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Abstract

John Wheeler coined the phrase “it from bit” or “bit from it” in the 1950s. However, much of the

interest in the connection between information, i.e. “bits”, and physical objects, i.e. “its”, stems

from the discovery that black holes have characteristics of thermodynamic systems having entropies

and temperatures. This insight led to the information loss problem – what happens to the “bits”

when the black hole has evaporated away due to the energy loss from Hawking radiation? In this

essay we speculate on a conservative answer to this question using the assumption of self-similarity

of quantum correction to the gravitational action and the requirement that the quantum corrected

entropy be well behaved in the limit when the black hole mass goes to zero.
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1. Self-Similarity and order-~n Quantum Gravity Corrections

In this essay we look at the connection between physical objects, i.e. “its”, and infor-

mation/entropy, i.e “bits”,1 in the context of black hole physics. In particular, we focus

on the relationship between the initial information/entropy contained in the horizon of a

Schwarzschild black hole and the final entropy carried by the outgoing, correlated photons of

Hawking radiation. The correlation of the photons comes from taking into account conser-

vation of energy and the back reaction of the radiation on the structure of the Schwarzschild

space-time in the tunneling picture [2, 3] of Hawking radiation. Since, in the first approxima-

tion, Hawking radiation is thermal there are no correlations between the outgoing Hawking

radiated photons. This leads to the information loss puzzle of black holes which can be put

as follows: The original black hole has an entropy given by SBH = 4πkBGM2

c~ which can be

written as SBH = kBA
4l2Pl

where A = 4πr2
H is the horizon area of the black hole and rH = 2GM

c2

is the location of the horizon [4]. One can think of this areal entropy can being composed

of Planck sized area “bits” APl = l2Pl where the Planck length is defined as lPl =
√
~G
c3

. If

Hawking radiation were truly thermal, then the entropy of the outgoing thermal radiation

would be larger than this Bekenstein area entropy. Since entropy increases, some information

is lost. But this violates the prime directive of quantum mechanics that quantum evolution

should be unitary and, thus, information and entropy should be conserved.

To begin our examination of these issues of the thermodynamics of black holes and the

loss versus conservation of information, we lay out our basic framework. We will consider a

massless scalar field φ(x, t) in the background of a Schwarzschild black hole whose metric is

given by

ds2 = −
(

1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2dΩ2 , (1)

in units with G = c = 1. From here onward in the essay we will set G = c = 1 but will keep

~ explicitly. The horizon is located by setting 1− 2M
rH

= 0 or rH = 2M . Into this space-time,

we place a massless scalar field obeying the Klein-Gordon equation

1 There is an equivalence or connection between information, entropy and bits and we will use these terms
somewhat interchangeably throughout this essay. A nice overview of the close relationship between infor-
mation, entropy and bits can be found in reference [1].
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− ~2

√−g
∂µ(gµν

√−g∂ν)φ = 0 . (2)

By the radial symmetry of the Schwarzschild space-time as given by Eq. (1), the scalar field

only depend on r and t. Expanding φ(r, t) in a WKB form gives

φ(r, t) = exp

[
i

~
I(r, t)

]
(3)

where I(r, t) is the one-particle action which can be expanded in powers of ~ via the general

expression

I(r, t) = I0(r, t) +
∞∑

j=1

~jIj(r, t). (4)

Here, I0(r, t) is the classical action and Ij(r, t) are order ~jquantum corrections. We now

make the assumption that quantum gravity is self-similar 2 in the following sense: the higher

order corrections to the action, Ij(r, t), are proportional to I0(r, t), i.e. Ij(r, t) = γjI0(r, t)

where γj are constants. With this assumption, Eq. (4) becomes

I(r, t) =

(
1 +

∞∑
j=1

γj~j

)
I0(r, t) . (5)

From Eq. (5), one sees that γj~j is dimensionless. In the units we are using, i.e. G = c = 1,

~ has units of the Planck length squared, i.e. l2Pl, thus γj should have units of an inverse

distance squared to the jth power. The natural distance scale defined by Eq. (1) is the

horizon distance rH = 2M , thus

γj =
αj

r2j
H

(6)

2 Broadly speaking, self-similarity means that a system “looks the same” at different scales. A standard
example is the Koch snowflake [5] where any small segment of the curve has the same shape as a larger
segment. Here, self-similarity is applied in the sense that as one goes to smaller distance scales/higher
energy scales by going to successive orders in ~ that the form of the quantum corrections remains the
same.
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with αj dimensionless constants which we will fix via the requirement that informa-

tion/entropy be well behaved in the M → 0 limit. Thus, in this way we will obtain an

explicit all orders in ~ correction to the entropy and show how this gives a potential solution

to the black hole information puzzle.

