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In this essay, I wish to provide some reasons to take seriously the possibil-
ity that physics is neither symmetric under time-reversal nor deterministic.
I want to aim for accessibility to readers outside physics, so I include some
material that will be introductory for specialists, I hope at least to offer an
unorthodox perspective. I will start with an examination of how the formal-
ism of quantum mechanics relates to the arrow of time.

1 Introduction to Quantum Formalism: U,
R, and Density Matrices

Quantum mechanics’ formalism has two distinct parts that I will, following
Penrose (2004), call U and R. U stands for “unitary evolution” and R for
“state reduction.” U’s name comes from the uniqueness of its evolution:
given some initial conditions, there is only one solution under U that will
satisfy them, or in other words, U is deterministic. R,in contrast, is nonde-
terminstic.

1.1 U: Unitary Evolution

U’s most familiar formulation is the Schrodinger equation, but there are
many other more or less equivalent variations, including the Heisenberg pic-
ture, the de Broglie-Bohm pilot wave, path integrals, etc. While both the
mathematical structures and the physical interpretations of the mathematics
vary among these different perspectives, they all lead to the same observables.
Most of the effort in physics has gone to understanding U, as for instance in
describing forces and particles using quantum field theories.



Is U invariant under time reversal? This is a subtle issue. The Schrodinger
equation
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is not invariant under the obvious transformation ¢ — —t because the
classical Hamiltonian H, which turns into an operator in quantum mechanics,
is invariant under time reversal, but the time derivative on the left-hand side
is not invariant. However, note that combining time reversal with complex

conjugation acting on the Schrodinger equation gives
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This is the same equation, only with U* taking the role of ¥. Observables
in nonrelativistic quantum mechanics always take the form < W|A|U >, as
this provides the probabilities with appropriate normalization, so it’s not pos-
sible to distinguish between conventional quantum mechanics and quantum
mechanics with all wavefunctions and operators replaced by their complex
conjugates. Because quantum operators are self-adjoint, A* = A, so for
operators this holds in the most obvious way; for wavefunctions, complex
conjugation is an invertible map from the Hilbert space to itself. Thus, given
a description of some physical situation in terms of wavefunctions defined
with respect to the conventional direction of time, there’s some other de-
scription using the reversed direction of time, only one also has to replace
the wavefunctions with their complex conjugates. In other words, in non-
relativistic quantum mechanics the choice of the direction of time and the
roles of ordinary and conjugated wavefunctions are just conventions, but the
conventions are linked so that changing one requires changing the other.

I've presented this in some detail because the situation in relativistic
quantum mechanics is analogous. The CPT Theorem, the acronym standing
for the three discrete symmetries charge conjugation i.e. replacing particles
with antiparticles, parity, and time reversal, states that all local, Lorentz-
invariant quantum field theories (QFTs) with Hermitian Hamiltonians must
respect the combination of these symmetries. Unlike nonrelativistic quantum
mechanics, where time-reversal is linked to an unobservable symmetry in the
mathematics, charge conjugation and parity are both also physical symme-
tries. Known physical processes violate all of the individual symmetries and



their pairwise combinations, but no known process violates all three at once,
so physics seems to respect the CPT Theorem. This is the most general
sense in which U is time-reversal invariant: while, strictly speaking, it is not,
reversing time just corresponds to changing conventions about particles and
antiparticles and handedness. This kind of time-reversal asymmetry seems
to have little to do with the other kinds of time-reversal asymmetries I will
consider.

1.2 R: Reduction of the Wavefunction

R refers to the interpretation of the moduli of the complex amplitudes that
evolve according to U as probabilities of measurement outcomes; a tradi-
tional term for it is “collapse of the wavefunction.” R is just as critical as U
for retrieving useful predictions from quantum mechanics, and the nondeter-
minism and randomness in quantum mechanics all comes from R. There is
a long tradition in physics of attempting to “explain” R as a manifestation
of U; I will first take R as a real physical event, considering the various at-
tempts to derive R from U later. R has a number of curious features besides
its indeterminism, including its apparent discontinuity, but the principal one
that will concern me here is that it’s not invariant under time reversal.

