
IN	SEARCH	OF	PURPOSE	
TOOLS	FOR	THE	STUDY	OF	INTELLIGENT	SYSTEMS		

THAT	STUDY	INTELLIGENT	SYSTEMS	
	

ALEXI	PARIZEAU*,	GOLDSMITHS,	UNIVERSITY	OF	LONDON	
	

I.						INTRODUCTION	
	
Why	are	we	here?	What’s	our	purpose?	These	are	questions	perhaps	as	old	as	humanity.	And	

yet	no	 lasting	answer	has	emerged	 to	satisfy	our	curiosity.	Some	have	argued	 that	 before	we	can	
hope	to	answer	such	probing	questions,	we	must	first	know	exactly	what	we’re	inquiring	about.	For	
instance,	surely	the	question	of	“life’s	meaning”	demands	we	first	know	what	“life”	and	“meaning”	
are.1	But	what	if	this	wasn’t	so?	What	if	the	question	of	“life’s	meaning”	isn’t	so	much	about	life	and	
meaning	as	it	is	about	the	systems	that	can	understand	the	intension	of	this	question?	If	so,	then	I	
ask,	what	are	those	systems	and	how	do	we	study	them?		

Before	 trying	 to	 answer	 this	question,	 I	 suggest	 taking	 a	 step	back,	 since	hard	problems	 can	
sometimes	be	solved	by	using	new	theoretical	tools.	2	In	particular,	there	seems	to	be	some	utility	in	
first	 examining	 two	elementary	 concepts	 in	mathematics:	 ‘nothingness’	 and	 ‘being	undefined’.	By	
applying	 these	 concepts	 in	 the	context	of	metamathematics,	we	can	produce	a	metamathematical	
formulation	of	the	empty	set.	This	then	helps	to	illuminate	a	simple	procedure	for	detecting	rules	in	
recurrent	 systems.	 And	 with	 this	 procedure,	 we	 can	 define	 a	 function	 for	 measuring	 ‘critical	
explainability’	and	then	use	it	to	show	that	a	system	is	only	a	rational	and	reflexive	semantic	agent	
when	 it	 grows	 in	 critical	 explainability.	 I	 then	 posit	 that	 we	 are	 such	 agents	 and	 we	 have	 this	
characteristic.	If	true,	this	may	be	an	answer	to	the	question	of	life’s	meaning.	

	
II.						BUILDING	A	BETTER	MOUSE	TRAP:	THE	METAMATHEMATICAL	EMPTY	SET	

	
We’ll	start	by	just	defining	the	concepts	and	tools	we’ll	need.	The	first	is	grounded	on	a	notion	

that	 is	 quite	 well	 known	 by	 mathematicians,	 physicists	 and	 philosophers	 alike:	 the	 notion	 of	
nothingness.	3	In	set	theory,	nothingness	is	represented	as	the	empty	set,	while	in	other	theories	it’s	
called	the	null	object.	For	our	purpose	here,	we’ll	just	focus	on	the	empty	set.	

So,	what	is	the	empty	set?	One	way	to	think	of	it	is	as	the	set	of	what’s	logically	impossible,	such	
as	the	set	of	triangles	that	have	four	sides	(Darling	2004,	p.106).	The	prevailing	definition	though	is	
the	 formula	 𝑥𝑥 𝑥𝑥 ≠ 𝑥𝑥},	 which	 also	 describes	 an	 impossibility.	 That	 this	 formula	 always	 returns	
nothing	is	critical,	since	without	the	inevitability	of	some	impossibility,	there	could	be	no	incorrect	
statements.	And	without	incorrect	statements,	mathematics	loses	its	defining	characteristic.4	

Hence,	mathematics	needs	to	have	statements	that	are	necessarily	wrong.	To	define	this	better,	
we	can	use	the	concept	of	consistency	in	any	formal	axiomatic	system	(FAS).	A	FAS	consists	of	a	finite	
alphabet,	grammar,	axioms,	rules	of	inference	and	proof-checking	algorithm.	It’s	then	said	that	for	
any	FAS	to	be	“consistent”,	there	must	be	a	statement	in	that	system	that’s	logically	impossible.5	For	
																																																								
*	Contact:	alexi.parizeau@gmail.com	

example,	 the	 statement	 that	𝑥𝑥 ≠ 𝑥𝑥	asserts	 that	𝑥𝑥	is	 not	 equal	 to	 itself.	We	 intuitively	 know	 this	 is	
impossible,	 since	we	 intuitively	adopt	 the	cardinal	axiom	of	 logic	 (i.e.	 the	Law	of	 Identity),	which	
says	everything	is	the	same	with	itself	and	different	from	another.	

Now	recall	that	an	empty	set	can	be	defined	by	 𝑥𝑥 𝑥𝑥 ≠ 𝑥𝑥}.	So	we	can	notice	that	just	having	a	
theory	that	obeys	the	cardinal	axiom	of	logic	already	presumes	that	 𝑥𝑥 𝑥𝑥 ≠ 𝑥𝑥}	must	select	nothing.	
That	is,	by	assuming	a	consistent	theory,	we	presume	the	empty	set.	This	means	we’ll	never	be	able	
to	derive	the	empty	set,	as	it’ll	get	smuggled	in	by	just	forbidding	contradictions.	But	while	we	can’t	
derive	it,	we	can	still	offer	new	ways	to	define	it.	My	hope	is	then	that	by	defining	it	better,	we	might	
better	illuminate	its	role	in	logic	and	epistemology.	And	it’s	this	deeper	understanding	of	the	empty	
set	that	I	think	may	be	helpful	to	the	task	of	studying	intelligent	systems	that	study	themselves.	

To	this	end,	I	suggest	defining	the	empty	set	so-as	to	explicitly	expose	its	connection	to	formal	
consistency,	while	revealing	its	prevailing	definitions	to	be	a	special	case.	The	basic	idea	is	to	define	
the	empty	set	as	the	set	complementary	to	the	formal	language	of	a	FAS.	To	achieve	this,	we’ll	need	
another	 elementary	 notion:	 being	 undefined.	 Essentially,	 ‘being	 undefined’	 refers	 to	 what	 is	 not	
“accepted”	 by	 an	 automaton,	 or	 virtual	 machine,	 that	 computes	 all	 the	 theorems	 of	 an	 FAS.	As	
example,	 let	𝐹𝐹	be	 any	 FAS	 and	𝑀𝑀	be	 an	 automaton	 that	 computes	 the	 theorems	 of	𝐹𝐹.	 The	 formal	
language	of	𝑀𝑀	is	then	the	set	𝐿𝐿(𝑀𝑀)	of	all	sequences	of	symbols	that	𝑀𝑀	accepts.	We	then	say	𝐿𝐿(𝑀𝑀)	is	
the	set	complementary	to	𝐿𝐿(𝑀𝑀),	such	that	every	𝑤𝑤 ∈ 𝐿𝐿(𝑀𝑀)	is	not	accepted	by	𝑀𝑀,	and	so	𝑤𝑤 ∉ 𝐿𝐿(𝑀𝑀).		

