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1 Operational Derivation of Physical Laws

When answering the question of what properties a material has, a theoretical
physicist may ask

“What is its Hamiltonian?” or “What is its Lagrangian?”

Most physicists seem to believe that every physical property of a mate-
rial can be predicted once the Hamiltonian or Lagrangian of some physical
phenomena are known. This is often called “physics imperialism.” In the
20th century, we perhaps benefited too much from practical developments
in physics—semiconductors, lasers, and magnetometers. To reinforce its po-
sition, the 20th century saw physics expanding the boundaries of various
physical phenomena, from the sub-nanometer to the cosmological scale.

On the other hand, when somebody asks the same question to a non-
expert physicist, they may try to break open the object with a hammer,
for example, or measure its electrical properties. That is, to reveal the at-
tributes of this material, they take a step-by-step approach. We can think of
this as operational thinking. This method is very powerful when it comes to
understanding unknown physical phenomena. Further, operational thinking



is a natural process for all experimentalists. To reveal a material’s physical
properties, experimentalists construct their experimental setup, start the de-
tection by flicking a switch, measure something, and then analyze the experi-
mental data. Obviously, before the experimental setup has been constructed,
we cannot collect experimental data. This is essentially a step-by-step (op-
erational) process. In order to naturally understand physical properties via
such a process, it seems to be necessary to reconstruct all physical laws from
an operational point of view.

Operational thinking has been formalized as information theory. His-
torically, as recounted in the book “Science and Information Theory,” Leon
Brillouin tried to apply this theory to physical laws [I]. His book aims to
capture various physical phenomena from the information-theoretical idea
initiated by Claude Elwood Shannon. In particular, he tried to derive the
entropy of physical systems from the information-theoretical quantity known
as the Shannon entropy. From an information theory standpoint, the Shan-
non entropy can be thought of as the averaged rate of the optimal data
compression [2]. This seems to fit the concept of John Archibald Wheeler’s
famous quote:

“It from Bit.”

However, as shown in the next section, information-theoretical concepts can-
not be applied to a single event. In this essay, we show that this quote should
in fact be rewritten as:

“These from Bits.”

2 Individuals and Information Theory

First of all, how should we evaluate the quantity of information? For example,
the abbreviation “IMS™@ has the following ASCII binary code:

IMS = 010010010100110101010011

Thus, “IMS” has a 24-bit string. However, nobody would claim that the
Shannon entropy of “IMS” is 24. Furthermore, the 24-bit string alone has no
meaning. For example, another abbreviation, “MIT,” can be converted to

MIT = 010011010100100101010100

L“IMS” stands for “Institute for Molecular Science,” which is the author’s working
institute.



This also has a 24-bit string, but the meaning of the two abbreviations is
completely different. Therefore, the amount of information does not reflect
the meaning of each word. So what does the amount of information express?
Neither word has an information-theoretical meaning. Therefore, we have to
define the amount of information for an ensemble of bit strings. For example,
we could consider the set of bit strings given by “CIT,” “NIT,” and “TSU,”
and evaluate the probability distribution of the bit string pattern, e.g., the
ratio of the number of 1’s. However, this probability distribution cannot
be evaluated from just a single event. Therefore, we require an ensemble
containing a large number of samples. Then, for a sufficiently large num-
ber of samples, the probability distribution becomes the “true” probability
distribution. In this case, each bit string is called a typical sequence.

For a typical sequence of N bits, Shannon analytically showed that the
optimal data compression rate could be written as

N =NH(p), (1)

where N is the averaged number of the optimally compressed bits2, and H (p)
is the Shannon information for the bit string, which is given by

H(p) = —plogyp — (1 — p)logy(1 —p), (2)

where p is the ratio of the number of 1’s in the bit string. Therefore, on
applying information theory to physical laws, macroscopic systems, such as
those of thermodynamics and statistical mechanics, are needed. Information
theory cannot be applied to Newtonian mechanics and electromagnetism,
as the theory breaks down for small data sets or a single event. However,
in our physical experiences and daily life, such phenomena or events are
commonly encountered. We must therefore construct a relevant description
of information theory on this scale.

3 Equilibrium Thermodynamics and Statisti-
cal Mechanics from an Operational View-
point

In the previous section, we showed that information theory can only be ap-
plied to physical systems with a macroscopically large number of samples.

*Shannon originally showed that there exists some lower bound of the (reversible)
compression process such that NH(p) < N < NH(p) + 1 for any N-bit string.



