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  The argument is made the “Bit” in “It from Bit” is the result of averaging and thus is not definite, and 

fundamental uncertainty is rooted in set theory.   The cosmological constant is also argued to be completely 

natural.  An expansion of the Ricci-tensor over a finite number of terms is also provided. 

      

 

I.  TIME AND INFORMATION 

  In order to discuss the topic of information, we must 

first discuss our notion of time and flow. In the most 

general understanding, time is a monotonically 

increasing parameter, and a flow is a change of a 

variable with respect to time.  According to ergodic 

theory [1], we can understand a flow as the group 

action, φ, which maps the transformation group G 

acting on set X, back to set X [2]:   

𝜑: 𝐺 × 𝑋 → 𝑋 

The group G is the set of real numbers, ℝ, and it is 

the well-ordered index of the iterated acts of G that is 

monotonically increasing.  This well-ordering of the 

index is typically assumed to extend to the real 

numbers as well, making it possible to identify and 

define the time averages of the past for a general 

function 𝑔(𝑡) as: 

lim
𝑇→∞

1

𝑇
∫ 𝑔(𝑡)𝑑𝑡

0

−𝑇

 

Where t is an index of iterations of G. 

However, the well ordering of the reals is not 

provable from Zermelo-Fraenkel axioms plus the 

axiom of choice and the general continuum 

hypothesis (ZFC+GCH) alone [3], and would require 

the assumption of the axiom of constructability to 

prove, which is an assumption that has not been 

shown to be always true [4]. Given also that the 

simultaneity of events is not absolute in the physical 

world as shown by Einstein [5], we are forced to 

accept a certain level of imprecision, or error, or 

uncertainty, in the ordering of the transformations 

occurring on set X.   

Given this imprecision in the ordering, if A and B are 

transformations, and Y is the ordering of a set after 

two successive transformations, it might not be 

provable that B followed A or that A followed B in 

which case: 

𝐴𝐵𝑋 = 𝐵𝐴𝑋 = 𝑌 

𝐴𝐵 − 𝐵𝐴 = 0 

This means the transformations A and B are 

permutable, or Abelian, when the uncertainty of the 

associated ordering is sufficiently high [6].  It is this 

type of imprecision that von Neumann was 

identifying in his proof of the ergodic theorem in 

quantum mechanics.  If we recognize position and 

momentum operators Q and P as being 

transformations which can never be performed 

simultaneously in quantum mechanics, then there is 

an order to those operations, and this corresponds to 

the situation where: 

𝑄𝑃 − 𝑃𝑄 =  
ℏ

𝑖
 

This is not something that we intuitively understand 

from our everyday experience, where we are able to 

measure position and momentum simultaneously and: 

𝑄𝑃 − 𝑃𝑄 =  0 

John von Neumann showed that no contradiction 

existed between the non-abelian relation of position 

and momentum in quantum physics and the abelian 

relationship that exists in classical physics simply 

because there is an imprecision one must live with 

when working in the classical world, which at best is 

only an approximation to what is actually occurring 

[7].   



It is imprecision which leads us to our notion of 

information as well. Within any interval of time, 

there is an uncertainty associated with the precise 

sequence of transformations that occurred during that 

interval.  It is the uncertainty in a sequence which we 

typically associate with information, and the 

discovery of that sequence which we associate with 

knowledge.   

If we follow the approach outlined by Wiener [6], we 

can identify the knowledge gained by comparing a 

priori and a posteriori information of a sequence 

after examination.  In that case, we can argue that if 

we know a priori a variable lies between 0 and 1, an 

a posteriori it lies in an interval between a and b 

inside interval 0 and 1, then the knowledge gained 

can be quantified as: 

− log (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑎, 𝑏) + 𝜖

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(0,1) + 𝜖
) 

Here an error term has been added to the relationship.  