So	given	that	every	FAS	𝑔𝑔	has	a	language	set	𝐿𝐿(𝑔𝑔),	we	can	ask:	what	is	selected	by	the	formula:	
	

𝑥𝑥: 𝑥𝑥 ∉ 𝐿𝐿(𝑔𝑔) 	
	
Unless	 𝑔𝑔 	accepts	 everything,	 this	 formula	 is	 guaranteed	 to	 select	 something.	 It’s	 also	

guaranteed	to	select	nothing	that	𝑔𝑔	can	recognize.	So	to	at	least	𝑔𝑔,	this	looks	like	an	empty	set.	
This	formula	has	an	issue	though:	there	can	be	no	algorithm	that	computes	what	gets	selected	

for	 any	𝑔𝑔.	 Clearly,	 this	 holds	 in	 the	 case	 of	 self-reference,	where	𝑔𝑔	tries	 to	 accept	 a	 string	 it	 can’t	
accept	(e.g.	the	Halting	problem).	We’ll	come	back	to	this.	First,	let’s	examine	the	issue.	Consider,	for	
instance,	 that	 it’s	 always	 possible	 to	 design	 an	 automaton,	 or	 virtual	 machine,	 called	 a	 Turing	
machine	(TM)	with	the	same	language	as	a	FAS.	We	can	then	think	of	the	language	set	of	a	program	
(e.g.	the	set	of	strings	that	the	program	“accepts”	on)	as	the	set	of	theorems	of	a	FAS.	So	to	tell	if	a	
sequence	𝑋𝑋	is	 undefined	 to	 a	 given	 FAS,	 you	 just	 have	 to	 ask	 whether	𝑋𝑋	is	 a	 member	 of	 the	
complement	 of	 the	 language	 of	 a	 TM	 that	 computes	 the	 theorems	 of	 that	 FAS.	 This	 would	 be	
unproblematic,	except	for	the	known	fact	that	unless	a	TM	always	halts	or	accepts	on	no	input	or	on	
every	 input,	 then	 questions	 about	 the	 members	 of	 its	 language	 are	 generally	 undecidable	 (that	
means	there	can’t	exist	any	single	algorithm	for	all	cases).6	So	there	can	be	no	algorithm	that	 lists	
every	member	of	 𝑥𝑥: 𝑥𝑥 ∉ 𝐿𝐿(𝑔𝑔) 	for	any	𝑔𝑔,	where	𝑔𝑔	is	a	FAS	that	needs	a	TM	to	compute	its	theorems.		

Fortunately,	 there’s	 a	 type	of	 automata	 that	doesn’t	 suffer	–	 in	 theory	–	 from	undecidability:	
deterministic	finite	automata	 (DFA).7	DFA	can	even	simulate	some	TM,	but	only	those	TM	that	can	
use	at	most	𝑘𝑘	tape	cells,	where	𝑘𝑘	is	independent	of	the	number	of	cells	used	as	input.	This	is	due	to	
the	 fact	 that	 DFA	 are	 by	 definition	 virtual	 machines	 that	 only	 use	 a	 finite	 number	 of	 states	 in	
whatever	computation	they	perform.	Because	of	this,	every	physical	computer	can	be	specified	as	a	
DFA,	 no	 matter	 its	 design,	 since	 every	 physical	 computer	 can	 only	 ever	 use	 a	 finite	 amount	 of	
physical	resources	in	a	finite	number	of	time	steps	before	the	heat	death	of	the	universe.		

So,	in	brief,	if	we	want	to	answer	any	question	about	some	𝐿𝐿(𝑔𝑔),	such	as	the	complement	set	of	
𝐿𝐿(𝑔𝑔),	 it	helps	if	𝑔𝑔	is	computable	by	a	DFA.	But	even	if	𝑔𝑔	is	computable	by	a	DFA,	no	𝑔𝑔	can	accept	a	
sequence	that’s	not	in	its	language.	So	we	must	now	talk	about	the	case	of	self-reference.	

For	this	next	discussion,	it’ll	be	useful	to	introduce	more	notation.	First,	let’s	give	our	formula	a	
symbol.	I	suggest	the	“null	sharp”	symbol	∅#	with	a	subscript	to	specify	what	the	selection	applies	
to.	Hence,	∅# 	means	 𝑥𝑥: 𝑥𝑥 ∉ 𝐿𝐿(𝑔𝑔) .	Then,	since	this	formula	can	be	used	by	one	FAS	on	another,	let’s	
allow	the	#	symbol	in	the	superscript	to	be	replaced	with	the	label	for	any	system	that	can	perform	
the	 set	 selection	 (e.g.	 a	 computer	 program	 that	 outputs	 the	 specified	 set).	 So	 when	 we	 need	 to	
express	that	some	FAS	𝑓𝑓	can	use	this	formula	on	another	FAS	𝑔𝑔,	we	can	write	∅ .		

We	might	then	ask,	but	what	if	some	𝑓𝑓	tries	to	perform	∅ 	where	𝑓𝑓 = 𝑔𝑔?	Intuitively,	no	sequence	
𝑋𝑋	that	 is	undefined	 to	𝑔𝑔	can	be	 recognized	by	𝑔𝑔	when	𝑔𝑔	searches	 for	what	 is	not	 recognized	by	𝑔𝑔.	
Hence,	𝑔𝑔	must	find	nothing.	So	let’s	say	that	a	set	can	be	called	the	“absolute	empty	set”	if	and	only	if	
all	consistent	FAS	must	find	nothing	when	trying	to	select	it.	It	then	follows	that	if	we	let	𝑔𝑔	be	any	
FAS,	 then	 the	 formula	∅ 	selects	 the	 absolute	 empty	 set	 if	 and	 only	 if	𝑔𝑔	is	 consistent.	 The	 idea	 is	
simply:	if	𝑔𝑔	looks	for	what’s	undefined	to	𝑔𝑔	and	cannot	find	it,	then	not	finding	is	the	finding.8		

As	proof,	let	𝑔𝑔	be	any	FAS,	then	notice	that	if	𝑥𝑥 ∈ ∅ 	for	any	𝑥𝑥 ∉ 𝐿𝐿(𝑔𝑔),	then	𝑥𝑥 ∈ 𝐿𝐿(𝑔𝑔) ∧ 𝑥𝑥 ∉ 𝐿𝐿(𝑔𝑔),	
which	 is	 contradictory.9	To	 fix	 the	 contradiction,	 it	 must	 be	 that	∀𝑥𝑥(𝑥𝑥 ∉ ∅).	 Thus,	 the	 ‘absolute	
empty	set’	is	the	unique	result	of	using	∅#	self-referentially;	that	is,	∅ = ∅ 	for	any	consistent	𝑔𝑔.	

We	 need	 to	 be	 careful	 with	 this	 formula	 though,	 since	 using	 it	 non-self-referentially	 can	 be	
treacherous.	 Consider	 that	 since	 the	 formula	∅ 	can	 involve	 two	 FAS	 (i.e.	𝑓𝑓	and	𝑔𝑔),	 the	 result	 is	 a	
“set”	 whose	 size	 might	 be	 disputed	 by	𝑓𝑓	and	𝑔𝑔.	 This	 is	 somewhat	 unusual,	 since	 the	 practice	 of	
mathematics	 is	 mostly	 performed	 in	 a	 “domain-of-discourse”	 that	 allows	 only	 a	 single	 FAS.	 For	
instance,	when	evaluating	1+1,	it	is	assumed	implicitly	that	we	are	referring	to	the	addition	of	two	
integers	within	a	single	standard	arithmetic	system.	But	to	evaluate	∅ 	we	need	to	explicitly	refer	to	
two	particular	FAS:	an	FAS	𝑔𝑔	that’s	targeted	by	the	formula	and	an	FAS 𝑓𝑓	that	performs	the	formula.	
So	 in	 an	 inter-FAS	 “environment”	 where	 some	𝑓𝑓	subsumes	 some	𝑔𝑔,	 the	 cardinality	 of	∅# can	 be	

