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Abstract

Quaternions arise from the solution of an elementary two-dimensional
polynomial, and can be visualized in terms of amplitude and phase spec-
tra by means of a multidimensional Fourier transform. Three-dimensional
quaternion configurations can be found in the structure of an octonion,
including one that lies outside a plane, a tetrahedron. These configura-
tions are formulated as polynomials and spectra of their quaternion and
nonquaternion solutions are discussed in relation to the Higgs field.

1 Introduction

With respect to its or bits, I expect most of us would agree with Wheeler’s
“supreme goal” [1], “Deduce the quantum from an understanding of existence.”
If we take existence to mean physical existence, that means comparing models of
our understanding to experiment and observation. We must also necessarily en-
devour to comprehend the models and their origins. Examination of quaternion
spectra falls into the latter category.

The underlying theme of this essay is resonance, a process involving transfer
and storage of energy. The line of inquiry will follow a first-order polynomial.
In the one-dimensional case, where such representations are easily realizable,
polynomials are used to filter out resonance. The inverse of the polynomial
corresponds to the resonant process. When viewing the spectra, it should be
kept in mind that the search for zeroes of a polynomial is really the search for
resonant frequencies which determine characteristics of the process.

The spectrum [2] is calculated using a Fourier transform which can be
expressed concisely as a polynomial in a complex variable z = exp(−i2πf)
called the unit delay operator where f is a real-valued frequency in the range
−1/2 ≤ f < 1/2. The delay operator z lies on the unit circle |z| = 1 and
is strictly a function of frequency. The one-dimensional technique extends to
higher dimensions.

Mathematical constructions called division algebras feature prominently in
modeling the physical world from quantum mechanics to the space-time alge-
bra. There are only four possible division algebras. They are the real numbers,
complex numbers, quaternions and octonions, composed of 1, 2, 4 or 8 elements
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Figure 1: Evaluation of polynomial p(z) = 1 − az with z = e−i2πf gives
the spectrum. The frequency at the point of zero amplitude can be set
by solving 1 − azo = 0 to get a = z∗o with zo = e−i2πfo and fo = 0.3
as displayed. Having obtained a value for the coefficient a, the spectrum
is given by the amplitude and phase of p(z) taken over the full range of
frequencies. (a) Amplitude of polynomial, |1−az|, is maximum at antipode
located at −zo or fo − 1/2 = −0.2 (b) Phase of polynomial.

respectively. The elements map nicely onto a point, line, area or volume. Tak-
ing a Fourier transform on a mapping allows quaternions and octonions to be
displayed as amplitude and phase spectra. Configurations of quaternions em-
bedded in the vector space of octonions appear in three forms and each of these
forms has three orientations. Two forms correspond to slices through the oc-
tonion vector space and are essentially two-dimensional. The third form is a
tetrahedron in three dimensions.

To complicate matters, a two-dimensional polynomial can be found with
quaternion and nonquaternion solutions. Its quaternion solutions correspond
to quantum states in equal superposition only. Quaternions whose existence is
derived from the elementary polynomial would implicitly have this limitation. A
nonquaternion solution to this polynomial is included because it has the ability
to provide a unique spectral representation, whereas quaternions must exhibit
two spectral copies.

2 Polynomial spectra

A polynomial in one dimension can be constructed from a sequence of complex
coefficients (1,−a) mapped to the time domain (1, z) taken from the present
and past of the time line (. . . , z−1, 1, z, z2, . . .) comprised of unit delays. The
inner product gives (1,−a) · (1, z) = p(z) = 1− az. An example of its spectrum
is shown in Fig. 1. The frequency domain is circular and wraps around. Finding
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the coefficient a for p(z) = 0 at a given frequency is straightforward.
A polynomial in two dimensions requires the introduction of a second delay

operator w = exp(−i2πg) with frequency g in the added dimension. But the
polynomial must not have one-dimensional factors. For example, the polynomial
1±z±w±zw has eight possible realizations. Four can be seen to be (1±z)(1±w).
The remaining four are unfactorable and correspond to the set of 2×2 Hadamard
matrices. Following these clues, one of the unfactorable elementary polynomials
is constructed from mapping the coefficients (1,−a,−b,−ab), where b is an
added complex coefficient, onto the 2D time domain (1, z, w, zw) to get

p(z, w) = 1− az − bw − abzw (1)

whose solution involves a quadratic equation. Among its solutions are the set
of Hadamards. The coefficients must satisfy |a| = |b| = 1 for the solution to be
quaternion.