2. Black hole entropy to all orders in ~
In [6] the set-up of the previous section was used to obtain an expression for the quantum

corrected temperature of Hawking radiation [7] to all orders in ~. This was done by applying

the tunneling method introduced in [2, 3] to the WKB-like expression given by Eqs. (3),

(5), and (6). From [6], the quantum corrected Hawking temperature is given as

T =
~

8πM

(
1 +

∞∑
j=1

αj~j

r2j
H

)−1

. (7)

In this expression, ~
8πM

is the semi–classical Hawking temperature and the other terms are

higher order quantum corrections. At this point, since the αj’s are completely undetermined,

the expression in Eq. (7) does not have much physical content but is simply a parameterizing

of the quantum corrections. However, by requiring that the quantum corrected black hole

entropy be well behaved in the limit M → 0, we will fix αj’s and show how this leads to

conservation of information/entropy, thus providing an answer to the black hole information

loss puzzle.

Using Eq. (7), we can calculate the Bekenstein entropy to all orders in ~. In particular,

the Bekenstein entropy of the black holes can be obtained by integrating the first law of

thermodynamics, dM = TdS with the temperature T given by Eq. (7), i.e. S =
∫

dM
T

.

Integrating this over the mass, M , of the black hole (and recalling that rH = 2M) gives the

modified entropy as a function of M

SBH(M) =
4π

~
M2 + πα1 ln

(
M2

~

)
− π

∞∑
j=1

αj+1

4jj

(
~

M2

)j

. (8)

To lowest order S0(M) = 4π
~ M2 for which the limit M → 0 is well behaved, i.e. S0(M →

0) → 0, as expected since as the mass vanishes so should the entropy. On the other hand, for

the first, logarithmic correction as well the other higher corrections, the quantum corrected

entropy diverges. One way to fix these logarithmic and power divergences in SBH(M) as

M → 0 is to postulate that the Hawking radiation and resulting evaporation turn off when
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the black hole reaches some small, “remnant” mass mR [8]. Here, we take a different path

– by assuming that quantum corrected black hole entropy should not diverge in the M → 0

limit we will obtain a condition that fixes all the unknown αj’s. To accomplish this, the third

term in Eq. (8) should sum up to a logarithm which can then be combined with the second

logarithmic term to give a non-divergent entropy, i.e. S(M → 0) 6= ±∞. This condition

can be achieved by taking the αj’s as

αj+1 = α1(−4)j for j = 1, 2, 3... . (9)

This again shows self-similarity since all the αj’s are proportional to each other. For this

choice in Eq. (9), the sum in Eq. (8), i.e. the third term, becomes +α1π ln(1 + ~/M2).

Combining this term with the second, logarithmic quantum correction, the entropy takes

the form

SBH(M) =
4π

~
M2 + πα1 ln

(
1 +

M2

~

)
. (10)

As M → 0, this “all orders in ~” entropy tends to zero, i.e. SBH(M) → 0. There is a

subtle issue with identifying the sum in Eq. (8) with α1π ln(1+~/M2) – strictly this is only

valid for
√
~ < M , i.e. when the mass, M , is larger than the Planck mass. However, we

can use analytic continuation to define the sum via α1π ln(1 + ~/M2) even for
√
~ > M .

This is analogous to the trick in String Theory [12] where the sum
∑∞

j=1 j is defined as

ζ(−1) = − 1
12

using analytic continuation of the zeta function, i.e. ζ(s) =
∑∞

n=1 n−s. Other

works [11] have investigated quantum corrections to the entropy beyond the classical level.

These expressions, in general, involve logarithmic and higher order divergences as M → 0 as

we also find to be the case for our generic expression in Eq. (8). However, here, as a result

of our assumption of self-similarity of the ~n corrections, we find an expression for SBH(M)

which has a well behaved M → 0 limit.