larger	than	zero	for	𝑓𝑓	(i.e.	 ∅ ≥ 0),	but	exactly	zero	for	𝑔𝑔	(i.e.	 ∅ = 0).	This	is	because	the	size	of	
the	set	∅# gets	limited	by	the	size	of	the	formal	language	used,	which	leads	to	two	FAS	potentially	
disagreeing	on ∅# 	for	any	given	𝑔𝑔.	This	 issue	never	goes	away,	as	you	can	always	find	some	FAS	
that	 sees	 ∅# 	as	 being	 ever	 larger,	 for	 any	𝑔𝑔.	 So	 the	 formula	∅#	doesn’t	 generally	 lead	 to	 the	
selection	of	the	absolute	empty	set,	but	it	does	select	it	as	a	special	case:	when	∅#	is	 implemented	
self-referentially.	 Meanwhile	 in	 all	 cases	 the	 set	 selected	 by	 the	 formula	∅#	will	 always	 appear	
empty	to	at	least	one	FAS	(i.e.	 ∅# = 0	when	selected	by	at	least	𝑔𝑔,	for	any 𝑔𝑔,	even	though	 ∅# ≥ 0	
for	 some	 FAS	 that’s	 not	𝑔𝑔).	 Therefore,	 we	 can	 say	 that	∅#	is	 a	 metamathematical	 formula	 for	
selecting	“quasi-“empty	sets	whose	cardinality	is	limited	by	the	language	of	an	FAS.	

In	summary,	we	can	select	“empty	sets”	that	are	only	guaranteed	to	be	empty	with	regards	to	
the	 FAS	 whose	 complementary	 language	 is	 a	 subset	 of	 the	 set	 we	 selected	 from.	 This	 is	 then	 a	
metamathematical	way	of	selecting	empty	sets	such	that	the	absolute	empty	set	(i.e.	the	standard	∅)	
gets	recovered	as	the	special	case	where	self-reference	is	employed.	
	

III.						A	GENERAL	PROCEDURE	FOR	DETECTING	RULES	IN	RECURRENT	SYSTEMS	
	
To	see	how	metamathematical	empty	sets	might	be	useful	to	the	study	of	intelligent	systems,	I	

suggest	 applying	 it	 in	 a	 procedure	 for	 probing	 unknown,	 interactive	 or	 only	 partially	 observable	
axiomatic	 systems,	 which	 we	 can	 refer	 to	 as	 ‘black	 boxes’.	 In	 particular,	 we’ll	 be	 considering	
systems	that	can	be	modeled	as	a	function	whose	codomain	is	a	subset	of	its	domain.	Such	functions	
can	be	called	recursive,	since	all	their	valid	outputs	are	also	valid	inputs.	An	interesting	property	of	
these	functions,	which	we	intend	to	exploit,	is	that	they	can	recur,	or	loop,	indefinitely.	We	can	then	
say	that	a	recursive	function	‘recurs’	when	any	valid	output	is	fed	to	it	as	an	input	(e.g.	in	a	feedback	
cycle).	Since	these	functions	can	be	simulated	by	computers,	let’s	also	say	that	a	recursive	function	
𝐶𝐶	recurred	in	time	𝑡𝑡	if	a	simulation	of	𝐶𝐶	accepted	its	last	output	sequence	after	no	more	than	𝑡𝑡	steps.	
We’ll	also	say	that	the	recurrence	of	𝐶𝐶	is	‘terminated’	if	it	does	not	accept	an	input	it	was	given.	

For	 example,	 let	𝐶𝐶	be	 any	 computable	 recursive	 function	 whose	 last	 output	 sequence	 was	
𝑋𝑋 = (𝑎𝑎 , 𝑎𝑎 ,… , 𝑎𝑎).	Then,	pick	an	𝑎𝑎 	and	change	it	to	any	symbol	𝑦𝑦	such	that	𝑦𝑦 ≠ 𝑎𝑎 .	Either	𝐶𝐶	accepts	
the	new	sequence	𝑋𝑋′	and	recurs,	or	 it	doesn’t	and	terminates.	We	can	then	prove	that	given	any	𝐶𝐶	
computed	by	an	automaton	with	language	𝐿𝐿(𝐶𝐶),	where	𝐿𝐿(𝐶𝐶)	is	also	the	language	of	a	consistent	FAS	
and	𝑋𝑋	is	one	of	 its	 theorems,	 then	there	always	exists	 some	∅# = 𝑋𝑋′ ∉ 𝐿𝐿(𝐶𝐶) .	Proof:	we	know,	by	
hypothesis,	that	𝐿𝐿(𝐶𝐶)	is	the	language	of	a	consistent	FAS.	We	also	know,	by	definition,	that	an	FAS	is	
consistent	only	if	there’s	a	sequence	of	symbols	it	can’t	accept.	So	let	𝑋𝑋′	be	any	such	sequence.	You	
can	then	always	create	a	new	FAS	with	a	grammar	rule	𝑋𝑋 → 𝑋𝑋′	,	or	equivalently,	some	automaton	𝑀𝑀	
with	production	rules	to	transit	from	𝑋𝑋	to	𝑋𝑋′.	Hence,	there’s	always	a	way	to	select	𝑋𝑋′ ∉ 𝐿𝐿(𝐶𝐶).	

So	what	does	this	mean?	The	basic	 idea	is	you	can	always	find	an	automaton	𝑀𝑀	that	can	help	
you	probe	the	rules	of	an	axiomatic	system.	This	should	sound	familiar,	because	in	context	of	causal	
graph	theory	(Pearl	2000),	such	an	𝑀𝑀	is	akin	to	performing	repeatable	‘interventions’.	While	in	the	
context	 of	 metabiology	 (Chaitin	 2012),	𝑀𝑀	is	 like	 an	 induced	 ‘algorithmic	 mutation’.	 In	 general	
though,	any	such	𝑀𝑀	is	just	a	mechanism	for	breaking	the	rules	of	recurrent	axiomatic	systems.	And	
finding	such	𝑀𝑀	might	be	useful	for	probing	any	axiomatic	systems	without	formal	specifications.	In	
particular,	 it	 might	 be	 useful	 for	 probing	 non-static	 axiomatic	 systems	 where	 new	 axioms	 get	
created,	or	where	the	grammars	are	in	flux	(e.g.	any	‘infinite	game’,	like	life,	see	(Carse	2011)).		

To	understand	this	better,	recall	that	the	main	condition	placed	on	𝐶𝐶	was	that	its	output	must	
always	be	a	valid	input.	So	when	an	automaton	makes	any	number	of	transformations	𝑎𝑎 → 𝑦𝑦	that	
produces	 an	 input	 sequence	𝑋𝑋′	we	 can	 detect	 whether	 it’s	 in	 the	 language	𝐿𝐿(𝐶𝐶)	by	 observing	
whether	𝐶𝐶	can	 still	 recur	 after	 the	 change.	 If	 the	 change	 forms	 some	𝑋𝑋′	where	𝑋𝑋′ ∉ 𝐿𝐿(𝐶𝐶),	 then	 the	
recurrence	of	𝐶𝐶	must	be	terminated	since	𝑋𝑋′	is	not	a	valid	input.	Meanwhile,	if	the	change	does	not	
form	any	𝑋𝑋′ ∉ 𝐿𝐿(𝐶𝐶),	the	input	is	valid	and	so	a	recurrence	of	𝐶𝐶	can	be	observed	in	time	𝑡𝑡.	Essentially,	
if	𝑋𝑋′	is	 a	 sequence	 of	 symbols	 that	 breaks	 the	 rules	 of	𝐶𝐶,	 then	 some	𝑀𝑀	made	 a	 change	 to	𝑋𝑋	that	
effectively	ended	any	recurrence	of	𝐶𝐶.	Hence,	if	we	can	observe	the	regular	recurrence	of	a	function	
and	interfere	with	its	input,	we	can	probe	for	rules	and	axioms	by	trying	to	break	them.		

