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1 Unpredictability and Random Numbers

Prediction is supposed to be a fruitful product of good science. For example,
in the case of a falling apple, Newtonian mechanics can in principle, predict
the real-time path of this apple, whose mass is known under the initial con-
dition. Since this is assumed to be applied to the rigid body approximation
(as in the case of the apple), the precision of the real-time path is limited.
Most physical models that describe complex and dynamical natural phenom-
ena are based on several approximations of the target phenomena. In the
Japanese essay written by Sin-Itiro Tomonaga [1], who won the Nobel Prize
in physics with Julian Seymour Schwinger and Richard Phillips Feynman in
1965, tried to answer the question what is physics?” as follows:

Physics seeks for the existing laws of any natural phenomena
around us1 in pursuit of relying on the observational facts.

The established laws in physics may not be effective in predicting the real-
time path. David Deutsch, who initiated the concept of a quantum computer
in the year 1985 [2], claimed the concept as an aid to “better understanding” of

1It is noted that this deals with non-biological phenomena as an annotation in the
original quote.
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nature because of the modifications made to several existing laws of nature in
the history of science [3]. By understanding these phenomena using classical
mechanics, we can predict the real-time path under all known conditions. It
is known that this simulation may lack a computational resource under the
current or near-future technological level.

In the digital computational world, as a byproduct of scientific achieve-
ment, computation is often used for prediction. This computational predic-
tion is not only useful in daily life, such as for weather forecast and stock price
predictions, but also for basic science. As an example of a basic science appli-
cation, in the case of laser interferometer gravitational-wave detectors such
as LIGO, VIRGO, and KAGRA, the real-time feedback/feedforward system
is essentially used for stable operation, and it requires huge computational
resources. Historically, the first electronic general-purpose digital computer,
ENIAC, was designed and primarily used to calculate artillery firing tables
for the United States Army’s Ballistic Research Laboratory. However, its
first program was a study on the feasibility of a hydrogen bomb [4]. John
von Neumann and Stanis law Marcin Ulam demonstrated that the speed of
ENIAC would enable quick calculations by using the Monte Carlo method
such that the calculation of the distance that neutrons were likely travel
through various materials could be performed much more quickly [5, 6]. Be-
cause the Monte Carlo method requires quickly generated random numbers,
John von Neumann initiated a pseudo random number generator (PRNG)
by using the middle-square method [7]. The basic structure of a PRNG con-
sists of a nonlinear function and an external initial value, which is called a
seed. Because scientific tasks require reproducibility of the obtained results,
scientific computations using the randomized method require the exact and
complete results each time. This can be carried out by the same seed. In
our daily lives, PRNGs are widely used for simulation, gaming, and security.
This technology vitally supports our digital world. In digital gaming, such
as Pokémon, several game players have already hacked the random number
generator (RNG) in the game to tune it to their desired situation. This is
often called an RNG manipulation. If such individuals hack the PRNGs in
our security system, the security system will be easily broken. In this situ-
ation, almost all cryptographic techniques such as RSA, post-quantum, and
quantum key distribution, are ineffective [8]. This is because the mathemat-
ical proofs of most cryptographic techniques assume the existence of uniform
random number digits. The probabilistic seed cannot be generated since
the computational machine implemented the universal Turing machine such
that the von Neumann architecture is deterministic. The output sequence
generated from any PRNG is essentially predictable. Meanwhile, a physical
RNG was initiated by Maurice George Kendall and Michael James Babington
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Smith in 1938 [9]. The world’s first commercially available general-purpose
digital computer, Ferranti Mark 1, generated random number bits by using
electrical noise, in the year 1951 [10]. The classical mechanics based physical
RNG, such as tossing a coin, has the same problems as those in the PRNG.
Therefore, in principle, PRNG is predictable. When a randomized source
of a physical PNG such as electrical noise, temperature, and timestamp is
based on external measurable parameters, it also has the same problem.

A “true” uniform RNG has a mathematically simple form, which is similar
to a binary random variable {Xi}Ni=1, which has the following probability
distribution

Pr[Xi = 0] = Pr[Xi = 1] =
1

2
(1)

for all i = 1, 2, · · · , N . Moreover, the binary random variables {Xi}Ni=1

are independent and identically distributed (i.i.d.). When a certain RNG
completely satisfies the above mathematical form, it becomes unpredictable;
hence, we cannot perfectly predict a future binary sequence. According to
Kentaro Tamura, who is my collaborator on this project,

“Physics is not fair but the random number is fair.”