As a result, this value will approach zero as the 

measures of (a,b) and (0,1) approach error ϵ.  In other 

words, in the limit of error, the possible amount of 

knowledge to be gained is zero.  More interestingly, 

as the measure of (a,b) approaches zero, the amount 

of knowledge gained is not infinite, and is limited by 

the error.  We can interpret this to mean there is a 

fundamental amount of information associated with 

the error that cannot be removed from our calculation 

of knowledge to be gained. 

This leads to the realization there is a limit to the 

amount of classical information that can be 

transmitted over an energy limited channel.  

Bremermann, discusses this topic in some detail, and 

he derives the limit over any physical channel as [8]: 

𝐶 =
𝐸𝑚𝑎𝑥

ℏ
ln(1 + 4𝜋) =

𝑚𝑐2

ℏ
ln(1 + 4𝜋) 

This result is slightly different than the one reached 

by Beckenstein [9]. This is because Bremermann’s is 

directly derived from quantum mechanical principles, 

while Beckenstein’s is derived through geometric 

arguments, but both show the knowledge to be gained 

from some transmission is bounded directly by the 

energy of the system.   

The channel capacity associated with the energy is 

also closely related to the frequency with which 

states can change from one orthogonal state to 

another as derived by Margolus and Levitin for a 

classical system: 

𝜐⊥ ≤
2𝐸

ℎ
 

Where E is the zero of energy at the ground state of 

the system [10].   

This is of concern when E is equivalent to the mass 

energy associated with the cosmological constant, 

since it implies that an object the size of the universe 

is changing from state to state at a rate of 10105 times 

per second given a mass of 1054 kg.  

II. QUANTUM CONSTRAINT 

  Ever since the development of quantum mechanics 

we know that this there is limit to our precision, and 

thus there is a certain amount of error that we must 

accept in the statements we can make.  It is of 

fundamental importance that the information 

associated with this error is not lost as the universe 

evolves.  This error is associated with the existence 

of multiple potential states, and the elimination of 

this error would be equivalent to the collapse of the 

universe into one final state. This, in principle, would 

lead to a perfectly deterministic classical world 

without any notion of “free-will”.   

However, if it is truly undecidable that the reals can 

be well-ordered, then it can be argued the 

fundamental error is not loosely rooted in the axioms 

of quantum theory, but strongly rooted in set theory 

as well. This would imply that our universe, and the 

information in it, is a fundamental consequence of the 

limits of knowledge in general, and will continue to 

evolve indefinitely, eventually passing through an 

infinite number of classically orthogonal ground 

states.  

III. OUR PERCEPTION 

  An observer’s internal model is developed based on 

knowledge gained through observations.  In the most 

general sense, an observer is not a conscious being, 

but can be any point in space.  Therefore, each point 

in space must have some local model as to how it 



relates to every other point in space.  This is the 

point’s (e.g. observer’s) perceived reality.  

Real information received at each point must be 

accompanied by a transfer of energy, and the transfer 

is mediated by the fundamental particles.  To within 

acceptable limits, the models must agree upon the 

fundamental values associated with those particles. 

This is analogous to our notion of a communications 

channel, where each fundamental particle is 

associated with a channel for information flow.   

Quantum correlations serve to place constraints on 

possible relationships between data, not the state of 

the data.  After an appropriate amount of time, 

sufficient mixing can occur allowing systems to 

decohere into classical states.  However, as discussed 

in the first section, these states are not entirely stable 

themselves, and will in fact devolve over time.  This 

is possible because of the approximate nature of 

classical states.  

If one were to poll observers, the best answer one 

could get to the question of what the value of a 

classical state is would be an average value. Given 

sufficient communication between observers, the 

effects of the law of large numbers, and the central 

limit theorem, it is reasonable that all the observers 

will arrive at the same average value and distribution 

for a classical state.  Given uncertainty though, the 

agreed upon average will change over time. This 

causes our perception of reality to have a flavor of 

the moment quality. Effectively, averages determine 

our perception of reality, and those averages change 

over time. 