For	example,	consider	the	effects	of	some	gene	family	which	induces	hypermutation	in	a	host	
leading	to	critical	degradation	of	its	genome	beyond	the	threshold	of	replication.	Here,	we	can	let	𝐶𝐶	
be	an	automaton	that	models	host	replication	using	a	genome	𝑋𝑋	and	we	can	let	𝑀𝑀	be	an	automaton	
that	 models	 hypermutation	 on	𝐶𝐶’s	 genome.	 From	 this,	 we	 can	 easily	 see	 that	 if	𝑀𝑀	produces	 any	
mutation	∅ ,	such	that	∅ = 𝑋𝑋′ ∉ 𝐿𝐿(𝐶𝐶) ,	then	𝑀𝑀	effectively	terminates	the	recurrence	of	𝐶𝐶.	

Hence,	metamathematical	 empty	 sets,	 such	 as	∅ ,	 can	 also	 represent	 transformations	𝑎𝑎 → 𝑦𝑦	
that	 terminate	 the	 descending	 lineage	 of	 the	 ensemble	 that	 contained	𝑎𝑎 	(Hull	 1980,	 p.327-329).	
Thus,	 since	any	accurate	 theory	of	 life	must	predict	 such	 termination	events,10	metamathematical	
empty	sets	appear	suitable	for	studying	living	systems,	along	with	systems	similar	to	life.	

Now,	any	system	with	rules	is,	in	principle,	explainable.	So	if	some	𝑎𝑎 	is	critical	to	any	recurrent	
system	𝐶𝐶 ,	 then	 the	 termination	 of	 the	 recurrence	 of	𝐶𝐶 	can	 in	 principle,	 if	 not	 in	 practice,	 be	
explained	by	pointing	out	that	there’s	an	automaton,	or	virtual	machine,	that	can	computes	𝐶𝐶,	and	
that	this	automaton	has	a	rule	that	is	broken	by	some	𝑎𝑎 → 𝑦𝑦.	Hence,	the	explanations,	or	reasons,	
for	such	elements	𝑎𝑎 	can	be	probed	by	repeatedly	varying,	perturbing	or	otherwise	eliminating	𝑎𝑎 ,	
which	has	the	effect	of	repeatedly	showing	that	𝑎𝑎 	is	critical	to	𝐶𝐶.	It’ll	be	convenient	to	refer	to	any	
such	element	𝑎𝑎 	for	any	given	input	sequence	𝑋𝑋,	so	I’ll	write	“𝐸𝐸(𝑎𝑎)”	to	indicate	that	the	element	𝑎𝑎 	
of	a	given	 input	𝑋𝑋	has	 the	property	of	being	 ‘critically	explainable’.	Finding	critically	explainable	𝑎𝑎 	
then	means	finding	some	variable	that	can	cause	the	catastrophic	extinction	of	an	otherwise	stable-
looking	 theory,	 such	 that	 the	 continued	 stability	 of	 such	 a	 theory	 is	 represented	 as	 a	 recurring	
function,	and	the	catastrophic	event	is	represented	by	its	termination.11	

In	summary,	if	you	are	able	to	interfere	with	a	recurring	system	whose	output	must	be	a	valid	
input,	then	you	can	detect	the	existence	of	rules	by	identifying	elements	𝑎𝑎 	such	that	𝐸𝐸(𝑎𝑎).	That	is,	
if	part	of	a	recurring	function’s	output	 is	critical	to	 it	having	a	recognizable	input,	then	disrupting	
that	 part	would	 effectively	 terminate	 its	 recurrence.	We	 then	 say	 that	 that	 part	 can	 be	 critically	
explained	by	the	fact	that	disrupting	it	broke	some	set	of	rules.	

	
IV.						OUR	FINAL	INSTRUMENT	—	BEWARE,	HERE	BE	DRAGONS	

	
We’ve	 now	 seen	 how	 to	 generally	 detect	 the	 presence	 of	 rules	 in	 recurrent	 systems.	 But	 to	

study	 intelligent	 life,	detecting	 the	presence	of	 rules	 isn’t	 enough.	We’ll	need	one	more	 tool,	built	
from	 two	 functions.	 These	 rely	 on	 the	 procedure	 from	 the	 last	 section.	 Crucially,	 they’re	 defined	
using	an	“oracle”.	An	oracle	 is	simply	any	black	box	system	capable	of	answering	certain	types	of	
questions	that	are	posed	to	it.	In	what	follows,	we	are	allowed	to	choose	any	oracle	we	like,	so	long	
as	it	has	(1)	a	formal	language,	and	(2)	the	ability	to	decide	if	two	or	more	sequences	of	symbols	are	
deemed	 “equivalent”,	 such	 that	when	presented	with	 a	 set	 of	 sequences,	 it	 tells	 us	how	 to	 group	
them	 into	piles,	where	 each	pile	 represents	 an	 equivalence	 class.	 Essentially,	 this	means	 that	 the	
oracle	 can	be	any	black	box	 that	performs	classification	 tasks	on	 the	data	 it’s	given.	We	can	 then	
define	three	functions	based	on	mappings	determined	by	whichever	oracle	ℳ	we	chose.		

To	start,	let’s	have	the	symbol	𝛿𝛿ℳ 	represent	the	first	function.	Note	that	𝛿𝛿ℳ 	has	a	subscript	for	
the	oracle	used	to	define	the	function.	What	we	then	want	is	for	𝛿𝛿ℳ 	to	take	a	sequence	𝑥𝑥 ∈ 𝐿𝐿(ℳ)	of	
symbols	as	 its	 input,	 such	 that	𝑥𝑥	is	 interpreted	by	ℳ	as	 some	recursive	 function	𝐶𝐶.	We	 then	want	
𝛿𝛿ℳ(𝑥𝑥)	to	return	a	set	of	equivalence	classes	for	all	valid	input	sequences	𝑤𝑤	of	𝐶𝐶	such	that 𝑤𝑤 ∈ 𝐿𝐿(ℳ)	
and	𝑤𝑤	has	elements	𝑎𝑎 	such	that	𝐸𝐸(𝑎𝑎)	for	𝐶𝐶.	For	intuition,	I	suggest	thinking	of	𝛿𝛿 𝑥𝑥 	as	a	measure	of	
the	‘critically	explainable	complexity’	of	𝑥𝑥.	If	 𝛿𝛿 𝑥𝑥 > 1	we	then	say	𝑥𝑥	is	“complex”,	else	it	is	“simple”.		

The	second	function,	which	we	can	think	of	as	‘critically	explainable	generality’,	can	be	assigned	
the	 inverse	 symbol	𝛿𝛿ℳ .	 We	 then	 want	𝛿𝛿ℳ (𝑥𝑥)	to	 return	 a	 set	 of	 equivalence	 classes	 for	 all	
recursive	functions	𝐶𝐶 ∈ 𝐿𝐿(ℳ)	for	which	the	input	sequence 𝑥𝑥	contains	elements	𝑎𝑎 	such	that	𝐸𝐸(𝑎𝑎)	
for	𝐶𝐶.	Again,	for	the	sake	of	intuition,	if	 𝛿𝛿 𝑥𝑥 > 1	we	can	say	𝑥𝑥	is	“general”,	else	it	is	“particular”.	

