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Abstract

It is possible that the strict adherence to one particular assumption

about the physical world buried within our modern mathematical frame-

works might be the limiting factor in the physics community’s eager efforts

to take a step forward in our understanding of the world around us. In

this essay we ask ourselves which foundational concepts H. Weyl might

have reconsidered.

1 Introduction

Einstein’s theory of General Relativity is often explained to the layman, ”Mat-

ter tells space how to curve, and curved space tells matter how to move.” This

is indeed true for the Ricci Tensor, the sum of the diagonal entries of the Rie-

mann Curvature Tensor. The rest of the Riemann Curvature Tensor, namely the

trace-free Weyl Curvature Tensor, represents how gravity interacts with space,

or doing the naive thing, ”Gravity tells space how to curve, and curved space

tells gravity how to move.” This obviously needs some modification/clarification.

Let us recall here the relation of the Weyl Tensor to the electromagnetic tensor,

as Weyl proposed first in 1918. According to Einstein the laws of gravitation

follow from the components on an invariant quadratic differential form. Elec-
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tromagnetism is controlled by the coefficients of an invariant linear differential

form, these coefficients forming the components of the electromagnetic poten-

tial, a 4-vector. Weyl in 1918, following the idea that a purely infinitesimal

geometry allows for invariance under the parallel transport of a vector only for

a small neighborhood around the initial point, rather than for an arbitrary large

closed loop as is present in Einstein’s theory of General Relativity. Allowing for

arbitrary real gauge transformations, one finds a theory describing a metric ten-

sor that depends on a linear differential form as well as a quadratic differential

form. In this theory, the condition for the invariance of the parralell transport of

a vector globally in spacetime is precisely the condition that the components of

the elctromagnetic potential vanish, and with them the electromagnetic tensor

itself, in other words the necessary and sufficient conditions for Einstein’s the-

ory of General Relativity is the absence of an electromagnetic field. Weyl had

constructed a generalization of Einstein’s General Relativity that incorported

some non-Riemannian notions of a manifold. Einstein was quick to point out

that in Weyl Geometry clocks that travelled different paths in space could have

different measures of time. Einstein pointed out that this was inconsistent with

the consisten observations of atomic spectra, and hence rendered Weyl’s theory

unphysical in its infancy.

2 Fudge the Data or Fudge your Math

Today, as in the past, it is observations of physical systems that serve as our

raw data. This data enables us to look at the analogues of those observations

in our mathematical frameworks and thereby make an educated guess as to the

correctness of a particular framework based on its ability to reproduce what is

observed in this data. Sometimes the data of our world jogs ahead of our math-

ematical frameworks and we are left with observations that have no analogue in
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the framework. At such times it can be that the data is wrong or incomplete,

such as the case in which observed deviations in the orbits of planets pointed

to the existence of an unobserved massive body in our solar system, namely

Jupiter, or it can be that the framework needs revision, as was the case for

the unexplained perturbations of the orbits of Mercury masterfully explained

by the new framework for gravitation put forth by Einstein, General Relativity

(from a talk given by Nima-Arkani Hamed). These examples describe the case

of unexplained observation. Imagine if the LHC had been constructed without

thought to detecting a particular boson, how long would it have taken physicists

to take seriously a new 125 GeV particle, or better yet, imagine the models that

would have been constructed to incorporate such an observation into the exist-

ing framework, supposedly someone would then discover the symmetry-breaking

Higgs mechanism, however it would probably be presented with a much differ-

ent flavor than modern accounts, where because of the order of prediction it

seems like symmetry-breaking in the mathematical theory gave birth to the

Higgs itself. This is an example of when we observe within our mathematical

frameworks something that is yet unexplained by observation. Dirac and Weyl

had an interesting time along these lines, as Dirac first wrote down his equation

and correctly interpreted the existence of particles with charge opposite to that

of an electron within his framework. Of course as any good physicist would he

attempted to explain this feature of his framework with that which had already

been observed in nature associating this positively charged field with that of a

proton. Weyl was kind enough to observe that these ’holes’ in the Dirac-sea

are required to have the same mass as their oppositely-charged electron coun-

terparts enabling the successful prediction of the existence of antiparticles, the

first of which was soon to be observed, the positron. Weyl had another go at

features of mathematical frameworks yet unexplained by nature. He wrote down
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an analogue of Dirac’s equation, the Weyl equation, which seemed to accurately

describe a massless neutrino. Pauli, the godfather of the neutrino, pointed out

that Weyl’s equation did not respect left-right symmetry. Even the founding

fathers of quantum mechanics in their heyday could not conceive of a spacetime

that preferred left to right, though only two years after Weyl’s death CP viola-

tion of the weak interaction was first observed. Such stories are ubiquitous in

physics. Consider Einstein’s dropping of the Cosmological Constant rather than

successfully predicting an expanding universe. I am sure such stories are well

known to many of the readers, but they are recounted as a good starting point for

us to step back from the framework of modern physics and ask ourselves where

today we have observations of the universe unexplained as well as features of our

mathematics unobserved. An obvious instance of the first is the observation of

the accelerating expansion of the universe and the flatness of galactic rotation

curves (along with several other observations in the same vein). Explanations

of these observations exist within current mathematical frameworks, however

their existence is neither explained nor demanded by the mathematics. It is the

opinion of the author that the second arena is the one in which progress is to be

made. Rather than attempting to modify existing frameworks to explain such

observations one can seek to better interpret the mathematics and see if the

demands of the theory correspond to the payment of the universe. Somewhere

within the foundations of our mathematical frameworks regarding General Rel-

ativity and Quantum Mechanics there is a Jupiter-sized planet floating around,

awaiting observation.

