, this correspondence is lost. Fueter considers the
asymmetric representation of a quaternion consisting a real variable and three
imaginary variables with independent Cauchy-Riemann equations. The Cauchy-
Riemann equation produces analytic or non-analytic complex derivatives from
real derivatives of a complex function. See [1] for an exposition on quaternionic
analysis and Fueter’s work.

The Cayley-Dickson construction forms a quaternion number from two complex
numbers. This symmetric view of a quaternion (two complex numbers vs one
real and three imaginary numbers) leads to an extension of the Cauchy-Riemann
equation to quaternions via the Cayley-Dickson construction resulting in four
branches of quaternion analycity which can be arranged to have the symmetry
required for a correspondence between analycity and conjugation.

Quaternion analycity then depends on complex analycity and requires that com-
plex derivatives are either both analytic or both non-analytic. This property can
be extended to octonions where an analytic octonion derivative would require
that quaternion derivatives are both analytic or both non-analytic.

When used in reference to quaternions or octonions in this essay, it must be
understood that the terms ‘analycity’ and ‘analytic’ will refer to a mathematical
property which has not been demonstrated. At this point, it is not even clear
how to apply the various branches of a derivative in order to do so. It is the
prerequisite development of symmetry in the quaternion derivative through a
hypothetical relationship between conjugation and analycity that will be the
concern here. Hence formulation of quaternion and octonion derivatives will be
guided by consideration of the conjugate derivative, and resulting forms will be
presumed to exhibit analycity inferred from its value just as in equations (1)–(2)
for complex variables.
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Cauchy-Riemann equation for functions of a complex variable

The Cauchy-Riemann equation originated from the effort to define a complex
derivative. Consider a function f = f(x) of a complex variable x = a+b i where
a and b are real variables. The function is analytic if it satisfies the Cauchy-
Riemann equation which equates appropriately rotated1 real derivatives,

df

da
= −df

db
i (3)

Adding these expressions gives the analytic derivative with respect to the com-
plex variable, x, in terms of real derivatives as

df

dx
=

1

2

(df

da
− df

db
i
)

(4)

Taking their difference gives the non-analytic derivative (the derivative with
respect to the conjugate variable, x∗) as

df

dx∗
=

1

2

(df

da
+

df

db
i
)

(5)

which will be zero if the function satisfies the Cauchy-Riemann equation. The
complex derivative is a unique concept and not the same as the gradient, which
would have the form of (5) except for the factor of one half.

Cayley-Dickson construction of the quaternion

Consider another complex number y = c + d i with real c and d. The Cayley-
Dickson construction forms a quaternion, q, from complex numbers x and y
using a new imaginary number, j, as

q = x+ y j (6)

Defining a third imaginary number, k = ij, gives the quaternion as

q = a+ b i+ c j + d k (7)

The Cauchy-Riemann-Fueter equations for functions of a quaternion

The Cauchy-Riemann-Fueter equations come from applying (3) to each real
derivative of a quaternion function f = f(q) so that

df

da
= −df

db
i = −df

dc
j = −df

dd
k (8)

Analogous to the complex case, a quaternion derivative can be formed by adding
these real derivatives to get

df

dq
=

1

4

(df

da
− df

db
i− df

dc
j − df

dd
k
)

(9)

1 The rotation comes from equating df/da = df/d(bi) which becomes (3). Carrying a 90◦

rotation (the imaginary number, i) with the real variable, b, makes the complex derivative
different from a gradient.
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with a condition for regularity (not analycity) given by

df

da
+

df

db
i+

df

dc
j +

df

dd
k = 0 (10)

Analycity has been shown to be limited to constant and some linear functions.
Fueter proposes no correspondence between conjugate derivatives and analycity.

Extending Cauchy-Riemann via the Cayley-Dickson construction

An overlooked possibility for extending the Cauchy-Riemann equation to a func-
tion f = f(q) of a quaternion variable, q, is to procede from the Cayley-Dickson
construction (6) and form the “Cayley-Dickson-Cauchy-Riemann” equation us-
ing j instead of i, and complex derivatives in place of real derivatives in (3),

df

dx
= −df

dy
j (11)

The derivative of a function of a complex variable has two branches, one for
analytic functions (4) and one for non-analytic (5). Being composed of two
complex variables, the resulting expression for a quaternion derivative will have
four branches, and each can be clearly identified as analytic or non-analytic. If
complex derivatives come from branches with similar analycity, the quaternion
derivative will be analytic. Otherwise, the quaternion derivative will be non-
analytic. Hence, a quaternion derivative formed from two complex non-analytic
derivatives is analytic. Unlike the conventional approach, the conjugate of a
quaternion variable is a non-analytic function whose analytic derivative is zero.