The	third	function,	which	we	can	think	of	as	‘critical	explainability’,	can	be	assigned	the	symbol	
Κℳ .	We	 simply	 need	 it	 to	 return	 the	 Cartesian	 product	 of	 the	 first	 two	 functions,	 which	 can	 be	
written	as	Κℳ(𝑥𝑥) = 𝛿𝛿ℳ 𝑥𝑥 × 𝛿𝛿ℳ (𝑥𝑥),	where	“×”	 just	means	that	every	member	of	the	set	𝛿𝛿ℳ 𝑥𝑥 	
gets	combined	with	every	member	of	the	set	𝛿𝛿ℳ (𝑥𝑥).	12	

Importantly,	in	order	to	ever	have	Κℳ(𝑥𝑥) ≠ ∅,	ℳ	needs	to	be	able	to	interpret	𝑥𝑥	as	a	recursive	
function.	To	do	this,	a	function	must	be	encoded	as	sequences	of	symbols	in	the	language	of	ℳ,	else	
ℳ	cannot	 recognize	 it.	 This	 shouldn’t	 be	 too	much	 trouble	 though,	 since	 if	 a	 recursive	 function	
takes	only	inputs	of	finite	lengths	and	returns	outputs	of	only	finite	lengths,	then	it	can	always	be	
written	as	a	sequence	of	symbols	of	finite	length	(for	proof,	write	the	function	as	a	table	lookup).	

It	should	also	be	underlined	that	𝛿𝛿ℳ 𝑥𝑥 	and	𝛿𝛿ℳ (𝑥𝑥)	both	need	to	return	a	set	of	equivalence	
classes	based	on	any	given	sequence	of	symbols	𝑥𝑥 ∈ 𝐿𝐿(ℳ).	In	the	case	of	𝛿𝛿ℳ 𝑥𝑥 ,	the	parameter	𝑥𝑥	is	
interpreted	as	a	recursive	function	per	the	rules	of	ℳ.	It	then	returns	the	set	of	equivalence	classes	
for	 all	 inputs	𝑤𝑤	with	 some	 element	𝑎𝑎 	such	 that	𝐸𝐸(𝑎𝑎)	for	 the	 function	𝑥𝑥.	 Meanwhile,	 the	 function	
𝛿𝛿ℳ (𝑥𝑥)	does	 the	 inverse:	 it	 interprets	𝑥𝑥	as	an	 input	sequence	and	returns	 the	set	of	equivalence	
classes	of	all	recursive	functions	𝐶𝐶	where	𝑥𝑥	has	some	element	𝑎𝑎 	such	that	𝐸𝐸(𝑎𝑎)	for	𝐶𝐶.13		

Confusing	as	this	may	be,	what’s	important	to	understand	for	our	purpose	here	is	that	we	can	
pick	an	oracle	ℳ	that	defines	the	function	Κℳ .	We	may	then	ask,	what	is	so	special	about	𝛫𝛫ℳ?	Well,	
if	we	 choose	 the	 oracle	 just	 right,	 then	Κℳ 	can	 always	 return	 a	 finite	 and	non-empty	 set	 for	 any	
input	that’s	in	the	oracle’s	language.	What	this	means,	essentially,	is	that	the	oracle	is	telling	you	all	
the	critically	explainable	classifications	for	any	input	you	give	it.	Depending	on	the	oracle,	this	can	
be	 quite	 interesting	 (e.g.	 if	 the	 oracle’s	 language	 is	 ‘open’,	 or	 constantly	 evolving).	 It	 might	 get	
especially	 interesting	 if	 the	 oracle	 is	 capable	 of	 conforming	 its	 classifications	 to	 new	 theories	 it	
learns.	 But	 for	 just	 our	 purpose	 here	we	 needn’t	worry	 about	which	 types	 of	 oracles	 determine	
which	kinds	of	functions.	The	only	kind	of	oracle	we	presently	need	is	just	an	‘ideal’	one;	that	is,	an	
oracle	ℳ	where	Κℳ(𝑥𝑥)	always	 returns	 finite	 and	 non-empty	 sets	 for	 any	𝑥𝑥 ∈ 𝐿𝐿(ℳ).14	Though	 it	
may	not	 be	 obvious,	 this	 puts	 a	 big	 constraint	 on	 the	 language	 of	ℳ,	 since	 every	𝑥𝑥 ∈ 𝐿𝐿(ℳ)	must	
then	be	interpretable	as	a	recursive	function,	else	𝛿𝛿ℳ (𝑥𝑥)	would	be	null	and	so	Κℳ(𝑥𝑥)	would	also	
be	null,	due	to	the	Cartesian	product.	But	if	we	are	allowed	to	choose	any	oracle	ℳ,	including	ideal	
ones,	then	we’re	finally	ready	to	talk	about	studying	intelligent	agents	that	study	themselves.		

	
V.						THE	ULTIMATE	QUESTION	

	
We’ve	now	completed	the	task	of	defining	our	tools.	Let’s	now	use	them	to	express	a	necessary	

characteristic	 of	 intelligent	 systems	 that	 study	 themselves.	 We’ll	 then	 return	 to	 the	 perennial	
question	of	“Why	are	we	here?”	and	see	if	this	characteristic	might	provide	us	with	a	novel	answer.	

To	start,	 let’s	have	𝒯𝒯 	represent	any	 theory	of	 life	 that	has	a	 language	𝐿𝐿(𝒯𝒯) ⊆ 𝐿𝐿(ℳ)	with	
respect	 to	 the	oracle	ℳ	we	picked.	This	means	we	can	pick	any	 formal	 theory	where	every	valid	
sentence	represents	some	valid	instance	of	life,	so	long	as	it’s	in	the	language	of	ℳ.	Assuming	this,	
the	set	ℒ	of	all	critically	explainable	life,	for	our	oracle	ℳ	who	learned	𝒯𝒯 ,	is	simply	defined	as:	

	
𝒲𝒲 = {𝑥𝑥 ∈ 𝐿𝐿(ℳ) | Κℳ 𝑥𝑥 ≠ ∅},	

ℒ = 𝐿𝐿(𝒯𝒯) ∩𝒲𝒲.	

So	are	we	done?	Is	it	enough	to	just	have	ℳ	and	𝒯𝒯 	,	then	study	the	reasons	for	each	ℓ ∈ ℒ?	
No,	unfortunately	not.	Consider	that	even	if	we	had	an	oracle	that	knew	a	definitive	theory	of	life,	it	
still	wouldn’t	be	enough	to	explain	why	we	search	for	purpose.	That’s	because	the	question	is	only	
meaningful	 to	agential	systems	that	are	capable	of	seeking	purpose	(Metz	2013).	So	 just	knowing	
the	members	of	ℒ	isn’t	enough,	since	not	all	ℓ ∈ ℒ	search	for	their	own	purpose.	Hence,	to	study	the	
question	of	 “life’s	meaning”,	we	need	to	select	 for	what	can	ask	 this	question.	That	 is,	we	need	to	
answer:	“What	is	“the	meaning	of	life”	to	systems	that	can	understand	the	intension	of	this	question?”	

To	 address	 this,	 let	𝒯𝒯 	be	 any	 theory	where	 every	𝑥𝑥 ∈ 𝐿𝐿 𝒯𝒯 	specifies	 a	 system	𝑥𝑥	
that,	 while	 being	 properly	 constituted,	 will	 continually	 create	 new	 syntax	 and	 semantics,	 while	
maintaining	the	capability	to	self-reflect,	such	that	𝛫𝛫 (𝑥𝑥) ≠ ∅.	

Then	let	𝒯𝒯 	be	any	theory	such	that	every	𝑥𝑥 ∈ 𝐿𝐿 𝒯𝒯 	specifies	an	“agent”	that	selects	
available	actions	expected	 to	maximize	one	of	 its	 internalized	performance	measures,	 taking	 into	
account	what	knowledge	it	has	and	what	it	has	experienced	(Russell	&	Norvig	2010,	p.36).		

