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For many centuries mathematics was believed to formalize the abstract properties of existing en-

tities. Integer numbers characterised collections of discrete objects. Euclidean geometry described

the space we live in. Derivatives represented velocities. The systematisation of such properties was

built in terms of axioms, the validity of which was self evident, because axioms attested attributes

of the real world. To derive theorems, the supposedly unavoidable rules of logic were used. This

context remained stable for many centuries with only marginal questionings, until the 19th century,

when fairly independently Gauss, Schweikart, Bolyai, Lowachewsky and Riemman explored the

consequences of replacing Euclid’s 5th axiom (the least self-evident of the five) by one of several

alternative axioms [1]. Non-Euclidean geometries were thus born, and even though nobody was

sure which aspect of reality they represented, if any, it became clear that geometry could be con-

sistent and interesting all the same. Eventually, more sophisticated physical theories made use of

non-Euclidean geometries. But in the meanwhile, the requirement on axioms to be self-evident was

called into question.

Mathematicians and logicians had so far worked with statements that could be either true or

false. The negation of a true statement is false, and the negation of a false statement is true. The

truth of a mathematical statement that refers to existing entities had historically been granted from

physics, under the assumption that the world we live in makes sense, so false statements cannot

have a physical instantiation. Within this notion of truth, however, one must remain neutral about

the truth value of statements that neither themselves nor their negations describe physical processes.

The exploration of non-Euclidean geometries launched the exploration of formal systems based

on axioms whose truth value could not be based on reality. From that moment on, mathematics

focused on the derivation of theorems from postulated assumptions, irrespective of whether the

postulates had a hardware instantiation in the physical world. The validity of the theorems hinged

upon the validity of the axioms, which was no longer a matter of discussion. Any set of axioms was

acceptable (though not necessarily interesting), as long as the derived theory was consistent, that is,

as long as no two theorems asserting opposite statements could be demonstrated within the theory.

The unrest turned up a notch with the work of Frege [2], Hilbert [3], and Whitehead and Russel

[4], who not only encouraged mathematical derivations dissociated from any corporeal instantia-

tion, but also, detached the act of deducing theorems (the bare use of mathematical logic) from any

justification based on self evidence. The laws of inference had to be formulated as equations, and

any set of equations giving rise to consistent theories was considered valid. A well founded mathe-

matical theory was then equated with a formal system, that is, a set of formation rules, of axioms,
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and of inference rules expressed in symbolic language. Formation rules define the statements that

the theory deals with. They stipulate the symbols and the grammar with which symbols must be

combined to construct strings. Any string not complying with the formation rules is not to be ana-

lyzed at all, it can be neither true nor false within the theory, it is simply nonsensical. Among the

valid strings, those that can be derived from the theory are considered true (under the premise that

the axioms are true). If the inference rules contain a negation, then the negation of the derivable

strings are the false statements. Inference rules regulate the norms of logical deduction, allowing

the enunciation of new well-formed strings as the logical consequence of old well-formed strings.

These rules provide a mechanism for deriving theorems. Axioms are the thematic ingredient of the

theory. They are well-formed strings, from which all other strings (theorems) are derived. Once

the formal system is stipulated, with its formation rules, inference rules and axioms, the process of

deriving theorems can be automatised.

The true statements of a theory (the collection of axioms and theorems) conform a subset of

all the statements that comply with the formation rules. In 1931, the mathematical community

was shocked when Kurt Gödel demonstrated that consistent and complex formal systems (complex

enough as to contain arithmetic) contain well-formed statements whose truth value cannot be as-

sessed within the theory [5]. These statements cannot be deduced from the axioms, and neither

can their negations. They make meaningful assertions (and so do their negations), but are neither

theorems nor negation of theorems. With varying degree of despair or enthusiasm, mathematicians

have been forced to stomach (or savour) this logical oddity ever since.

Two formal systems are equivalent if they give rise to the same set of theorems. When more

than a formal system is available, the one with fewest axioms and inference rules is preferred, since

it embodies the same truths in fewer statements.

In this essay, I assume that the challenge of constructing physical theories compatible with the

reality we observe is analogous to developing a formal system that can produce a fixed set of given

theorems as output. In mathematics, theorems are the consequences of formation rules, axioms and

inference rules. In physics, the experimental evidence takes the role of theorems, and the task is to

solve an inverse problem: Which is the most fundamental formal system from which these theorems

come out as consequences? We are looking for formation rules, inference rules and axioms from

which the quantities that we measure throughout our lives unfold.