The nature of the invariance is subtle. I'll illustrate with an argument
that doesn’t show the invariance. Consider a series of measurements on some
quantum system such that eigenstates of the operator corresponding to the
measurement are not also energy eigenstates. Using quantum mechanics in
the conventional time direction, each measurement corresponds to an oper-
ation of R that puts the system in some particular state, followed by time
evolution under U until another measurement is made, at which time the
system discontinuously flips to some state, which may or may not be the
same state as the previous measurement. Can one distinguish this picture
from its time-reversed complement? I could argue that it is by observing
that before a conventional-time measurement, the quantum state may be in
a complex linear superposition of eigenstates of the measurement operator,
but after it cannot be in such a superposition. The problem with this line
of reasoning is that quantum states themselves are not observable, but only
the probabilities that certain measurements will have certain results; thus,
it’s possible to construct a time-reversed picture where measurement puts a
quantum system in some state before the measurement occurs and the state
evolves back in time according to time-reversed U (Aharonov, Bermann, and



Lebowitz 1964).

How, then, is R time-reversal asymmetric? There are physical situations
where R provides correct predictions, but not correct retrodictions. A phys-
ical example of this, based on Aharonov, Bermann, and Lebowitz (1964)’s
discussion of a Stern-Gerlach experiment, would be two spin measurements
of a beam of spin—% particles in different directions, for instance | <> and
| => followed by | f#> and | {>. A preselection of particles based on the first
measurement, either all | <> or all | =>, gives equal probabilities for the
outcome of the second measurement, as usual; and moreover, the standard
procedures of quantum mechanics provide well-defined probabilities for all
subsequent measurements on that same ensemble of particles. Applying R
to create a retrodiction using a postselection based on the | f> or | > mea-
surement would suggest that the probabilities of | <> and | => are equal,
but if an even earlier measurement put all the particles in one state or the
other, this retrodiction doesn’t hold! This represents a genuine asymmetry
in R. I will return to the question of the origin of this asymmetry later.

1.3 Density Matrices

I want to introduce one final element of the mathematical formalism of quan-
tum mechanics: quantum statistical mechanics requires a kind of generaliza-
tion of the probability distribution over classical states called the density
matrix. For a closed system, it describes a probability distribution over
some set of possible quantum states, in effect multiplying each state by the
probability it occurs in the mixture. The mapping between mixtures and
matrices is not unique, so a general density matrix may be expressed as any
of an infinite number of different mixtures. Formally, a density matrix in
a finite-dimensional Hilbert space is the outer product of quantum states
multiplied by probabilities p;:

P:Z|¢i>pi<¢i|-

If the density matrix is diagonal in some basis, the probabilities represent
the classical probabilities to find the system in that state when measuring it.
In an open system, the density matrix may also represent correlations with
the external environment. Using this interpretation, density matrices play a



role in the decoherence approach that attempts to explain R in terms of U
(see 3).

2 R, Boltzmann’s H-Theorem, and the Sec-
ond Law

The second law of thermodynamics started as a phenomenological observa-
tion about thermal energy and chemistry, that a particular property termed
“entropy” never decreased in any spontaneous change. Boltzmann introduced
the statistical interpretation of thermodynamics, reinterpreting entropy as a
measure of how “unlikely” it is to find a system in a given state; he then pro-
ceeded to “derive” the second law by arguing that a system evolves towards
states that are more likely, so entropy should increase rather than decrease
with a probability depending on the relative unlikeliness of the possible trans-
formations. Boltzmann wrote before the discovery of quantum mechanics,
so he based his arguments on Newtonian mechanics, which like U is time-
reversible and deterministic. How is it possible to derive a time-asymmetric
conclusion like the second law from a time-symmetric dynamics? Loschmidt
and Zermelo asked this question about an early version of Boltzmann’s ar-
gument called the H-Theorem and pointed out that nothing in it specifies a
direction of time, so it applies just as well into the past as the future Sklar
2008. This does not agree with anything like the usual picture of the physical
world, because it implies that entropy should be higher in the past as well
as the future. Thus, the most probable explanation for the current universe
is as an unlikely fluctuation from a high-entropy state, with memories and
planets created as part of this fluctuation only a few moments ago!