Then	let	ℐ	be	the	set	of	all	‘rational	&	reflexive	semantic	agents’	recognized	by	our	chosen	oracle	
ℳ	that’s	properly	equipped	with	theories	𝒯𝒯 	and	𝒯𝒯 .	Formally,	the	set	can	be	given	by:	

	
ℐ = 𝐿𝐿 𝒯𝒯 ∩ 𝐿𝐿 𝒯𝒯 ∩𝒲𝒲.	

	
All	we	have	left	to	do	now	is	define	a	measure	of	time.	It	has	been	suggested	that	humans	tend	

to	experience	time	as	discontinuous	(Libet	2009).	So	I	propose	that	we	employ	a	special	clock	that	
advances	one	tick,	or	time	step,	only	when	our	chosen	oracle	ℳ	is	presented	with	an	input.	That	is,	
our	clock	is	a	counter	of	ℳ’s	input	events.	Any	real	time	that	passes	in-between	these	clock	ticks	is	
ignored.	For	instance,	we’ll	say	that	every	time	𝑡𝑡	corresponds	exactly	to	the	index	of	an	input	of	ℳ.		

Granted	the	above,	I	now	offer	a	theorem	that	states	a	necessary	characteristic	of	all	𝒾𝒾 ∈ ℐ:		
	

Every	𝒾𝒾 ∈ ℐ	arranges	for	 𝛫𝛫ℳ(𝒾𝒾) 	to	monotonically	increase	over	finite	time	intervals,	where	ℳ = 𝒾𝒾.	
	

I	believe	 that	 the	 reason	 for	why	 this	must	hold	 is	 rather	 illuminating,	 so	 let	me	now	sketch	
why	it	must	be	so.	Assume,	as	hypothesis,	that	𝒾𝒾 ∈ ℐ.	If	so,	then	it	must	also	be	that	Κ𝒾𝒾(𝒾𝒾) ≠ ∅,	else	𝒾𝒾	
could	not	self-reflect	and	thus	𝒾𝒾 ∉ 𝐿𝐿 𝒯𝒯 	and	so	𝒾𝒾 ∉ ℐ.	We	can	also	infer	that	𝒾𝒾	is	a	non-static	
FAS,	else	𝒾𝒾	can’t	be	creative	(Chaitin	2005)	and	thus	𝒾𝒾 ∉ 𝐿𝐿 𝒯𝒯 	and	so	𝒾𝒾 ∉ ℐ.	From	this	we	can	
infer	 that	 the	 size	 of	 the	 language	𝐿𝐿(𝒾𝒾)	must	 increase	 in	 time,	 else	𝒾𝒾	could	 not	 accept	 previously	
undefined	syntax	and	semantics	and	thus	𝒾𝒾 ∉ 𝐿𝐿 𝒯𝒯 	and	so	𝒾𝒾 ∉ ℐ.	We	also	know,	by	definition,	
that	Κ𝒾𝒾	can	 be	 used	 to	 find	 critically	 explainable	 elements	 of	 any	 FAS,	 including	 non-static	 FAS.	
Hence,	 if	𝐿𝐿(𝒾𝒾)	has	 a	 new	member	 due	 to	 being	 a	 non-static	 FAS,	 there	must	 be	 at	 least	 one	 new	
equivalence	class,	hence	Κ𝒾𝒾(𝒾𝒾)	return	sets	of	increasing	cardinality.	Finally,	we	can	infer	that	 Κ𝒾𝒾(𝒾𝒾) 	
is	monotonic	 increasing,	 since	𝒾𝒾	must	 remember	past	 equivalences,	 else	 it	 can’t	 take	 into	account	
past	experiences	and	thus	𝒾𝒾 ∉ 𝐿𝐿 𝒯𝒯 	and	so	𝒾𝒾 ∉ ℐ.	The	claim	then	follows.	

	If	we	were	so	capable,	we	might	then	wish	to	verify	this	by	computing	Κ𝒾𝒾(𝒾𝒾)	for	some	artificial	
agent	𝒾𝒾	over	multiple	 time	 intervals.	For	 instance,	we	could	use	a	sequence	(𝒾𝒾 , 𝒾𝒾 … , 𝒾𝒾),	over	
any	 interval	[𝑡𝑡, 𝑡𝑡 + 𝑘𝑘] ,	 where	𝑡𝑡, 𝑘𝑘 ∈ ℕ .	 We	 could	 then	 let	𝑘𝑘(𝒾𝒾) = Κ𝒾𝒾 (𝒾𝒾) 	and	 check	 if	 the	
derivative	of	𝑘𝑘	(if	 it	has	one)	is	 larger	than	zero	for	all	𝑡𝑡	in	(𝑡𝑡, 𝑡𝑡 + 𝑘𝑘).	Notice	though	that	the	oracle	
which	determines	growth	in	𝑘𝑘(𝒾𝒾)	is	𝒾𝒾 .	This	means	that	every	𝒾𝒾 	can,	in	principle	if	not	in	practice,	

control	whether	it	will	continue	to	be	a	rational	and	reflexive	semantic	agent	at	time	𝑡𝑡 + 1.	I	believe	
this	then	models	the	sense	of	agency	we	sometimes	feel	over	our	rationality.		

So,	 assuming	 no	 errors	 in	 the	 above	 theorem,	we	 are	 finally	 ready	 to	 tackle	 the	 question	 of	
“Why	are	we	here?”.	Reformulating	 the	question	using	our	new	 tools,	 the	question	 then	becomes:	
“What	is	the	operational	function	of	any	𝒾𝒾 ∈ ℐ?”	To	which	we	can	reply:		

	
The	operational	function	of	any	𝒾𝒾 ∈ ℐ	is	to	increase	in	𝛫𝛫𝒾𝒾(𝒾𝒾).	

	
How	can	you	 interpret	 this?	 I	 suggest	you	assume	 that	 it	 is	you	who	are	 the	oracle	 in	all	 the	

above	definitions.	Then,	at	 those	moments	where	you	qualify	as	a	rational	and	reflexive	semantic	
agent,	it	follows	that	you	are	a	member	of	the	set	ℐ.	This	answer	then	simply	says	that	your	higher-
purpose,	 or	meta-purpose,	 is	 just	 to	 grow	 in	Κ.	 That	 is,	 your	 ultimate	 reason	 for	 being	 is	 just	 to	
increase	your	own	critical	explainability	during	those	times	that	you	are	rational	and	self-aware.		

Now,	this	answer	is	wrong,	or	not	even	wrong,	if	there’s	any	fatal	flaw	in	the	definitions	of	the	
tools	employed	here.	But	even	if	no	such	flaw	is	found,	it’s	still	an	open	question	as	to	whether	this	
interpretation	of	the	function	Κ	is	sound.	Hence,	what	is	of	some	interest	now	is	whether	Κ	can	be	
computed	by	rational	and	reflexive	semantic	artificial	agents,	since	by	using	artificial	agents,	these	
questions	might	be	further	studied	with	computational	accuracy.	I	leave	this	to	future	work.	

	
VI.						WAIT,	BUT	HOW?	

	
Thus	far	I	have	said	little	about	exactly	how	any	𝒾𝒾 ∈ ℐ	might	grow	in	Κ𝒾𝒾(𝒾𝒾),	focusing	instead	on	

‘why’	 and	 ‘what’.	 To	 answer	 ‘how’,	 we	 only	 need	 an	 interpretation	 of	 the	 function	Κ,	 so	 let	 me	
suggest	one	that	seems	at	least	plausible	at	present.		