As we live, we gather information of the world around us. We are endowed with the faculty

of storing our experiences in memory (or in paper, CDs, or similar devices), so we are able to

keep a record of what happens. Of crucial importance to the construction of theories is that we
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notice regularities. Our perceptions are not completely random. If I let go of my pen, it falls

to the ground. If I pick it up and let go of it again (surprise, surprise) it follows essentially the

same path as before. There seems to be a pattern in the events we perceive. It therefore makes

sense to try to represent them by a more compact description than their raw enumeration, that

is, by a formulation that captures the regularities. Mathematical formal systems may serve as an

inspiration [6]. Let us represent our evolving perceptions as sequences of variables. Each sequence

is a string of symbols. The variables that we perceive at a given time constitute a state vector, and by

sampling these variables at different times t1, t2, . . . , tn, we construct a sequence of state vectors.

For example, we may choose to measure the position and momentum of a collection of objects

at different moments. Alternatively, we may choose to measure the colour of one object, and the

weight of another. Different choices of variables constitute different possible definitions of state

vectors. Some choices will turn out to be more fruitful than others. In fact, part of constructing

a theory is finding a convenient definition of the space of state vectors, compact enough to avoid

redundancies, and detailed enough to enable predictions. This part is analogous to selecting a set of

formation rules.

A second ingredient in the construction of a theory is to come up with a description, or a rep-

resentation, of the list of perceived state vectors. In order to be able to compare the benefits and

drawbacks of alternative descriptions, it is important to consider them all in a unified format. One

way to standardise formats is to define descriptions as computer programs that produce the sequence

of measured state vectors as outputs. Different descriptions are hence different computer programs.

To keep the notation uniform, we consider programs written in the language used by Turing ma-

chines [7, 8], but any computer language is valid, since the translation from one language to another

involves a fixed set of rules that do not depend on the description at hand.

One possible description is the explicit list of all the measured variables. The program is simply

an ordered pile of “print” instructions, one vector at a time. If the sequence of measured vectors

contains no regularities at all, then there is no alternative but to quote all the values, to describe the

sequence literally. In the presence of regularities, however, there are much more economic strategies

to describe the data. A conceptual description is any such strategy. For a fixed sequence of state

vectors, the notion of Kolmogorov complexity [9] allows us to postulate that if descriptions A and

B generate the same vectors, A is more conceptual than B if its computer program is shorter. The

only way a computer program can be shortened and still produce the same output is by capturing

some fundamental law that governs the data. The shorter the program, the larger the insight into the

underlying rules. In just a few lines, a lot is explained. The regularities that appear over and over

again in the data are compressed into a mere rule.
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As stated above, we have the freedom to choose the variables that constitute our state vectors, so

we can opt for different formation rules as we please. One real-life situation represented by a given

set of variables may perhaps be describable with a very short program, whereas the same situation

may only be described by an explicit literal-like program when a different set of formation rules is

employed. For example, if we are viewing a sphere falling down from the top of the leaning tower

of Pisa, we may chose to describe the vertical position and the vertical momentum of the sphere’s

center of mass at different points in time, measured with respect to the ground. Given the initial

position and momentum, a short program based in Newtonian mechanics will produce all future

values on the list. Alternatively, we may choose to list the distance of the sphere with respect to a

rambling butterfly. In this case, only a long program will work. Choosing the right variables is as

essential an ingredient in the search for conceptual programs as programming cleverly.

Evidence has shown that certain formation rules have the remarkable property of enabling the

construction of short programs reproducing the data collected in a large variety of situations, and

in repeated trials of one specific situation. Moreover, with these endorsed formation rules, often

the short programs obtained in different data sets are similar. Classical physics, for example, is a

hugely successful tool to construct short programs. No matter whether we are describing celestial

bodies, billiard balls, sound waves or electrical charges, classical physics succeeds in reproducing

a large amount of measured data. When changing from one situation to another, a certain part of

the programs remains unaltered. Only the initial conditions defining the number of particles, a few

of their properties (mass, charge, etc.) and their initial momenta and positions vary. The part of

the program that calculates the resulting evolution rests intact. Such programs can be dissected into

two sections: the section that varies from data set to data set (the specification of the system and

its initial conditions), and the section that remains unchanged (the laws of evolution in classical

physics). Strictly speaking, the first section need not be initial conditions. They may be final

conditions, or half initial and half final, or even other choices. But in any case, they must suffice to

determine the situation at hand uniquely. For shortage of notation, here I call all such specifications

“initial conditions”.