As is well known, the macroscopic theory of physics is described by ther-
modynamics and statistical mechanics. Let us first consider the structure
of thermodynamics. Equilibrium thermodynamics itself has an operational
perspective, and, further, it can be axiomatized by a specific operational
process, namely the adiabatic process [3J2. Therefore, the long history of
thermodynamics can be placed into an information-theoretical context. The
famous parallel between thermodynamics and information theory is the para-
dox of Maxwell’s demon [4], explained as follows. Consider a molecular gas
inside a box. The box contains a partition that divides it into two regions,
and the partition has a window that can be either open or shut. The demon
operates this window. When the demon sees molecules moving at higher
speeds, he guides them to the left side of the box via the window. Similarly,
the demon guides molecules moving at lower speeds to the right side of the
box. The demon repeats this process repeatedly. Eventually, the tempera-
ture in the left of the box increases, and vice versa. This seems to violate
the second law of thermodynamics, and was taken as the paradoxical issue.
However, Rolf William Landauer pointed out that the mind of the demon re-
tains the memory of the molecular speed, and further that the erasure of this
memory must incur some cost [5]. This cost is equivalent to the gain from
the physical system. Therefore, by considering not only the thermodynami-
cal cycle but also the information cycle, the second law of thermodynamics
is not violated. Further developments on the resolution of the Maxwell’s
demon paradox have been contributed by various researchers, particularly
Charles Henry Bennett [6]. However, there remains an unsolved problem of
the relationship between the thermodynamical entropy of the physical sys-
tem and the Shannon entropy of the demon. In Ref. [7], we pointed out
the equivalence between these entropies when the cleverest Maxwell’s demon
operates the physical and information-theoretical processes in a specific con-
text. These physical processes do not incur any cost from the operation of
the partition, the window, or the measurement. We can also ensure that the
information-theoretical processes do not incur any computational cost in the
demon’s memory. Only when the cleverest Maxwell’s demon applies the op-
timal data compression to his memory before the erasure does the Shannon
entropy equal the thermodynamical entropy. Therefore, if all molecules in
the box are measured by the cleverest demon, the thermodynamical entropy
in all of the thermodynamical processes can be characterized by the Shannon
entropy in the information-theoretical context. Hence, “These (thermody-
namical processes) from Bits.”

3The same authors recently showed that nonequilibrium thermodynamics cannot, in
general, be defined in the same way [9].



Next, let us consider another macroscopic physical theory: statistical
mechanics. In equilibrium statistical mechanics, we conventionally discuss
a derivation of the ground state of a sufficiently large number of spins and
a phase transition from liquid to solid, for example. Equilibrium statistical
mechanics does not have an operational structure. Therefore, to pursue
our idea that any physical process can be reformulated from an operational
viewpoint, we must construct some operational scenarios. For simplicity,
consider a physical system with N two-level atoms. Somebody, who we
symbolize as Maxwell’s demon in the following, measures each two-level atom.
First, Maxwell’s demon measures the N-ary physical system. The demon’s
memory stores the bit-string of the excited state (1) or the ground state (0),
and so the demon incurs the optimal erasure cost? given by

Wer(z(])) = NH(p) kBiTh’12 (3)

where p denotes the ratio of the number of excited states, kg is the Boltz-
mann constant, and 7" is the temperature of the heat bath in the physical
erasure model. From Landauer’s well-known principle, the averaged cost of
the erasure process is kg1 In2. We can also determine the cost of exciting
the physical system from the ground state for all two-level atoms as

Wonys(p) = Npe (4)

for the two-level energy difference e. Then, we define the cost function F(p)
as

F(p) := Wonys(p) = Wera(p). ()

Intuitively, one of the essential properties of the equilibrium state is its ro-
bustness against small perturbations to the physical system. In our opera-
tional context, we define the equilibrium state as the robustness of the cost
function F'(p) under a small change to the physical system:

dF (p)
VA 6
- (©
for sufficiently large N [8]. Thus, we can derive the Maxwell-Boltzmann
distribution as

the number of 1's ~ p . € 7)
the number of 0's 1 —p P kgT )

4We consider the optimal erasure cost because equilibrium thermodynamics can be
equated to equilibrium statistical mechanics.



To conclude, we derive the Maxwell-Boltzmann distribution, which is the
conventional derivation of the equilibrium state in statistical mechanics from
an operational statistical process with optimal data compression and era-
sure processes?. Once again, therefore, we have “These (physical systems to
satisfy statistical physics) from Bits.”

4 Concluding Remarks

Following in Brillouin’s footsteps, we tried to reformulate some physical the-
ories from an operational viewpoint. However, as information theory is not
currently applicable to situations where there are only a small number of sam-
ples, we could only consider macroscopic physical theories: equilibrium ther-
modynamics and equilibrium statistical mechanics. The optimal information-
theoretical process corresponds to the equilibrium macroscopic system, and
its essence is a sufficiently large number of samples. Therefore, Wheeler’s fa-
mous slogan should be changed to “These from bits.” To revive the original
“It from bit,” we must extend information theory to small-number samples
or non-typical sequences. I believe that microscopic physical theories, such
as Newtonian mechanics, can play a great part in the development of infor-
mation theory. At such a time, “It develops Bit,” and we will surely acquire
“It from Bit.”
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