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Abstract

If the many-worlds interpretation of quantum mechanics is correct, is there any way
to harness the computational power of the multiverse to compute in practice intractable
problems? We introduce the Computational Censorship Hypothesis to answer this
question and explore its implications.

The Multiverse and Tractability

The many-worlds interpretation of Quantum Mechanics (QM) was first proposed by
Hugh Everett in 1957 [1]. In Everett’s interpretation, there is no collapse of the wave
function, as it is the case in the Copenhagen interpretation. Instead of that, the
wave function evolves deterministically governed by Schrödinger’s equation alone. As
a consequence, all possible outcomes of a given quantum measurement are actually
realized on a parallel universe, branching from the universe the measurement was
performed on.

We consider the question whether, if such parallel universes are real, they can be
used to make computations which are otherwise unfeasible or intractable, which is to
say in practice uncomputable. First, let us take a look at a particular, intractable
problem.

The Traveling Salesman Problem (TSP) is a classic example of a problem that is
easy to state, easy to verify and hard to solve. In its essence, the problem involves
a list of cities and their pairwise distances. The objective is to find the optimal tour
(i.e. the route that minimizes the total distance) for a salesman such that each city is
only allowed to be visited once (and the salesman returns to the starting point). This
problem is known to be NP-hard [2]: There is no known efficient algorithm for solving
it. By “efficient” we mean an algorithm running in time polynomial on the number of
cities given as input. In practice, the problem is solvable by means of approximation
algorithms, which are not guaranteed to return the optimal solution, but a solution
which is no worse than the optimal one by a given amount. Finding the optimal
solution by brute-force (checking all possible tours and picking the best one) would
typically require longer than several orders of magnitude of the age of the universe.

In theory research, computer scientists use models of computation which are used to
abstract the main aspects of computation independently of physical computing devices.
A Turing machine (TM) [3] is a mathematical abstraction of a digital computer which
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has exactly the same computational capabilities (i.e. everything a digital computer can
compute can also be computed by a TM – which is called Turing completeness) and
can be used for theoretical algorithm analysis. In a nutshell, a TM is a mathematical
object having a writing/reading head (that can be moved one position at a time to the
left or to the right), an input tape, a work tape and an output tape, where only one
symbol of a given alphabet Σ can be written on each cell of the tape (plus an “empty”
symbol). You can think, for instance, of the binary alphabet Σ = {0, 1} as the one used
by modern computers. Then, given the state of the machine at any given time and an
input symbol, a transition function δ returns the next state of the TM, the next symbol
that will be written to the tape, and where the head is to be moved to the left or to
the right (or remains unmoved). In general, there is an initial state and an accepting
or a rejecting state. In a deterministic TM, the transition function is allowed to return
exactly one transition: there is a deterministically unique next state according to the
current state of the TM and the next symbol to be processed. On the contrary, a
non-deterministic TM is allowed to return a set of states (that can be empty) which
represents all possible computations that are feasible and lead to an accepting state.
In other words, a non-deterministic TM is able to perform all necessary computations
at once, picking only the optimal or successful one.

A helpful way of thinking about determinism and non-determinism in computation
is to see a deterministic computation as a linear sequence of steps which lead to a result
from an initial state. On the contrary, non-deterministic computations can be seen as
decision trees involving all possible computation paths, as shown in Figure 1.
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Figure 1: (a) Computing the best tour for a TSP instance deterministically
by brute-force. (b) Non-deterministic computation for the same instance.

Of course, such trees can also be computed deterministically, since any deterministic
TM can be used to emulate a non-deterministic one, just as you would do it with a
pencil and a piece of paper: just enumerate all possible states and transitions, write
them down, and select an optimal path. The caveat is, for this brute force approach
to work you would actually need worst-case exponential time in the size of the input.
So, in practice, you would not be able to compute it.
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Non-deterministic computations

Let us explore what non-deterministic computations have to do with the many-worlds
interpretation. We will construct a hypothetical device whose computational behavior
can be modeled by a non-deterministic TM, and call this device non-deterministic
computational device (NDCD). One possibility to implement such a NDCD would be
to branch on a different parallel universe at any junction in the algorithm’s decision
tree. This branching could be implemented by attaching to each junction a physical
quantum measurement, like measuring the spin of a photon. Consider the case when
the computation is about to branch to a given set of states. The current state of
our machine would be described by the Hamiltonian H of some quantum system.
By construction, measuring the state of the system by our NDCD would result in
computing each branch in a different parallel universe. In order to compute the final
result, every accepting branch in each parallel universe would have to be checked and
the best result according to some preference criterium (in an optimization problem,
that would be maximizing or minimizing a given utility function or cost) would be
returned. Figure 2 shows a schematic representation of the function of the machine.