If we have managed to find a set of formation rules, and a criterion to construct short programs

that are applicable to a large variety of situations, and that can be dissected into initial conditions and

evolution laws, then we have formulated a theory. The (inverse) length of the programs determines

the conceptual depth of the theory, and the breadth of the situations in which the theory works

determines its generality. I will here consider a theory to be fundamental if it is conceptual and

general. The most fundamental theory should be the one that produces the shortest programs, and

that can be applied to the largest number of situations.
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In mathematics, a formal system defined by a set of formation rules, inference rules, and ax-

ioms, spits out theorems. In physics, formation rules define the space inside which we measure the

data. Inference rules are analogous to evolution laws, and axioms are analogous to initial condi-

tions. In mathematics, if we change the axioms and keep the same formation and inference rules,

the theorems change. In physics, if we change the initial conditions, the trajectory of the system in

the relevant space changes, and so does the list of numbers produced by the program. The essen-

tial difference between the two is that mathematics is developed forward (from formal systems to

theorems) and physics backwards (from evidence to theory).

According to this scheme, a fundamental theory must fulfil two requirements: being conceptual

and being general. Two requisites may be complied with in different degrees, so in general, it is not

possible to rank all theories in increasing fundamentality. We may still rank them into two separate

lists, by their conceptual depth, and by their generality. At least, if the sets of data employed

to test different theories have some degree of overlap (it is difficult to rank theories that describe

phenomena in completely different domains). For example, a theory formulated in terms of the

electroweak interaction is more conceptual than another one written in terms of the weak force

and the electromagnetic force. When supersymmetry unified the fate of bosons and fermions, the

description became more conceptual (shorter program). In turn, special relativity is more general

than classical mechanics, because it contains the latter as a limiting case, and can also describe

situations in which classical formulations simply do not produce the right output. General relativity

is even more general. But nothing guarantees that as we rank theories according to conceptual

depth on the one hand, and according to generality on the other, both orderings produce the same

hierarchy. Some physicists hope, however, that even if partially successful theories may not be

completely ordered, there is one yet-to-be-discovered theory that is the most conceptual and the

most fundamental of all, the so-called Theory of Everything (or also, Theory of Nothing [10, 11]).

The hope is that this ultimate theory can be applied to absolutely all situations, and is trivially simple

to formulate.

In the meanwhile, we must struggle with the messy zoology of theories that fill our libraries,

colleges and common knowledge. These theories vary greatly in their domain of applicability and

scope. Some of them, typically quite restricted in their ability to reproduce hard quantitative data,

aim at predicting qualitative features of large-scale processes, as human behaviour (emotional reac-

tions, decision taking, language production, etc.) or social processes (diasporas, finances, informa-

tion flow in communication devices, etc.). Other theories, often formulated in precise mathematical

terms, deal with atoms, electrons and chemical reactions. To date, no single theory can explain all

the data. Even if quantum mechanics provides a seemingly accurate description of fields and par-

5



ticles, any attempt to predict social processes from fundamental physics is deemed to fail, not only

because we are still in the dark about many of the links connecting different scales, but also, because

even if we knew them all, the chaotic nature of complex systems makes low-level modelling utterly

useless. Nevertheless, the scientific community often regards disciplines as hierarchically ordered.

Computer programs written in terms of physical laws can describe atoms fairly accurately, and even

also some simple molecules, providing the theoretical bases from which the more heuristic laws of

chemistry take off. Programs written in terms of chemical principles, in turn, can be stretched up to

describe fairly complex molecules, from which the basic laws of biology take over. The building of

science can be iteratively assembled, going through biology, medicine, neuroscience, psychology,

sociology and so forth. As we zoom out, we must rewrite the programs, in terms of more macro-

scopic laws. In every transition, however, there is a certain intermediate zone where both macro

and micro descriptions coexist, and sometimes there is even a precise theoretical derivation that

mediates the handover. Therefore, although physics cannot explain psychological data, there seems

to be some optimistic hope that ultimately, the whole universe is ruled by a coherent collection of

laws that are applicable universally. Even if due to numerical issues, and also to some yet missing

theoretical links, no computer program has managed to prove it.