By comparison the quaternion as a polynomial

q(z, w) = u+ vz − v∗w + u∗zw (2)

is mapped from a matrix form of the quaternion,

Q =

[
u v
−v∗ u∗

]
with u, v complex. The condition |u| = |v| yields an equal superposition of Pauli
basis states, and thus also includes the set of Hadamards. To distinguish these
states, which are common to both polynomials (1) and (2), any quaternion in a
state of equal superposition will be called a Hadamard quaternion (or Hadamard
solution). Furthermore, to distinguish the other extreme, any quaternion with
|u| = 0 or |v| = 0 will be called a Pauli quaternion. The polynomial (1) can
have no Pauli quaternions as solutions. Two-dimensional spectra of the original
Hadamard and Pauli sets are shown in Fig. 2. The frequency domain in two
dimensions is toroidal. The naming convention used here extends the meaning
to all translations of the amplitude spectra on the torus. In other words, the
spectra will appear similar for members in the same class, except shifted in
frequency.

Although the elementary polynomial (1) cannot produce Pauli quaternions,
its solutions include a subset of the biquaternions which I have been calling
nonquaternion, but “almost quaternion” might be a better description because
both quaternions and “nonquaternions” have four degrees of freedom compared
to eight for biquaternions. The biquaternions include all complex 2×2 matrices.
The nonquaternion polynomials are mapped from

A =

[
u v
−v∗ u−1

]
, B =

[
u v
−v−1 u∗

]
. (3)

The magnitude of v in A, or u in B will determine whether the nonquaternion
polynomial is classified as Hadamard or Pauli.
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2D Spectra of Hadamard and Pauli quaternions
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Figure 2: Hadamard in top two rows, Pauli in bottom two rows. The
frequencies are in the range [−1/2, 1/2] with f horizontal and g vertical.
(a) Amplitudes of Hadamard polynomials H0 and H1 are identical. (b)
Phase of H0 = 1 + z + w − zw, a Hadamard matrix. (c) Phase of alternate
solution, H1 = 1 − z − w − zw, another Hadamard matrix. (d) Amplitude
of polynomials H2 and H3. (e) Phase of H2 = 1 + z −w+ zw. (f) Phase of
alternate solution, H3 = 1−z+w+zw. (g) Amplitude spectrum of identity
matrix: 1 + zw, (h) Pauli-X: z + w, (i) Pauli-Y: z − w, (j) Pauli-Z: 1− zw.
(k-n) Phase of identity and Pauli matrices.

4



Fano plane

i

jk

1

2

3

4

5

6

7
0

1

2

3

4

5

6

7

(a) (b) (c)

Figure 3: (a) A quaternion’s imaginary components i, j and k multiply
pairwise according to a cyclic ordering around the figure. For instance,
ij = k but ji = −k. (b) The Fano plane shows the seven imaginary elements
of an octonion having seven sets of quaternion cyclic ordering given by three
sides of the triangle (426, 635, 514), the three altitudes (473, 671, 572), and
the circle of midpoints (123). (c) In the vector space of the octonions which
includes the real part, each element is at a corner of a cube. This is the
“time domain” representation of an octonion. The quaternion configuration
formed from the circle of midpoints is shown schematically linked together
by dark lines. The green lines represent its complement in the structure of
the octonion.