He made this statement when we decided to start this random-number project.
The above-mentioned RNG does not satisfy the “true” uniform RNG. While
there are several statistical tests on the RNGs, such as NIST Test Suites,
TEST U01, and Diharder, the RNGs passing all statistical tests cannot be
guaranteed as the “true” uniform RNG. As one of the “true” uniform RNG
candidates, a generation process itself has a probabilistic structure. Techni-
cally, a measurement process that obeys the rules of quantum mechanics is
conceivable. This is called the Born rule, which is considered as one of the
mathematical axioms of quantum mechanics. Then, a quantum-mechanics
based RNG, the so-called quantum random number generator (QRNG), is
considered while we have to take into account the established laws of physics.
It is to be noted that a macroscopic theory such as statistical physics adopts
a probabilistic treatment. When the underlying microscopic theory is de-
scribed in classical physics, this probabilistic treatment of the macroscopic
state is not required because infinite computational resources are available to
be used. This is attributed to a coarse graining process from the microscopic
deterministic dynamics to macroscopic theory.

2 Seedless Random Number Generator

A simple procedure of QRNG is
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1. setting the initial quantum state, denoted as |0〉, of the two-level quan-
tum system H2 := span{|0〉, |1〉}.

2. generating the quantum-mechanical superposition from the initial state;

|ψ〉 =
1√
2

(|0〉+ |1〉) . (2)

3. measuring the generated quantum state |ψ〉 on the basis of |0〉 and |1〉.
Then, the output quantum state changes, depending on the measure-
ment outcome. The measurement output itself becomes the random
number bit.

4. resetting the initial quantum state or preparing a new quantum state.

Step 1 has the same requirement as that of building a universal quantum
computer according to the DiVicenzo criteria [11]. Steps 1 and 2 have the
same external procedure to control the quantum state. In Step 2, the quan-
tum gate of the quantum computer is implemented, and the Hadamard gate
is applied. In Step 3, a one-bit random number is generated in accordance
with the Born rule. In the resetting case of Step 4, this process requires
the same energy consumption when different quantum states are reset to
the same initial state. Because QRNG has the same external operation,
this RNG is seedless. Almost all QRNGs are experimentally implemented
in quantum optics [12, 13]. However, the reset process is not considered.
The violation of Bell inequality is related to the private randomness expan-
sion, which means that a small private random seed can be expanded into
a longer private random string [14]. This private randomness expansion was
experimentally demonstrated [15]. By utilizing the loop-hole free Bell test,
the private randomness expansion was experimentally performed [16, 17].
However, for any randomness expansion protocols, a one-bit random seed is
required.

A quantum computer essentially becomes a QRNG as illustrated in Fig. 1.
In a small-integrated quantum bit (qubit) machine, the quantum circuit cor-
responding to QRNG was run through the cloud service [18, 19, 20]. The
generated output sequences were far from the ideal uniform RNG. However,
a non-ideal output indicates the status of a quantum computer. As a simple
hardware benchmarking, our QRNGs detected a temporal correlation [20].
Because the generated output comes from a quantum measurement for each
qubit, which is subject to the Born rule, non-ideal output sequences still have
a chance to be unpredictable. This verification on the unpredictability of the
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Figure 1: Schematic figure on quantum random numbers generated from a
quantum computer.

generated sequences from a quantum computer strengthened the evidence on
why nature is subjected to quantum mechanics.

3 Concluding Remarks

The history of random number generators can be traced back to the origin
of digital computers, i.e., right from the time of ENIAC. Thus, there has
always been a vicious circle of prediction and generation of random numbers.
However, a PRNG is predictable. For the development of ultimate secure
systems, an unpredictable RNG is required. A quantum random number
generator (QRNG) is one such candidate. Verifying the unpredictable ran-
domness of a QRNG is equivalent to answering the question on why quantum
mechanics needs a probabilistic structure. Therefore, we have been pursu-
ing QRNGs that are aimed for fundamental research as well as for practical
applications. The quantum computers that were invented as a new compu-
tational paradigm in the year 1985 [2] can be called as QRNGs. However,
the universal Turing machine cannot generate an unpredictable random bit.
This clearly shows the advantage of a quantum computer as indicated in
Ref. [21]. Moreover, we deduced that a QRNG does not need an integrated
qubits machine. Therefore, we conclude with the following quote:

A quantum random number generator is an ultimate application
of a one-qubit quantum computer.
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