Notwithstanding this problem, for the most part Boltzmann’s technique
of treating entropy as a statistical property of the microscopic components of
a macroscopic system works, in that it makes predictions testable and borne
out by experiment. Thus, the question becomes why Boltzmann’s approach
works despite its formal problems. The traditional tack has been to rephrase
it and ask why entropy is so low in the past, i.e. towards the beginning
of the universe. Unlike Boltzmann’s H-Theorem, which explained entropy
increase as part of the dynamics, this perspective envisions it as a kind of
global boundary condition.

Note, also, that low entropy alone is not enough: it must be in one of



the, admittedly, much more common states where entropy will increase in
the future, rather than one of the rare states where it will decrease even
further. A simple physical analogy to this situation occurs with an open
canister of gas, allowing it to escape into a vacuum in a typical entropy-
increasing process; a classical approach models a dilute gas well enough, and
as classical mechanics is symmetric under time-reversal, the time-reversed
situation where a gas contracts from a vacuum into a canister is another
possible situation. Without examining the microscopic properties of the gas
particles, it’s impossible to tell which situation is which. In a similar way, if
the true dynamics is time-reversal symmetric, the universe could start out in
a state where entropy will decrease. Observations in our universe show that
it did not, thus this additional condition must hold. I emphasize this point to
avoid a potential double standard: when reasoning about conditions on the
early universe in this way, I can’t appeal to the statistical arguments that the
entropy-decreasing states are rare because I've already rejected the statistical
argument’s conclusion that the most likely explanation for the present is as an
extreme fluctuation. The boundary conditions on the universe must have a
different character than typical situations in the universe, because statistical
arguments can’t apply to the former the way they do to the latter.

A fair question to ask what Boltzmann’s statistical reasoning achieves
if it doesn’t explain time-reversal asymmetry from time-reversal symmetric
dynamics. One response points to the great practical utility of statistical
reasoning. [ think it also provides two other valuable insights. The first
is that the difficulties Boltzmann faced highlight how hard it is to describe
the manifest time-reversal asymmetric properties of the universe from a time-
reversal symmetric dynamics. The second is that it moved the question to the
right place: if the dynamics are time-reversal symmetric, then the universe’s
apparent asymmetry becomes a cosmological question.

From this kind of typical view that places the Second Law’s time asymme-
try in initial conditions, I'd like to examine the way Boltzmann’s H-Theorem
places the asymmetry in the dynamics. The Hamiltonian formulation of clas-
sical mechanics describes a system of NV particles using a phase space of 6 N
dimensions (I-space), with three coordinates for each particle’s position and
three more for each particle’s momentum. Rather than using the full space,
though, the H-Theorem takes a probability distribution on a 6-dimensional
space (u-space), envisioning an N-particle system as represented by N points
in this space. The problem with this approach is that the probability dis-
tribution over p-space neglects the correlations present between the motions
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of particles in the full I'-space, thus excluding the entropy-decreasing time-
reversed situations (Zeh 1989).

What happens when quantum mechanics enters the picture? U, like
classical mechanics, is deterministic, so the same arguments apply: only ne-
glecting the correlations between the particles in a time-reversal asymmetric
way leads to an increase in the entropy towards the future. R, however,
destroys those correlations in just the way time-reversal asymmetric way the
H-Theorem requires. Predicting the probabilistic outcomes of a measure-
ment subsequent to previous measurements only requires the result of the
most recent preceding measurement, not the entire history of the system.
Meanwhile, a measurement on a single particle in a multiparticle system sep-
arates the single particle’s quantum state from the rest of the system’s, in
the sense that it’s possible to divide the whole state into ¥ = ¢®, where ¢
represents the state of the single particle and ® the rest of the system. With
this division, the probability to find ¢ in some state, when measuring it, is in-
dependent of the probabilities for ®, thus the measurement has destroyed the
correlations. Together with Boltzmann’s H-Theorem, this suggests a mech-
anism for the increase of entropy: R-type events reduce the wavefunctions
of individual components of the larger system, destroying correlations and
pushing the system to the most probable state.