When a quaternion derivative is evaluated, two of the four real derivatives will
cancel.2 Thus the following expressions omit the expected factor of 1/2 in
anticipation of the cancellation. Also, reversal of the sign in the second branch
of the quaternion derivative (13) is necessary to have the branches balance
analycity with non-analycity. The quaternion derivative is then composed from
complex derivatives as

f ′aa =
df

dq
=

df

dx
− df

dy
j (analytic) (12)

f ′an =
df

dq∗
=

df

dx
+

df

dy∗
j (non analytic) (13)

f ′na =
df

dq∗
=

df

dx∗
− df

dy
j (non analytic) (14)

f ′nn =
df

dq
=

df

dx∗
− df

dy∗
j (analytic) (15)

where the four branches of a quaternion derivative are denoted by f ′aa, f ′an, f ′na
and f ′nn with “a” for analytic and “n” for non-analytic complex derivative, and
where the first subscript indicates the x complex derivative and the second is

2The initial part of the Cauchy-Riemann-Fueter equations, i.e. (8) equating appropriately
rotated real derivatives, is implicitly assumed.
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for y. For example, the analytic branch composed from two analytic complex
derivatives (12) is given by

f ′aa =
1

2

(df

da
− df

db
i− df

dc
j +

df

dd
k
)

(16)

The derivative of a quaternion variable and its conjugate are of interest. For
f = q the real derivatives are

dq

da
= 1

dq

db
= i

dq

dc
= j

dq

dd
= k (17)

and, noting that i2 = j2 = k2 = −1, thus q′aa = dq/dq = (1 + 1 + 1− 1)/2 = 1.
The sign of the three derivatives associated with the imaginary numbers changes
for the conjugate, so that q∗′aa = dq∗/dq = (1 − 1 − 1 + 1)/2 = 0, allowing the
same connection between conjugation and analycity found in the complex case.

The roles of the variable and its conjugate are reversed for the two non-analytic
branches of the quaternion derivative, f ′an and f ′na, again like the complex deriva-
tive. The two non-analytic branches correspond to the derivative with respect
to the conjugate quaternion variable, and are zero for analytic functions. One of
the non-analytic quaternion derivatives formed from complex derivatives with
differing analycity (13) is given by

f ′an =
1

2

(df

da
− df

db
i+

df

dc
j +

df

dd
k
)

(18)

In this case q′an = dq/dq∗ = (1 + 1 − 1 − 1)/2 = 0, and the derivative of the
conjugate is q∗′an = dq∗/dq∗ = (1−1+1+1)/2 = 1 as expected for a non-analytic
derivative.

The other non-analytic quaternion derivative (14) is given by

f ′na =
1

2

(df

da
+

df

db
i− df

dc
j +

df

dd
k
)

(19)

In this case q′na = dq/dq∗ = (1 − 1 + 1 − 1)/2 = 0, and the derivative of the
conjugate is q∗′na = dq∗/dq∗ = (1 + 1− 1 + 1)/2 = 1.

The analytic quaternion derivative formed from two non-analytic complex deriva-
tives (15) is given by

f ′nn =
1

2

(df

da
+

df

db
i− df

dc
j − df

dd
k
)

(20)

In this case q′nn = dq/dq = (1 − 1 + 1 + 1)/2 = 1, and the derivative of the
conjugate is q∗′nn = dq∗/dq = (1 + 1− 1− 1)/2 = 0 as required.

Non-associativity of quaternion derivative

Consider the following analytic quaternion derivatives of basic linear functions
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formulated using two analytic complex variables (16):

dq

dq
= 1

d(i q)

dq
= i

d(j q)

dq
= j

d(k q)

dq
= k (21)

dq

dq
= 1

d(q i)

dq
= i

d(q j)

dq
= j

d(q k)

dq
= −k (22)

The last of the above equations stands out because of the negative sign on the
k basis. The other analytic quaternion branch has a similar reversal affecting
the i basis for the function (qi), and the non-analytic branches also have one
basis3 that does not conform, leading to possible restrictions on linear analytic
forms, or at least complicating their development.

Now consider a constant quaternion, u, and encapsulation of the above two sets
of equations (21)-(22) by the derivatives

d(u q)

dq
= u

d(q u)

dq
= uK (23)

where the superscript K in uK operates to reverse the k basis in u.