Let	any	𝒾𝒾 ∈ ℐ	(over	some	time	interval)	be	any	person	(e.g.	yourself).	Then,	for	any	𝑥𝑥,	we	know		
that	 the	 size	 of	Κ𝒾𝒾(𝑥𝑥)	is	 dependent	 on	 the	 Cartesian	 product	𝛿𝛿 𝑥𝑥 × 𝛿𝛿 (𝑥𝑥).	 So	 if	 either	 function	
returns	null,	the	product	must	also	be	null	and	so	Κ𝒾𝒾(𝑥𝑥) = ∅.	We	also	know	that	the	larger	either	set	
is,	so	too	must	the	product	be.	So	if	some	person	𝒾𝒾	is	to	persist	as	a	rational	and	reflexive	semantic	
agent,	they	must	grow	either	𝛿𝛿 𝒾𝒾 ,	or	they	must	grow	𝛿𝛿 (𝒾𝒾),	or	both.	

Now	 recall	 that	𝛿𝛿 𝒾𝒾 	is	 a	 measure	 of	𝒾𝒾’s	 critically	 explainable	 complexity,	 while	𝛿𝛿 (𝒾𝒾)	is	 a	
measure	 of	𝒾𝒾 ’s	 critically	 explainable	 generality.	 So	 some	𝒾𝒾 	might	 increase	 their	 generality	 by	
forming	 new	 recurring	 functions	 that	 depend	 on	 their	 own	 selves	 (e.g.	 by	 finding	 an	 activity	 or	
place	in	the	world	that	depends	on	their	continued	existence).	This	might	be	done	by	increasing	the	
unique	 recurrent	 functions	 that	 depend	 on	𝒾𝒾,	 such	 that	 the	 loss	 of	𝒾𝒾	terminates	 the	 function’s	
recurrence.	In	this	sense,	increasing	one’s	generality	is	essentially	increasing	one’s	criticality	to	new	
recurring	functional	dependencies.	This	might	then	explain	why	goal-seeking	is	so	often	conflated	
with	life’s	meaning,	since	to	satisfy	life’s	meaning,	we	often	create	dependencies	on	ourselves.	

We	also	needn’t	 just	 grow	𝛿𝛿 (𝒾𝒾).	We	 can	also	 grow	𝛿𝛿 𝒾𝒾 ;	 that	 is,	we	 can	grow	our	 critically	
explainable	 complexity,	 and	 this	might	 be	 done	 by	 simply	 creating	 original	 syntax	 and	meanings	
that	expand	the	language	of	the	recursive	function	𝒾𝒾	which	may	represent	our	“self”.		

We	 can	 also	 try	 to	 grow	 our	𝛿𝛿 𝒾𝒾 	and	𝛿𝛿 (𝒾𝒾)	in	 tandem,	 balancing	 both	 to	 strive	 toward	 the	
theoretical	maxima	of	Κ.	In	the	end	though,	however	we	increase	in	critical	explainability,	if	we	do	
increase	in	it,	we	satisfy	life’s	meaning,	no	matter	how	we	happened	to	go	about	it.	

VII.						WAIT,	BUT	WHAT	IF	IT’S	TRUE?	
	
A	 final	 concern	 is,	 what	 if	 this	 isn’t	 all	 wrong?	 What	 if	 the	 function	Κ 	can	 one	 day	 be	

experimentally	 shown	 to	model	properties	of	 rational	and	reflexive	 semantic	agents?	What	 then?	
Alarmingly,	 irrespective	of	whether	 the	above	answer	 to	 the	 “ultimate	question”	 is	 true,	a	greedy	
search	 algorithm	 that	 maximized	Κ	on	 just	 a	 single	 agent	 could	 turn	 out	 to	 be	 catastrophically	
immoral,	made	all	the	worse	if	maximizing	Κ	turns	out	to	be	meaningless.	To	mitigate	this	risk,	we	
would	need	to	solve	how	rational	and	reflexive	semantic	agents	can	be	motivated	to	use	only	sane	
and	ethical	search	strategies	for	growing	Κ.15	For	if	growing	in	Κ	is	meaningful	and	if	algorithms	to	
grow	Κ	are	possible,	 then	 the	algorithms	we	design	 for	ethically	growing	Κ	could	very	well	be	 the	
most	meaningful	algorithms	of	our	lives.	 	

References	
	
Bak,	P.,	2013.	How	Nature	Works:	the	science	of	self-organized	criticality,	Springer	Science	&	

Business	Media.	
Barrow,	J.D.,	2009.	The	Book	of	Nothing:	Vacuums,	Voids,	and	the	Latest	Ideas	about	the	Origins	of	the	

Universe,	Knopf	Doubleday	Publishing	Group.	
Bentley,	P.,	2002.	Digital	Biology:	The	Creation	of	Life	Inside	Computers	and	How	It	Will	Affect	Us,	

Headline.	
Carse,	J.,	2011.	Finite	and	Infinite	Games,	Simon	and	Schuster.	
Chaitin,	G.,	2005.	Meta	Math!:	The	Quest	for	Omega,	Vintage.	
Chaitin,	G.,	2012.	Proving	Darwin:	Making	Biology	Mathematical,	Vintage.	
Darling,	D.,	2004.	The	Universal	Book	of	Mathematics:	From	Abracadabra	to	Zeno’s	Paradoxes,	John	

Wiley	&	Sons.	
Deacon,	T.,	2011.	Incomplete	Nature:	How	Mind	Emerged	from	Matter,	W.	W.	Norton.	
Deutsch,	D.,	2011.	The	Beginning	of	Infinity:	Explanations	That	Transform	the	World,	Penguin	Group.	
Dretske,	F.I.,	1981.	Knowledge	and	the	Flow	of	Information,	MIT	Press.	
Godfrey-Smith,	P.,	2009.	Theory	and	Reality:	An	Introduction	to	the	Philosophy	of	Science,	University	

of	Chicago	Press.	
Goldstein,	J.	&	Harris,	S.,	2015.	Questions	Along	the	Path:	A	Conversation	with	Joseph	Goldstein.	

Waking	Up	With	Sam	Harris.	Available	at:	
https://soundcloud.com/samharrisorg/joseph_sam_2	[Accessed	February	25,	2017].	

Hersh,	R.,	1997.	What	Is	Mathematics,	Really?,	Oxford	University	Press.	
Holt,	J.,	2012.	Why	Does	the	World	Exist?:	An	Existential	Detective	Story,	W.	W.	Norton.	
Hopcroft,	J.E.,	Motwani,	R.	&	Ullman,	J.D.,	2001.	Introduction	to	Automata	Theory,	Languages,	and	

Computation	2nd	ed.,	Pearson	Education.	
Hull,	D.L.,	1980.	Individuality	and	Selection.	Annual	Review	of	Ecology	and	Systematics,	pp.311–332.	
Kaplan,	R.,	1999.	The	Nothing	that	Is:	A	Natural	History	of	Zero,	Oxford	University	Press.	
Libet,	B.,	2009.	Mind	Time:	The	Temporal	Factor	in	Consciousness,	HUP.	
Marletto,	C.,	2015.	Constructor	Theory	of	Life.	Journal	of	The	Royal	Society	Interface.	
Metz,	T.,	2013.	The	Meaning	of	Life.	In	E.	N.	Zalta,	ed.	The	Stanford	Encyclopedia	of	Philosophy.	