3 Decoherence

Here, when I speak of “decoherence,” I refer to a specific kind of philosoph-
ical perspective on the nature of quantum mechanics, which holds that U
represents the real behavior of the universe and that R is a kind of illusion
of perspective. The basic argument of decoherence is that treating quantum
systems without considering their environments misses an essential part of
the physics because of the inevitable quantum entanglements between such
a system and its environment. Using the standard formalism, the density
matrix of quantum subsystem coupled to an environment, where the envi-
ronment has a classical-like diagonal density matrix, will evolve or “decohere”
on some macroscopically short time-scale so as to become diagonal itself; this
creates an apparent collapse of the wave function with similar characteristics
to a hypothesized real collapse (Zeh 1989).

One obvious question to ask of the decoherence picture is what happens
when one considers the universe as a whole: by definition, the quantum



state of the universe has to contain everything that exists, so there’s no
environment to cause it to decohere. Interpretations of quantum theory like
the many-worlds perspective work around this issue by trying to explain away
the apparent classical nature of the macroscopic world despite the power of
quantum mechanics at explaining the microscopic world. I think these ideas
give important ideas in the perspective that U is the only part of the quantum
formalism with physical reality, though, so I will offer a different viewpoint.

If R is not a real physical process but only the result of decoherence, I can
interpret the existence of the familiar classical universe as a condition on the
universe’s initial quantum state. This works in a way analogous to the Boltz-
mann’s argument placing time-reversal asymmetry as an initial condition on
the universe, as it requires that the universe’s initial quantum state has to
be “special” in such a way as to give rise to classical-like behavior rather
than the much more probable, according to statistical reasoning, outcome of
an entangled nonlocal mess. In this way, then, I think decoherence provides
much the same benefit as Boltzmann’s original statistical arguments: it clar-
ifies the question and places the problem at the right location in the physical
theory.

4 Conclusion

My goal in this essay has been to compare a picture where there’s a time-
reversal asymmetry in the dynamics with the available experimental and
theoretical evidence for and against that proposition. I've shown that at the
least a time-reversal asymmetric dynamics is compatible with the standard
formalism of quantum mechanics, as well as possibly providing a motivation
for a connection between the arrow of time defined in the asymmetry of the
measurement process, R, and the thermodynamic arrow defined by the in-
crease of entropy. Different, more orthodox perspectives place the source
of the time-reversal asymmetries in both quantum mechanics and statistical
mechanics as initial conditions on the universe. At the present, however, the
lack of a theory of quantum gravity makes the application of quantum me-
chanics to cosmology difficult, and the similar lack of a consensus ontology for
quantum mechanics makes locating and understanding its time-asymmetry
equally difficult. Thus, both proposals, of a time-reversal asymmetry in the
dynamics or in the cosmological conditions, seem viable. The latter, how-
ever, receives much more attention when I don’t see any concrete reasons for



preferring it over the alternative.

I will conclude by offering one further argument in favor of placing the
asymmetry in the dynamics. The broken conservation law governing entropy
is a local law: if there were any significant violations of this kind of locality,
it’s doubtful anyone would recognize the Second Law since experiments can’t
verify that an entropy decrease on Earth has caused an entropy increase
on Saturn or indeed anywhere else in the universe. (Quantum mechanics,
however, permits nonlocal correlations, and while the exact dynamics of U
conserve the von Neumann entropy, conspirative nonlocal correlations can
cause local decreases of entropy while preserving the global entropy. This
adds a further stringent condition to the cosmological initial conditions: not
only must the universe start out in a low-entropy state such that entropy will
increase in the future, but the entropy everywhere has to obey locality.
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