3 Quaternion spectra in three dimensions

The Fano plane provides a means of identifying quaternion configurations in
the three-dimensional structure of an octonion [3] which has its elements, a
real number or one of seven imaginary numbers, at the corners of a cube as
shown in Fig. 3. Taken with the common real element, the three sides of the
triangle correspond to the three sides of the cube. The altitudes of the triangle
correspond to three diagonal cleaves through the cube. The circle of midpoints
of the triangle is unique since, when combined with the real part, it alone
corresponds to a figure existing outside a plane – a tetrahedron with vertices at
alternate corners of the cube. Three-dimensional spectra shown in Fig. 5 can
be obtained by incorporating a third delay operator and forming a polynomial.
Quaternion polynomials will then be of the form

q(zx, zy, zz) = u+ vI − v∗J + u∗K (4)

where I, J and K are delays composed from the set zx = e−i2πf , zy = e−i2πg

and zz = e−i2πh and there are now three frequencies for the three directions. A
tetrahedron might have I = zxzy, J = zyzz and K = zzzx.
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Quaternion configurations in the octonion
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Diagonal plane
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Tetrahedron
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Figure 4: The three tetrahedral configurations can be viewed as permuta-
tions of arrangements of the corners of a square sheet, so in a sense even
this configuration is two-dimensional. Taking corner 0 (the real part) as
fixed, the opposite corner on the sheet is at point 3, 2, or 1 for the tetra-
hedron from left to right. What distinguishes tetrahedrons is the 90◦ twist
giving the sheet a saddle shape. The corners of principal or diagonal plane
configurations are coplanar. Permuting the corners of the sheet for these
configurations, if allowed, would result in a 180◦ twist (not shown).
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Typical Hadamard quaternion and nonquaternion spectra
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Figure 5: Top row: Spectra of quaternion solutions involve pairs of straight
lines of zeroes for the condition |u| = |v| = 1 in Eq. (2). The tetrahedron
and principal plane geometries have antipodal zeroes. Quaternion solutions
for the diagonal plane geometry have a shifted antipodal zero. Second
row: Nonquaternion solutions are lines when A has |v| = 1 or B has |u| = 1
in Eq. (3). For the tetrahedral geometry, solutions are primarily a pair
of antipodal loops. Nonquaternion solutions show a ribbon-like quality for
the plane geometries which is a side-effect of displaying grid points whose
amplitude is within a small range of zero. Bottom row: The difference
between the two types of nonquaternions is seen in the orientation of the
ribbon for plane geometries. Yellow struts indicate frequency intended for
root. Blue struts indicate 3D antipode. Locations of zeroes are tinted red in
the background, blue in the foreground. Black areas are ‘shadows’ indicating
location of zeroes.

All tetrahedrons and all quaternions have two copies.
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Dimensional frames of reference

Figure 6: A 2D quaternion solution to the tetrahedral polynomial is used to
place antipodal zeroes in the indicated x-y frequency plane. The solution lies
along two lines of zeroes from a set of six lines that look like interconnected
piping. This 2D solution is the same as the 3D quaternion solution shown
in Fig. 5. The 3D nonquaternion solutions in Fig. 5 usually give rise to a
pair of loops, but the extent of the loops varies with frequency. The extent
is greatest whenever one of the frequencies approaches ±1/4 resulting in a
pipe-like structure shown here. Note the shadows parallel to the colored x-y
plane indicating those frequencies in the z direction.

The example in Fig. 6 could serve as a demonstration of different dimensional
frames of reference, a phrase used by Armin Nikkah Shirazi to help convey the
concepts of ‘actual’ and ‘actualizable’ in his dimensional theory of quantum
mechanics [4]. To illustrate an essential point, he notes that the way to extend
the existence of a point in a plane from 2-space to 3-space is to consider a line
through the point parallel to the extra dimension. He then goes on to apply this
concept to spacetime worldlines and arrives at the Feynman path integral from
elementary principles. In the present case, placing antipodal zeroes in a principal
plane (a plane orthogonal to a coordinate axis) produces a quaternion solution
consisting of lines of zeroes passing through isolated points in the plane into
the third dimension. In Fig. 2, the Hadamard polynomials are zero only at two
points in the frequency domain, while Pauli polynomials show a line of zeroes.
Because of this difference in dimensionality between their polynomial zeroes,
the actualizable state would correspond to the Hadamard condition which is an
equal superposition of actual Pauli states. Whether there is something more
substantial to this interesting connection is a matter for further study.
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4 Discussion