How could this check procedure work? One possibility would be that an accepting
state triggers the quantum measurement of an entangled particle. The particle’s
entanglement would then produce new branchings were the result of the computation
is known. In particular, all parallel observers in all parallel universes would perceive
the result of the measurement. So any from these parallel observers would get the
same result, say accept or reject. An optimization problem could be solved by asking
the question: does a solution exist with a cost function value lower than K? and then
search for the minimum K (for instance, by applying a binary search method).

We argue that such a computation would be precluded by the Computational
Censorship Hypothesis (CCH), which can be informally written as:

Hypothesis (Computational Censorship Hypothesis) “If Everett’s many-
worlds interpretation of quantum mechanics is correct, it is not feasible to harness
the computational power of parallel universes in a particular universe”.

The main argumentation for the CCH is information theoretical in the sense that,
if parallel universes exist in the Everett sense, there can be no information exchange
between them. Any device that is able to exploit parallel universes for computational
tasks would violate this principle, since to perform any computation it would be
necessary to transfer information between parallel universes. Moreover, since new
information means lower entropy, the direct implication would be an entropy decrease
in all newly branched parallel universes.

One slightly more formal statement of the CCH would therefore be:
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Hypothesis (Computational Censorship Hypothesis) “If Everett’s many-
worlds interpretation of quantum mechanics is correct, there can be no information
exchange between parallel universes and, therefore, no computations involving
parallel universes are allowed”.

Therefore, if the CCH is true, then it is impossible to construct any NDCD. If the
multiverse exists, this impossibility extends to all possible parallel universes. That
would mean that, as far as computability and predictability are concerned, and if the
multiverse is a part of our physical reality, it cannot be used to perform computational
tasks.

If, on the other hand, the CCH could be proven not to be true, then the consequences
for uncomputability and unpredictability would be manifold. First, in practice un-
computable or intractable problems could experience an super-polynomial speedup.
Specially tailored algorithms for the NDCD could be written to approach any known
computationally hard problem. It could be even possible to write a general interpreter
that, for a given problem and instance definition, could run a general algorithm laun-
ching a brute-force non-deterministic search.
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Figure 2: Schematic representation of the workings of a NDCD based
on Everettian parallel universes. The computation is started in our
current universe, then parallel computations are started as different possible
measurement outcomes of a system described by a Hamiltonian H. An
accepting state in a parallel universe x : i branched from universe x triggers
a measurement, which causes the accepting state in all parallel universes to
materialize (global result of the computation).

What about making predictions about processes which are otherwise unfeasible
to predict? Would a NDCD posess an advantage regarding the capacity of making
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predictions? Predictability, or the lack thereof, has been raised as an issue with
Everett’s many-worlds interpretation [4]. If every possible realization of a given process
actually happens in a parallel universe, then the multiverse as a theory is not falsifiable
(but it may be a prediction of a falsifiable theory). It has been argued [5] that what
we as observers perceive as randomness (or lack of predictability) is just a realization
of a given outcome in one of infinitely many possible parallel universes. In this sense,
the physical laws of quantum mechanics would represent a principal obstacle to using
a NDCD to predict measurement outcomes in a given universe.

Recent studies have found evidence of quantum supremacy in a noisy intermediate-
scale quantum (NISQ) device solving the problem of sampling the output of pseudo-
random quantum circuits [6]. Can we interpret such results in terms of the CCH?
If the CCH is not true, then qubit-based quantum computers can indeed perform
computations in parallel Everettian universes, but using a different principle as the
NDCD described earlier. In the ordinary quantum setting, qubits are set in a super-
position of quantum states and computations are performed on those qubits, trying
to avoid decoherence. The result of the computation is then measured and, with a
high level of confidence, the result of the measurement is a solution to the problem at
hand. So measurement is a key component of any quantum algorithm. Moreover, the
Hamiltonian of the particular problem instance encodes the probabilistic amplitudes
of observing the system in a given configuration. Both components are missing on
NDCDs: these are able to actually perform all computations in parallel. It is an
open problem to determine how non-determinism is related to quantum computing, as
expressed by their respective complexity classes BQPand NP. So it is generally not
known if there is some kind of equivalence between quantum computers and NDCDs.

Conclusion

We have explored the consequences of Everett’s many-worlds interpretation of quantum
mechanics for unpredictability and intractability. By harnessing the computational
power of parallel universes, non-deterministic computing devices could be used to make
in practice intractable problems computable. Using these non-deterministic devices,
super-polynomial speedups on otherwise practically uncomputable problems could be
achieved. We have proposed the Computational Censorship Hypothesis as a way of
answering the question if such devices are possible, and provide a (negative) answer
based on information theoretic considerations.
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