This “lucky” choice of αj’s in Eq. (9) which gave the all orders in ~ expression for SBH(M)

in Eq. (10) was motivated by making the primary physical requirement that the entropy of

the black hole be well behaved and finite. Usually, the focus in black hole physics is to find

some way to tame the divergent Hawking temperature in the M → 0 limit whereas here

the primary physical requirement has been on making sure that the entropy/information

content of the black hole is well behaved to all order in ~.
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The expression for SBH(M) still contains an arbitrary constant, namely α1, which is

the first order quantum correction. This first order correction has been calculated in some

theories of quantum gravity. For example, in Loop Quantum Gravity one finds that α1 =

−1
2

[13]. Once α1 is known, our assumption of self-similarity and the requirement that

information/entropy be well behaved fixes the second and higher order quantum corrections.

One can ask how unique is the choice in Eq. (9)? Are there other choices which would yield

SBH(M = 0) → 0? As far as we have been able to determine, there are no other choices of

αj’s that give S(M = 0) → 0, and also conserves entropy information as we will demonstrate

in the next section. However, we have not found a formal proof of the uniqueness of the

choice of αj’s.

If one leaves α1 as a free parameter – does not fix it to the Loop Quantum Gravity

value, i.e. α1 = −1
2

–, then there is an interesting dividing point in the behavior of the

entropy in Eq. (10) at α1 = −4. For α1 ≥ −4, the entropy in Eq. (10) goes to zero, i.e.

SBH = 0, only at M = 0. For α1 < −4, the entropy in Eq. (10) goes to zero, i.e. SBH = 0,

at M = 0 and also at some other value M = M∗ > 0 where M∗ satisfies the equation

4π
~ (M∗)2 + πα1 ln

(
1 + (M∗)2

~

)
= 0. Thus, depending on the first quantum correction α1

the black hole mass can vanish if α1 ≥ −4, or one can be left with a “remnant” of mass

M∗ if α1 < −4. It might appear that one could rule out this last possibility since for

M∗ > 0 the black hole would still have a non-zero temperature via Eq. (7) and, thus,

the black hole should continue to lose mass via evaporation leading to masses M < M∗

which would give S < 0 for the case when α1 < −4. However, if the Universe has a

positive cosmological constant, i.e. space-time is de Sitter, then the Universe will be in a

thermal state at the Hawking-Gibbons temperature, i.e. TGH = ~
√

Λ
2π

[14] where Λ > 0 is

the cosmological constant. Thus, if the quantum corrected black hole temperature from Eq.

(7) becomes equal to TGH the evaporation process can stop at this finite temperature and

still consistently have S = 0. This situation would give some interesting and non-trivial

connection between the Universal parameter Λ and the final fate of every black hole (in the

case when α1 < −4).

3. Conservation of energy, entropy/information and solution to the

information loss puzzle

We now want to show that the initial (quantum corrected) entropy of the black hole given

in Eq. (10) can be exactly accounted for by the entropy of the emitted radiation so that
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entropy/information, i.e. “bits”, is conserved. The fact that this happens depends crucially

on the specific, logarithmic form of the quantum corrected entropy in Eq. (10). This,

retrospectively, puts an additional constraint on the αj’s from Eq. (9) – other choices

of αj’s would not in general lead to both a well behaved S in the M → 0 limit and to

entropy/information conservation. As we will see, this conservation of information/entropy

is connected with the conservation of energy.

To start our analysis, we note that in the picture of Hawking radiation as a tunneling

phenomenon the tunneling rate, i.e. Γ, and the change in entropy are related by [2]

Γ = e∆SBH . (11)

When the black hole of mass M emits a quanta of energy ω energy conservation tells us

that the mass of the black hole is reduced to M − ω. Connected with this, the entropy of

the black hole will change according to ∆SBH = SBH(M − ω)− SBH(M) [9, 10]. Using Eq.

(10) for the quantum corrected entropy, one obtains for the change in entropy

∆SBH = −8π

~
ω

(
M − ω

2

)
+ πα1 ln

[
~+ (M − ω)2

~+ M2

]
. (12)

Combining Eqs. (11) and (12), the corrected tunneling rate takes the form

Γ(M ; ω) =

(
~+ (M − ω)2

~+ M2

)πα1

exp

[
−8π

~
ω

(
M − ω

2

)]
. (13)

The term exp
[−8π

~ ω
(
M − ω

2

)]
represents the result of energy conservation and back reaction

on the tunneling rate [9, 10]; the term to the power πα1 represents the quantum corrections

to all orders in ~. This result of being able to write the tunneling rate as the product of

these two effects, namely back reaction and quantum corrections, depended crucially on the

specific form of SBH(M) and ∆SBH from Eqs. (10) and (12), respectively, which is turn was

crucially tied to our specific choice of αj’s in Eq. (9). Note that even in the classical limit,

where one ignores the quantum corrections by setting πα1 = 0, there is a deviation from a

thermal spectrum due to the ω2 term in the exponent in Eq. (13).