Quaternions show up in a variety of contexts, but perhaps most topical is in
relation to the Higgs field, given last year’s possible discovery of its boson. The
field is thought to exist throughout space, even in the absence of gravitational or
electromagnetic fields. The mechanism involves the theory of superconductivity
and a Higgs condensate. The primary structure of the field is that of the unit
quaternion.

Do the three quaternion configurations in the octonion play a role in the
Higgs mechanism? The tetrahedron stands out as three-dimensional. The ex-
tent of spectral zeroes for the diagonal plane configuration is twice that of the
principal plane. From these basic considerations, it is tempting to associate
the tetrahedron with spin 1/2 (matter), the principle plane configuration with
spin 1 (electromagnetism), and the diagonal plane with spin 2 (gravitation).
Perhaps the observation of three generations of fermions has something to do
with the three configurations of quaternions.

In both two and three dimensions, the frequencies ±1/4 are associated
with the Hadamard condition which implies equal superposition of Pauli states.
These central frequencies would seem to be a significant point of reference. It is
notable that a condensate composed of octonion cells half-occupied by tetrahe-
dral quaternions could match Vladimir Tamari’s conclusions [5] about structure
of the vacuum involving Kepler packing. In that case a zero-phase condition
ought to be attainable through symmetric configurations in a 3 × 3 × 3 time
domain corresponding to the face-centered cube of Kepler packing.

Finally, this essay raises a point concerning the origin and use of quaternions
in quantum mechanics. The elementary polynomial (1) has both quaternion and
nonquaternion solutions. If it should happen that the elementary polynomial
is somehow at the root of the theory, then quaternions may not be the only
forms required to express the Higgs mechanism. Nonquaternion forms could
also be involved. The tetrahedral configuration is well matched to a quaternion
solution because they both necessarily result in a spectrum consisting of two
copies. Quaternions might be unsuitable for the planar configurations for that
very reason, since electromagnetism and gravitation are directional. The unam-
biguous single copy provided by nonquaternions might be an advantage in that
case. More examples of spectra with solutions can be found in [6].

I can imagine the picture of existence that emerges could be analogous to
a quantum computer operating coherently in the Higgs condensate. The op-
erational units might involve “mass qubits” and computational gates having
two functions: determining the state of actualization based on Nikkah Shirazi’s
dimensional theory, while performing the required operation by superposition
or mixture of alternative states. In this view, its are actual states and bits are
actualizable alternative states which influence the outcome. Even with these
assumptions, the relation between its and bits remains unknown.
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5 Notes

Constant factors have been omitted from polynomials and matrices. Note that
the usual convention for normalizing the determinant to form a unit quaternion
by scaling u and v will not work for nonquaternions of the form (3). The
quaternion determinant is |u|2 + |v|2 while the nonquaternion determinants are
1 + |v|2 or 1 + |u|2. Scaling u and v by the square root of the determinant
normalizes the quaternion, but would not normalize the nonquaternions.

A point in the frequency domain represents a complex-valued plane wave
heading towards the origin in the time domain. Its frequency f obeys f2 =
f2x + f2y + f2z . As a plane wave passes an array of sensors, it is the geometric
(spatial) arrangement of the sensors that determines the frequency sensed in
each direction. This simple interpretation holds as long as points in the time
domain constructed from delay operators correspond to places in Euclidean
space.

None of the spectra in Fig. 5 can be localized to a single zero in the 3D
frequency domain. Only the nonquaternion planar configurations allow that
possibility. Adding nonquaternions from two different orientations of diago-
nal plane configurations, for instance, can produce a polynomial with a single
spectral zero.
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