Before we dive into even more theoretical matters, a note of caution is in order, since practi-

cal issues may well bar the evaluation of the success of a theory. So far, we have taken the list

of data obtained in experiments as certain. However, measurements typically involve some de-

gree of uncertainty. In these circumstances, there is no clear-cut procedure to determine whether

the output of a program coincides with the measured data. This uncertainty becomes unavoidable

when the state variables are described by real numbers, most of which cannot be measured with

infinite precision, and most of which are incomputable, that is, impossible to represent by a Tur-

ing machine. The sequence of measured values, hence, must be interpreted probabilistically, with

probabilities understood in their Bayesian conception: as a measure of the certainty with which a

given observer trusts the reported data. The comparison between the output of the program and

the measured data is therefore also probabilistic. As a consequence, the evaluation of theories is

infused with fuzziness. Once the sequences of data collected by experience are not intended to be

matched with infinite precision, theories are allowed to provide approximate descriptions of reality.

In these circumstances, it is difficult to rank the conceptual depth of two theories if, for example,

one of them has a shorter program, but the other matches the measured data more accurately. How

should generality be evaluated, if the data generated by the program match the experiments with a

precision that varies from one situation to another? The result of any comparison depends on the

muddy criteria with which we weigh the trade-off between conceptual depth + generality, against

accuracy. Indeed, if we allow ourselves to be lax in the comparison with reality, it is easy to fall
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onto extremely fundamental theories, grounded on the idea that basically anything can happen. It

could be argued that string theory, with its 10500 possible landscapes, is essentially one such theory.

So little is determined by the corresponding program, that its output consists in a vast collection of

possible universes, with only one, or a few, matching the data produced in our actual world. On the

other hand, by being excessively strict, we may easily fall on the opposite conundrum, equally in-

convenient. If we demand the program to produce data that match our noisy experiments precisely,

only literal list-like descriptions pass the test. No theoretical abstraction can be distilled from them.

This difficulty permeates the whole construction of theories, but for the moment, I will assume that

some criterion has been found, to determine in which situations the output of a program matches

the data acceptably.

Humans, and probably many other species, construct and have constructed theories ever since,

probably as an economic way to predict what will happen around them, and by adjusting their

response with anticipation, boosting their fitness and survival. Fundamental theories, however,

provide us with more than an efficient way to survive and pass our genes on (not to mean that

these advantages are trifle). They also enable us to identify the basic elements of reality. We

tend to believe that the theoretical entities that enable the calculations performed by the program

have a fundamental ontological status. For example, classical physics is formulated temporally and

spatially: all events have spatiotemporal coordinates. Irrespective of whether such coordinates are

provided as output of the program or not, once we become accustomed to a successful theory, it is

natural to believe that time and space exist. Simply because by postulating their existence we may

reproduce a lot of the observed data. The same holds for mass, energy, momentum, and for all the

intermediate entities that we do not necessarily observe, but that are generated by the program as

a means to interpolate between the events we do observe. Our natural tendency to think about the

world in a compact and conceptual fashion drives us to believe that fundamental physics describes

the ultimate reality, and that such reality exists even when we do not observe it.

This is one of the reasons why quantum mechanics provoked such a dramatic upheaval, when

it came on stage. The experiments performed at truly microscopic scales produced results that

could not be predicted by any of the previous theories. The first reaction was to conjecture that

we might still not have the correct theory [12]. The commotion escalated when theoretical and

experimental analyses concluded that the unpredictability of measurements was not due to lack of

knowledge, but rather constituted an essential ingredient of nature [13]. Moreover, not only future

events were revealed to be fundamentally undefined, but also past ones, even if macroscopic and

seemingly irreversible [14, 15]. Quantum mechanics formally declares that it is literally impossible

to construct a program from which we can predict all what we measure. At least part of what
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we observe is intrinsically random, and any attempt to describe it requires some degree of literal

enumeration. One could of course claim that this is a shortcoming of quantum mechanics, and

hope that there might be yet some other formulation that achieves the goal that quantum mechanics