We now find the connection between the tunneling rate given by Eq. (13) and the entropy

of the emitted radiation, i.e. Srad. Assuming that the black hole mass is completely radiated

away, we have the relationship M = ω1 + ω2 + ... + ωn =
∑n

j=1 ωj between the mass of the
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black hole and the sum of the energies, i.e. ωj, of the emitted field quanta. The probability

for this radiation to occur is given by the following product of Γ’s [15] which are defined in

Eq. (13)

Prad = Γ(M ; ω1)× Γ(M − ω1; ω2)× ...× Γ

(
M −

n−1∑
j=1

ωj; ωn

)
. (14)

The probability of emission of the individual field quanta of energy ωj is given by

Γ(M ; ω1) =

(
~+ (M − ω1)

2

~+ M2

)πα1

exp

[
−8π

~
ω1

(
M − ω1

2

)]
,

Γ(M − ω1; ω2) =

(
~+ (M − ω1 − ω2)

2

~+ (M − ω1)2

)πα1

exp

[
−8π

~
ω2

(
M − ω1 − ω2

2

)]
,

..... , (15)

Γ

(
M −

n−1∑
j=1

ωj; ωn

)
=

(
~+ (M −∑n−1

j=1 ωj − ωn)2

~+ (M −∑n−1
j=1 ωj)2

)πα1

exp

[
−8π

~
ωn

(
M −

n−1∑
j=1

ωj − ωn

2

)]

=

(
~

~+ (M −∑n−1
j=1 ωj)2

)πα1

exp(−4πω2
n/~) .

The Γ’s of the form Γ(M −ω1−ω2− ...−ωj−1; ωj) represent the probability for the emission

of a field quantum of energy ωj with the condition that first the field quanta of energy

ω1 + ω2 + ... + ωj−1 have been emitted in sequential order.

Using Eq. (15) in Eq. (14), we find the total probability for the sequential radiation

process described above

Prad =

(
~

~+ M2

)πα1

exp(−4πM2/~) . (16)

The black hole mass could also have been radiated away by a different sequence of field

quanta energies, e.g. ω2 + ω1 + ... + ωn−1 + ωn. Assuming each of these different processes

has the same probability, one can count the number of microstates, i.e. Ω, for the above

process as Ω = 1/Prad. Then, using the Boltzmann definition of entropy as the natural

logarithm of the number of microstates, one gets for the entropy of the emitted radiation

Srad = ln(Ω) = ln

(
1

Prad

)
=

4π

~
M2 + πα1 ln

(
1 +

M2

~

)
. (17)
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This entropy of the emitted radiation is identical to the original entropy of the black hole

(see Eq. (10)), thus entropy/information/“bits” are conserved between the initial (black hole

plus no radiation) and final (no black hole plus radiated field quanta) states. This implies

the same number of microstates between the initial and final states and, thus, unitary

evolution. This then provides a possible resolution of the information paradox when the

specific conditions are imposed.

The above arguments work even in the case where one ignores the quantum corrections

[15], i.e. if one lets α1 = 0. While interesting, we are not sure how significant this is since

almost certainly quantum corrections will become important as the black mass and entropy

go to zero.

In this essay, we have examined the interrelationship of “bits” (information/entropy)

and “its” (physical objects/systems) in the context of black hole information. By requiring

that the higher order quantum corrections given in Eq. (4) be self-similar in the sense

Ij(r, t) ∝ I0, and that the associated entropy/information of the black hole as given in

Eq. (8) be well behaved in the limit when the black hole mass goes to zero, we were able

to relate all the higher order quantum corrections as parameterized by the αj’s in terms

of the first quantum correction α1. This proportionality of all αj’s is another level of

self-similarity. The final expression for this quantum corrected entropy, namely Eq. (10),

when combined with energy conservation and the tunneling picture of black hole radiation

allow us to show how the original “bits” of black hole information encoded in the horizon

were transformed into the “its” of the outgoing correlated Hawking photons, thus providing

a potential all orders in ~ solution to the black hole information loss puzzle.
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