IV. NATURALNESS OF THE COSMOLOGICAL 

CONSTANT 

One of the most common debates in physics 

surrounds the cosmological constant and how it 

appears to be “fine-tuned”, e.g. the smallness of the 

cosmological constant relative to the Planck mass is 

too great and thus viewed as “unnatural”. From an 

information viewpoint, the value appears too specific 

to be generated by a random process.  However, 

supporters of the “anthropic principle” will argue that 

the number is in fact random, and that it is extremely 

likely to be small, and even if that were not the case, 

if we require a small value in order to exist, then we 

will only ever see a small number. Neither of the two 

camps offer very persuasive arguments, yet both are 

actually making statements about information.  

Effectively, the former arguing there is very little 

information in the universe, the latter there is an 

overabundance. 

It is essential to argue the value of the cosmological 

constant has some very natural guides and is not 

“unnatural” at all, and yet still permit for randomness 

in its value.  As pointed out by the articles by 

Hawking [11] the conventional argument is the 

cosmological constant is significantly lower than its 

natural value by over 120 orders of magnitude:  

|Λ|

𝑚𝑝
2

< 10−120 

It has also been measured to have a slight positive 

value which has proven difficult to understand.  

Supersymmetric models offer some explanation, as 

they allow bosons to make positive contributions to 

the constant, and fermions to make negative 

contributions.  Since supersymmetric particles come 

as a bosonic and fermionic pair, when the masses of 

the particles are the same, the cosmological constant 

takes on a value of zero. However, supersymmetry is 

a broken symmetry, and the masses of bosonic and 

fermionic components are not the same.   

Ordinarily, to keep the cosmological constant near 

zero, we must be concerned with the values of all the 

decimal digits for the mass of each particle all the 

way to the scale of the cosmological constant itself.  

So there is a question of how these values sum to a 

slightly positive value. When the particle masses in 

natural units are plotted (Figure 1), a logarithmic 

relationship of the masses becomes apparent. What 

this means is that the level of precision needed to 

validate the most massive particle does indeed cancel 

the least massive particle is the difference between 

the scales of the particles.  For instance, if the lightest 

particle is on the order of 10-65 and the most massive 

on the order of 10-21 the then level of precision 

needed to reconcile is: 65 − 21 = 44.  This 

seemingly unobtainable level of precision is why the 

cosmological constant problem is viewed as a “fine 

tuning” problem, the precision demanded is simply 

greater than what one would normally expect.   



 

Figure 1. Plot of known fundamental particle masses in 
natural logarithmic units.  The x-axis is vertical and indicates 

the position of the particle from lightest to smallest, with 
fermionic contributions taking negative values, bosonic taking 

positive. Taking the absolute value gives the actual ordinal 
position.  The scale of contribution is the greatest contribution 

of the particle when summed. 

However, this logarithmic relationship is also a clue 

as to how to address the issue at hand.  The explicit 

expansion of particle contributions to the 

cosmological constant can be written as: 

𝑐Λ √Λ
4 4

𝑚𝑝
2

= ∑ 𝑠𝑔𝑛(𝑖)
𝑐𝑖𝜇𝑖

4

𝑚𝑝
2

𝑁

𝑖

< 10−120 

Here, the cosmological constant given notation 

similar to the naturalization process required of all 

masses. The constants in the expansion should be 

relatively close to one.   

From this we can also observe the log value of the 

first term of the expansion is proportional to the total 

number of fundamental particles, N:  

ln (
𝑐1𝜇1

4

𝑚𝑝
2

) ∝ 𝑁 

Further, the approximate ordinal position, n, of a 

particle with respect to the others can be crudely 

approximated as: 

(
𝑐𝑖𝜇𝑖

4

𝑚𝑝
2 )

1
𝑏
  𝑒

𝑘𝑁
𝑏 ≅ 𝑛 

Converting this to relationship and inserting it into 

our expansion, we get: 