Consider another constant quaternion, v, and the product, uqv. Quaternions are
associative so u(qv) and (uq)v are equal. However the derivative discriminates
between the two formulas so that, assuming a right-associated chain rule for
functions of functions,

d[u(qv)]

dq
=

d[u(qv)]

d(qv)

d(qv)

dq
= uvK

d[(uq)v]

dq
6= vKu (24)

It can be shown that for the elementary quadratic function, q2,

dq2

dq
= qK + q (25)

It can also be shown that

d(q q∗)

dq
= q∗K

d(q∗q)

dq
6= q∗ (26)

indicating another selection since q q∗ = q∗q. Judging from these examples for
one branch, the price of symmetry is structural complexity.

There is one linear form that is well-behaved. Functions of the form uq with
constant u always have the same derivative (u) for the analytic branches, and
zero for the non-analytic branches. It is only derivatives of the commuted form
qu that have a nonconforming basis.

3 The non-analytic quaternion derivative f ′an (13) is zero for the functions in question

except
d(q i)
dq∗ = 2i. Likewise, the non-analytic quaternion derivative f ′na (14) is zero except

d(q j)
dq∗ = 2j. An analytic derivative takes the nonconforming basis one step backward instead

of forward – a non-analytic derivative takes the nonconforming basis two steps forward instead
of not moving at all.
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Complex matrix form of quaternion derivative

Recall that two complex variables

x = a+ b i y = c+ d i

were used to form a quaternion, q, via the Cayley-Dickson construction

q = x+ y j = a+ b i+ c j + d k

The real quaternion basis in complex matrix form is

1 =

[
1 0
0 1

]
I =

[
i 0
0 −i

]
J =

[
0 1
−1 0

]
K =

[
0 i
i 0

]
(27)

where a quaternion is formed from real coefficients (a, b, c, d) as

Q =

[
x y
−y∗ x∗

]
= a1 + b I + cJ + dK (28)

and its conjugate is given by

QH =

[
x∗ −y
y∗ x

]
= a1− b I− cJ− dK (29)

Note that the conjugate of the quaternion is the Hermitian transpose of the
matrix. All of the formulas in the preceding sections can use the matrix basis
by substituting (1, I,J,K) for (1, i, j, k).

The Cayley-Dickson construction can be put in matrix form. Instead of complex
variables x and y, start with complex diagonal matrices

X =

[
x 0
0 x∗

]
Y =

[
y 0
0 y∗

]
(30)

A quaternion is then constructed as

Q = X + YJ (31)

Treatment of the quaternion derivative can procede as before, ultimately taking
derivatives with respect to the real variables (a, b, c, d). The matrix form is
complicated by the presence of conjugate variables which are redundant, but in
some sense informative. In the initial development, the matrix form was found
to have the advantage that (31), for instance, can be distinguished immediately
from its commuted alternative as the obvious place to start. This is not so clear
otherwise using imaginary numbers where a bit of a search would be involved
to see which possibility could be eliminated.
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Summary

This work was motivated in part by a perceived lack of symmetry between
analytic and non-analytic derivatives in conventional approaches to quaternion
analycity, in comparison to the complex derivative. The picture of an analytic
quaternion that emerges is one of some complexity with four branches of the
derivative. While these branches are complicated by non-associative exceptions,
their relatively simple form may provide an avenue for their analysis. Notably,
none of the four branches of quaternion derivative correspond to the possibility
considered by Fueter. There is one analytic derivative for complex variables,
but there are two analytic derivatives for quaternions in the Cauchy-Riemann-
Cayley-Dickson scheme.

Conclusion

What can be said to address the theme of this competition, Wandering Towards
a Goal: How can mindless mathematical laws give rise to aims and intention?

One definition of mathematics is the study of structure. Understanding struc-
ture can be taken as an overarching goal, if only to allow structure in physics, for
example, to be expressed quantitatively. Technical aspects of analycity which
were neglected in the above presentation require more study. If this is indeed
useful new mathematics, that in itself would point to the rather unpredictable
nature of such developments.

Clearly, a re-examination of the role of a quaternion derivative would be required
in the context of the rules of quantum mechanics, with the aim of discovering
some correspondence.

An interesting hypothesis is that the presence of two analytic derivatives could
be linked to complementarity, the property that a quantum process can be
described in two mutually exclusive classical ways.