fails to deliver. Only thing, no such theory has been found. None of the previous deterministic

formulations are able to predict the outcomes of microscopic experiments, and no deterministic

theory can comply with Bell’s inequality [13]. So we are left with two alternatives: Either we

embrace this puzzling quantum mechanics, or we embrace no theory at all, leaving us with nothing

but a list of arbitrary numbers to describe reality. And even though quantum mechanics is not able

to construct a compact program that generates the data we observe in single trials, it does succeed

in describing something even broader: the probability distribution with which results would be

obtained, were we to test the same situation repeatedly. It also provides an accurate description

of the correlations between different variables (often through entanglement), even if their actual

values may fluctuate [16]. Moreover, when dealing with macroscopic objects and partial knowledge

(decoherence) it generates the laws of classical mechanics as a limiting case [17]. This is less than

what we had began hoping for, but certainly more than nothing.

If we decide to embrace quantum mechanics, we must be ready to accept that the variables en-

abling conceptual programming are defined in terms of probability amplitudes. When attempting to

reproduce data collected in individual trials, long (non-conceptual) programs are required, since the

theory cannot predict single samples. Quantum mechanics does not model what happens, but rather,

whatever could have happened, including the interferences between the alternative possibilities. In

the derived ontology, reality becomes an attribute of collections of entangled histories, and not of

individual experiences.

The ontological shift modifies our way to construct theories. We must now relinquish the aspi-

ration to program the outcome of individual experiences, we must content ourselves with programs

that reproduce the statistics of the data observed in repeated experiments. This requirement enforces

a modification of the formation rules. The experiences we collect throughout our (single) life do not

form a valid string, nor a target for a theory. They are only a tiny portion of a much larger string,

that contains all what we could have experienced, and the resulting interferences.

In quantum mechanics, when an observer makes a measurement, different versions of him or

her become entangled with the different possible outcomes of the experiment [18, 19]. Each of

these versions (that is, each branch of the wavefunction) contains one observer reporting one of

the many possible experimental results. For each such observer, the density matrix of the system

loses its off-diagonal terms, and from that moment on (or back), histories cannot interfere with

each other. Interference is still possible, but it cannot be detected by the observers that performed

8



the measurements. The moment the measurement was done, the subset of histories that included

interference was eliminated from the menu of histories that are accessible to the measuring agents.

Yet, a higher-level observer monitoring the histories of the lower-level ones may have access to

interferences. If he or she is careful to look into the system only after the lower-level measurement,

no pruning of histories takes place. The whole collection will therefore evolve with a density matrix

that still contains the diagonal terms. As a consequence, in quantum mechanics, there is no such

thing as one story: Different observers report different histories of the same situation. Instead, in the

ontology of classical mechanics, things happen whether we observe them or not. We may choose to

collect data about the system any time, and all choices produce results that are compatible with one

and the same story.

In this essay, I have proposed a certain parallelism between mathematical and physical theories,

equating the construction of theories with the search for formal systems whose formation rules,

inference rules and axioms give rise to the world we live in. The goal is not only to predict num-

bers, but also, to understand the nature of the processes we describe. Such understanding calls

for fundamental theories, here defined as those supporting short programs with wide applicability.

The parallelism between physics and mathematics may seem somewhat outmoded. For more than

a century mathematicians have been endorsing formal systems with no physical counterpart, and

here I support a search for a formal system whose instantiation is the world we live in. This search

commends the old notion of truth, in which statements are deemed true if they describe entities

existing in the real world. I could potentially consider endorsing such a notion of truth to describe

processes governed by classical physics, since for them, there is such thing as one reality. That one

history can be considered the true one, and all other alternative evolutions, not actually happening,

are false. This notion of truth, however, cannot be arrogated to all quantum phenomena, because in

the quantum realm there is no single reality. The system and the observer become entangled, and

what happens to the system depends on what happens to the observer. Measuring therefore includes

self-referential components, and there is no absolute way an observer living inside the universe can

assign universal truth values to histories, nor to states. This indeterminacy is reminiscent of Gödel’s

incompleteness theorem. With varying degrees of despair or enthusiasm, we may have to stomach

or savour the fact that the reality of histories (including our own) cannot be determined from inside

the universe, just as the truth of many mathematical theorems cannot be deduced from inside the

formal system they belong to. A striking humility lesson, if there is one.
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