𝑐Λ √Λ
4 4

𝑚𝑝
2

= ∑ 𝑠𝑔𝑛(𝑛)𝑛𝑏𝑒−𝑘𝑁

𝑁

𝑛=1

< 10−120 

We should see the above equation as a simple linear 

series which satisfies a constraint.  The sum should 

equal some small number near the value of one (or 

even zero), with the exponent of the cosmological 

constant determined by the number of terms in the 

series. This implies the non-zero value of the 

cosmological constant is the result of error in the 

actual mass values due to uncertainty (or, perhaps an 

appropriate error function).  If we consider the 

comparative case of the function where one subtracts 

the sum of lower values from the highest values: 

𝑓(𝑁) = 𝑁𝑏 − ∑ 𝑛𝑏

𝑁−1

𝑛=1

 

For any value of the exponent b, the function will 

eventually shift from a positive value to a negative 

value and will do so quite suddenly.  Figure 2 is an 

example plot of the phenomenon, using the value for 

b determined in the best fit line shown in Figure 1. 

 

Figure 2. Graph when b = 33.707 

The function in Figure 2 cross zero somewhere 

between the values of N = 69, 70.  

Setting the function to zero gives: 

𝑁𝑏 = ∑ 𝑛𝑏

𝑁−1

𝑛=1

 

y = 33.707ln(x) - 143.26
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For each value of N, there is a value of b for which 

this expression holds.  In case where N =15, the 

value of b = 9.3573221003829…; which was arrived 

at with a numerical calculation program.   

The data used is in Figure 1 is empirical, and the 

sudden shift in value seen in Figure 2 is purely 

mathematical in nature. There is an interesting 

relationship with Bernoulli's formula and Bernoulli 

polynomials, but as of this writing, the relationship is 

still being explored.   In any case, the above evidence 

shows it is not unreasonable or unnatural to expect a 

series with the addition of changing sign values to 

suddenly cancel even when the number of terms in 

the series are finite.  In the case of N =15, with n = 

12, 13, 14 set as positive and all others as negative, 

there are two solutions at b = 4.5398288172557…; b 

= 6.47982306289307…; again solved with a 

numerical calculator.  The two numbers result from 

two crossings of the function at zero.  The first is 

going from positive to negative, the second from 

negative to positive.  The suddenness of the changes 

and the excursion into negative values is reminiscent 

of the rapid expansion seen in inflation, where one 

can imagine there being a transition from one zero 

value to another, causing an inflationary epoch. 

If we insert the derived expansion into the vacuum 

field equation and set the Planck mass and the 

remaining constant to one, we get: 

𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 

𝑅𝜇𝜈 =
𝑚𝑝

2

𝑐Λ

∑ 𝑠𝑔𝑛(𝑛)𝑔𝜇𝜈(𝑛)

𝑁

𝑛=1

𝑛𝑏𝑒−𝑘𝑁 

𝑅𝜇𝜈 =
1

𝑐Λ

∑ 𝑠𝑔𝑛(𝑛)𝑔𝜇𝜈(𝑛)

𝑁

𝑛=1

𝑛𝑏𝑒−𝑘𝑁 

𝑅𝜇𝜈 =
1

𝑒𝑘𝑁
∑ 𝑠𝑔𝑛(𝑛)𝑔𝜇𝜈(𝑛)

𝑁

𝑛=1

𝑛𝑏 

If the metric is the same for all values of n, then: 

𝑅𝜇𝜈 =
𝑔𝜇𝜈

𝑒𝑘𝑁
∑ 𝑠𝑔𝑛(𝑛)

𝑁

𝑛=1

𝑛𝑏  

The complex version can be written as: 

𝑅𝜇𝜈 =
𝑔𝜇𝜈

𝑒𝑘𝑁
∑ 𝑧𝑛

2𝑏

𝑁

𝑛=1

 

As discussed above, the values of b associated with 

the value of N are solvable, allowing one to zero out 

the series, thereby arriving at the equation for a 

Ricci-flat manifold: 

𝑅𝜇𝜈 = 0 

If the value of N is strictly associated with the 

underlying gauge group of a quantum theory, then the 

above expansion is a simple form of quantum gravity.  