Now that the attitude of the author and the motivations of this work have

been described, our particular example of Weyl Geometry is revisited. This ex-

ample stems from the earliest histories of the theory of General Relativity and

the idea of gauge redundancies. Hermann Weyl in 1918, after studying Einstein’s
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theory of General Relativity, published his first attempt to unite gravitational

and electromagnetic phenomena in one framework. In doing so he introduces,

for the first time, the concept of invariance under a gauge transformation, or

perhaps better stated, the identification in the eyes of physics of a field and its

gauge transformed version. We are used to the modern interpretation of gauge

redundancies, the simplest example being the invariance of observables under

the rotation of a vector in a Hilbert space by multiplication by a unit complex

number. In the computing of observables this complex phase is met with its

conjugate, rotating the vector back to its original state and leaving the observ-

able unchanged, providing a redundancy between complex vectors and rotated

counterparts. The consequences of such gauge redundancies are much deeper

than simply leaving observable quantities unchanged, they place stringent re-

quirements on interacting theories, a subject beyond the scope of this work,

however it should be mentioned that gauge redunancies point to equivalence

classes as the fundamental physical objects, not just individual objects, rather

sets of gauge identified objects.

The idea is simple, and the author had not yet had the time, nor the mathe-

matical ability to carry out the calculations outlined here. A generalized gauge

transformation is one allowing for both real and imaginary parts in the expo-

nential multiplying the transforming field, where the real part of the exponential

corresponds to conformal rescaling and the imaginary part is the familiar ro-

tation of phase. You basically only have two choices about what the field is,

either it is a two-component spinor giving rise to a theory of a spin-0 field as in

Yang-Mills theory or it is a 4-component spinor giving rise to a spin-2 field for

the case of gravity. It has been argued by other authors that the generalization

of Einstein’s GR to Weyl Geometry brings in extra terms, which dissapear to

give convential GR in the appropriate limits, and that the proper interpreta-
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tion of these terms could lead to an explanation of long-range repulsive forces

or short-range attractive forces between objects interacting gravitationally, also

beyond the scope of this work. The condition however for globaly conformally

flat spacetime is precisely the global vanishing of the electromagnetic tensor.

It is the opinion of the author that if these spinor theories are properly for-

mulated in Penrose’s Twistor space and the correct physical interpretations of

generalized gauge redundancies are considered in two regimes, 1) totally emptpy

spacetime, where the Weyl Conformal tensor is truly the only contribution to

the total curvature of spacetime, and 2) spacetime with a somewhere non-zero

electromagnetic field tensor as well as the presence of spacetime singularities or

black holes. It is believed the absence of magnetic monopoles in nature points

to an asymmetry in the equations that is filled by a connection to gravity. In

other words black holes, which have been shown to be at least theoretically

magnetic monopoles, indeed have some type of ’magenetic charge’ which on its

way out of such highly curved spacetime manifests itself as an apparent short

distance attraction and long-distance repulsion. It is believed that the internal

clocks of objects in spacetime indeed do depend on their path through curved,

non-conformally flat spacetime, however local objects are constrained to have

close enough global spacetime trajectories to render such differences unobserv-

able except for the case of observation of distant galaxies. In some way it can be

thought of as residue calculus in an almost-complex spacetime, where our few

orbits around the supermassive black holes in the center of the milky way are

making contributions to the phase angle of all objects within the galaxy, keeping

us all in phase with eachother, though not neccesarily with the spiral arms and

other parts of the galaxy that orbit with different period than our solar system,

and surely not in phase with objects outside of our own local cluster. I believe

that with the proper consideration of both cases one will find a more accurate
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describtion of the foundational relation between electromagnetism and gravity,

a relation that Weyl might not have explicitly constructed with his 1918 theory,

but as with so many areas of modern physics, a relation with the foundation,

cornerstone, walls, roof, everything but the finishing touches due to Weyl.

The author thanks Blaxel for useful discussions in preparing this note, as well

as some of Nima-Arkani Hamed’s video lectures provided by the Institute for

Advanced Study for inspiration as well as the anecdote concerning the discover

of Jupiter and the devations of the orbit of Mercury. The author regrets not

having time before submisison of this essay to precisely develop these ideas to

give them adequate presentation and references.
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