Ultimately, it is mathematics that allows us to entertain the notion of under-
standing quantum mechanics.
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Extension to derivative of octonion function

Octonion analycity requires the combination of two quaternions of similar ana-
lycity. An octonion [2] variable φ = p + q l is created from two quaternion
variables p and q and a new imaginary number, l, using the Cayley-Dickson
construction. Consider an octonion function f = f(φ). Extending the Cayley-
Dickson-Cauchy-Riemann equations for the quaternion derivative (12)-(15) gives
this generic expression for the octonion derivative in terms of quaternion deriva-
tives,

f ′(φ) =
df

dφ
=

df

dp
− df

dq
l = f ′(p)− f ′(q) l (32)

where f ′(p) stands for the derivative of the octonion function, f , with respect to
a quaternion part (p) of the octonion variable, φ, which produces the following
sixteen possible branches of an octonion derivative,

f ′aa aa(φ) = f ′aa(p)− f ′aa(q) l (analytic) (33)

f ′aa an(φ) = f ′aa(p) + f ′an(q) l (non analytic) ∗ (34)

f ′aa na(φ) = f ′aa(p) + f ′na(q) l (non analytic) ∗ (35)

f ′aa nn(φ) = f ′aa(p)− f ′nn(q) l (analytic) (36)

f ′an aa(φ) = f ′an(p)− f ′aa(q) l (non analytic) (37)

f ′an an(φ) = f ′an(p)− f ′an(q) l (analytic) (38)

f ′an na(φ) = f ′an(p)− f ′na(q) l (analytic) (39)

f ′an nn(φ) = f ′an(p)− f ′nn(q) l (non analytic) (40)

f ′na aa(φ) = f ′na(p)− f ′aa(q) l (non analytic) (41)

f ′na an(φ) = f ′na(p)− f ′an(q) l (analytic) (42)

f ′na na(φ) = f ′na(p)− f ′na(q) l (analytic) (43)

f ′na nn(φ) = f ′na(p)− f ′nn(q) l (non analytic) (44)

f ′nn aa(φ) = f ′nn(p)− f ′aa(q) l (analytic) (45)

f ′nn an(φ) = f ′nn(p) + f ′an(q) l (non analytic) ∗ (46)

f ′nn na(φ) = f ′nn(p) + f ′na(q) l (non analytic) ∗ (47)

f ′nn nn(φ) = f ′nn(p)− f ′nn(q) l (analytic) (48)

Note: * indicates a sign change like that required for the quaternion derivative.

As with complex and quaternion derivatives, the derivative of an octonion
variable with respect to the conjugate octonion variable is zero. Cancellation
among components again leads to a missing factor of two compared to Cauchy-
Riemann. The octonion derivative has non-associative exceptions for linear
functions similar to the quaternion.
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Quaternion Exceptions

Consider functions of the form qeν , where eν = 1, i, j or k. Each of the four
branches of quaternion derivative with respect to q (or q∗ for non-analytic deriva-
tives) will break with associativity for one of the functions. These exceptions
are given by the value 2 or −1 in the following table. For example, the fourth
branch (15) of the derivative of qi can be found from the fourth row in the table
in the column under i which shows −1 as the entry, so that the derivative of qi
is −i for that branch.

1 i j k

aa a 1 1 1 -1

an n 0 2 0 0

na n 0 0 2 0

nn a 1 -1 1 1

Octonion Exceptions

Octonions have three exceptions for each branch instead of just one. Here
eν represents the octonion basis. As an example, for the function φe6 of an
octonion, φ, the third branch of the derivative (35), which is a non-analytic
exception, is found from the third row of the seventh column of the table (under
e6) to be 2e6.

e0 e1 e2 e3 e4 e5 e6 e7

aaaa aa a 1 1 1 -1 1 -1 -1 1

aaan an n 0 2 2 0 0 2 0 0

aana an n 0 2 2 0 0 0 2 0

aann aa a 1 1 1 -1 1 1 -1 -1

anaa na n 0 2 0 0 2 0 0 2

anan nn a 1 1 -1 -1 1 -1 1 1

anna nn a 1 1 -1 -1 1 1 -1 1

annn na n 0 2 0 0 2 2 0 0

naaa na n 0 0 2 0 2 0 0 2

naan nn a 1 -1 1 -1 1 -1 1 1

nana nn a 1 -1 1 -1 1 1 -1 1

nann na n 0 0 2 0 2 2 0 0

nnaa aa a 1 -1 1 1 1 -1 -1 1

nnan an n 0 0 2 2 0 2 0 0

nnna an n 0 0 2 2 0 0 2 0

nnnn aa a 1 -1 1 1 1 1 -1 -1
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