Whether this approach can be of use in determining a 

candidate theory from the many that have been 

proposed has yet to be explored.  Specific 

relationships, if any, to other Ricci-flat manifolds, 

such as Calabi-Yau manifolds are yet to be explored 

as well.   

V. CONCLUSION: IT FROM WHICH BIT? 

  The ultimate question is not whether it arises from 

bit, but which bit does it arise from?  Anthropic 

proponents are just as guilty as the fine-tuning 

proponents in that they impose one version of the 

universe on all its occupants.  Clearly, a single 

observer must think the world is perfectly suitable for 

itself even if its existence is a random occurrence, 

and yet it seems terribly unfair for all the other 

observers to be pure flukes of the imagination.     

It has been argued here it’s the averages that 

determine perceived reality, the classical realm is an 

approximation, classical states are not stable, there is 

a limit to our knowledge of the past, and the 

cosmological constant is perfectly natural.  The result 

is our perceived shared reality is merely the product 

of averaging over knowledge gained through 

observations.  This means that the “bit” is an average 

bit, thereby denying it a definite existence. 

 

APPENDIX A. OVERVIEW OF FLOWS AND 

MEASURES  

This concept of flow is important to the discussion of 

information in several ways.  Principally, each 

component in our definition of flow (G, X, φ) has a 



certain amount of information associated with it. 

Furthermore, it is of principle interest to determine 

the measured value x that X takes after each iteration 

of group action is complete. Since a measurement 

often follows a process, it is reasonable to think of 

measurement as an act. 

If we want to take a measurement of X, we must first 

define a sigma algebra, Ʃ, which is the collection of 

subsets of X that is closed and contains the 

complements of each subset of X and each union of 

subsets in X as well as X itself.  The pairing of set X 

and algebra Ʃ, is called a measurable space, or 

sometimes a field of sets and is written as (X, Ʃ).   

Since we now understand the sigma algebra, Ʃ, as 

being a collection of subsets of set X and their 

combinations, we can define the measure, µ, as the 

entity that takes each subset, σ, in Ʃ to some positive 

real number: 

𝜇: Σ → [0, ∞) 

Since X and Ʃ, are paired, this tells us that when a 

measurement is performed and X takes on value x, 

there is a definite subset, σ, composed of subsets of 

X, that the value x is representing. The combination 

of a measurable space and a measure creates a 

measure space represented by the triple (X, Ʃ, µ) 

[12]. 

This definition of measure space, while useful, is not 

dynamic and thus not entirely satisfactory.  The 

process of measurement itself must be as dynamic as 

the definition of flow, and each iteration of flow must 

consider the measured values of the previous iteration 

as being part of its initial conditions.  If group G 

serves to permute the subsets of X, then one must be 

careful in the definition of measurement to ensure 

that the information contained in set X is not lost by 

mistakenly thinking the information in the measured 

values of x is less than the information in set X itself.   

It is desirable to think that each iteration of set X has 

some Ʃ associated with it, however, it does not seem 

reasonable to expect that the measure µ is the same 

with each iteration. This brings us into conflict with 

the concept of measure preserving transformations, 

ergodicity (e.g. the condition where a systems spatial 

and time averages are the same) and the ergodic 

hypothesis.  However, the quasi-ergodic hypothesis 

tells us [7]: 

A system’s point in phase space will, in the 

course of its motion (determined by the 

differential equations of mechanics), come 

arbitrarily close to every point of its energy 

surface—indeed, the time it spends in any 

region of the latter in the long time average is 

proportional to the measure of that region. 

It is Von Neumann’s proof of the quasi-ergodic 

hypothesis in quantum mechanics that showed that 

the theory was fundamentally correct, and the 

information was preserved as part of the fundamental 

imprecision of the theory. 
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