Metaphysics	Research	Lab,	Stanford	University.	
Nagel,	E.	&	Newman,	J.R.,	1958.	Godel’s	Proof,	Routledge.	
Parfit,	D.,	2011.	On	What	Matters,	Oxford	University	Press.	
Pearl,	J.,	2000.	Causality,	Cambridge	University	Press.	
Popper,	K.,	1962.	Conjectures	and	Refutations,	Routledge.	
Pross,	A.,	2012.	What	is	Life?:	How	chemistry	becomes	biology,	OUP.	
Rovelli,	C.,	2017.	Meaning	and	Intentionality	=	Information	+	Evolution.	preprint.	
Russell,	S.J.	&	Norvig,	P.,	2010.	Artificial	Intelligence:	A	Modern	Approach,	Prentice	Hall.	
Seife,	C.,	2000.	Zero:	The	Biography	of	a	Dangerous	Idea,	Penguin	Books.	
Tegmark,	M.,	2015.	Friendly	Artificial	Intelligence:	the	Physics	Challenge,	Artificial	Intelligence	and	

Ethics:	Papers	from	the	2015	AAAI	Workshop.	
Weinberg,	S.,	2015.	To	Explain	the	World:	The	Discovery	of	Modern	Science,	HarperCollins.	
	 	

Technical	Endnotes	&	Further	Reading	
																																																								
1	See	(Tegmark	2014)	for	why	it’s	believed	that	a	physical	definition	of	“life”	and	“meaning”	is	key.	
	
2	See	 (Weinberg	2015).	But	note	 that	not	all	 scientific	progress	 relies	on	new	mathematical	 tools,	
see	(Godfrey-Smith	2009).	
	
3	For	overviews	of	nothingness,	see	(Kaplan	1999;	Seife	2000;	Barrow	2009;	Holt	2012).	
	
4	For	more	on	why	mathematics	is	the	subject	where	errors	are	inevitable,	see	(Hersh	1997,	Ch.3).	
	
5	For	more	on	the	definition	of	consistency,	see	(Nagel	&	Newman	1958).	Specifically,	the	technical	
definition	is	that	a	formal	system	is	 internally	consistent	if	there	is	at	 least	one	formula	that’s	not	
derivable	from	the	axioms	of	a	formal	axiomatic	system.	
	
6	For	details	on	recursively	enumerable	languages,	see	(Hopcroft	et	al.	2001,	Ch.9).	
	
7	See	 (Hopcroft	 et	 al.	 2001)	 for	 technical	 guidance	 on	 how	 to	 select	 everything	 undefined	 to	 a	
deterministic	finite	automaton	(DFA).	Since	it’s	fairly	straightforward,	let	me	demonstrate.	Let	𝐸𝐸	be	
the	DFA	specified	by	 the	5-tuple	(𝑄𝑄,∑, 𝛿𝛿, 𝑞𝑞 ,𝐹𝐹),	where 𝑄𝑄	is	 a	 finite	 set	of	 states,	∑	is	 a	 finite	 input	
alphabet,	𝛿𝛿 	is	 a	 transition	 function,	𝑞𝑞 	is	 the	 starting	 state	 such	 that	𝑞𝑞 ∈ 𝑄𝑄 ,	 and	𝐹𝐹 	is	 a	 set	 of	
accepting	 states	 such	 that	𝐹𝐹 ⊆ 𝑄𝑄.	 The	 language	 of	 this	 DFA	 is	 then	 the	 set	 of	 all	 accepted	 input	
sequences	of	E	(i.e.	the	set	of	all	strings	of	symbols	that	allow	the	state	of	𝐸𝐸	to	transit	to	a	state	in	F).	
Now	we	can	select	part	of	the	‘undefined	domain’	of	𝐸𝐸	by	constructing	the	DFA	labeled	𝐸𝐸	which	we	
specify	 with	 the	 5-tuple	(𝑄𝑄,∑, 𝛿𝛿, 𝑞𝑞 ,𝑄𝑄 − 𝐹𝐹) .	 Here	 we	 see	 that	𝐸𝐸 	has	 a	 language	 that	 is	 the	
complement	 to	 L(E)	 with	 respect	 to	 the	 alphabet	∑.	 Since	 no	𝑤𝑤 ∈ 𝐿𝐿(𝐸𝐸)	is	 a	 member	 of	𝐿𝐿(𝐸𝐸),	 the	
language	𝐿𝐿(𝐸𝐸)	is	a	subset	of	the	undefined	domain	of	E.	That	is,	𝐿𝐿 𝐸𝐸 ⊇ 𝑤𝑤 ∈ 𝐿𝐿(𝐸𝐸) .	To	select	a	
larger	 set,	 we	 can	 take	 the	 complement	 of	𝐿𝐿(𝐸𝐸)	with	 respect	 to	 a	 superset	 alphabet	 of	∑.	 For	
instance,	 for	 language	𝐿𝐿(𝐸𝐸) ⊆ ∑∗ 	such	 that	∑ ⊂ ∑ ,	 the	 complement	𝐿𝐿(𝐸𝐸)	is	∑∗ − 𝐿𝐿(𝐸𝐸).	 This	 still	
doesn’t	 select	 everything	 that’s	 undefined	 to	𝐸𝐸	though.	 The	 complete	 set	 is	 only	 selected	 by	 the	
union	of	 sets	 of	 all	 strings	over	 all	 possible	 alphabets,	minus	 the	 language	of	E.	 Formally	we	 can	
write	this	as	𝐿𝐿 𝐸𝐸 = ∑∗ − 𝐿𝐿(𝐸𝐸) .	Hence,	to	select	everything	undefined	to	𝐸𝐸,	we	can	use	the	
formula	{𝑤𝑤 ∈ 𝐿𝐿 𝐸𝐸 }.	Or,	as	appears	in	the	main	text,	we	can	use	the	formula	{𝑤𝑤 ∉ 𝐿𝐿 𝐸𝐸 }.	
	
8	See	(Goldstein	&	Harris	2015)	for	some	interesting	discussion	on	the	philosophy	of	‘not	finding’.	In	
particular,	note	the	discussion	regarding	Dzogchen	master	Tulku	Urgyen	Rinpoche	who	was	fond	of	
saying,	with	regards	to	the	concept	of	‘emptiness’,	that	“The	not	finding	is	the	finding.”		
	
9	For	technical	details	on	the	halting	problem,	see	(Hopcroft	et	al.	2001,	Ch.9).	
	
10	For	some	relevant	reading	on	contemporary	theories	of	life,	I	recommend	(Deacon	2011),	which	
says	 that	 life	 can	 be	 represented	 by	 ‘emergent	 hypercycles	 exhibiting	 self-rectyfing	 constraint	
preservation’.	 I	 also	 recommend	 the	 theory	 of	 life	 as	 systems	 which	 achieve	 ‘dynamic	 kinetic	

																																																																																																																																																																																			
stability’	over	time,	see	(Pross	2012),	and	the	constructor	theory	of	 life	that	explains	how	current	
physics	 allows	 for	 the	evolution	of	 accurate	 self-reproducers,	 see	 (Marletto	2015),	 and	 the	meta-
theory	of	life	as	‘evolving	software’,	see	(Chaitin	2012).	Note	that	in	all	these	theories,	the	terms	for	
“life”	 can	 be	 expressed	 using	 recursive	 functions	 over	 a	 descending	 lineage	 of	 an	 ensemble	 such	
that	failure	to	recur	is	interpreted	as	a	termination	event.	
	
11	For	 philosophies	 that	 seem	 closely	 related	 to	 the	 notion	 of	 ‘critical	 explainability’,	 see	 (Popper	
1962);	see	also	(Deutsch	2011).	This	notion	also	seems	to	connect	to	the	notion	of	“noisy	channels”	
as	 employed	 by	 Dretske	 in	 his	 investigation	 of	 information	 flows	 (Dretske	 1981).	 For	 a	 brief,	 if	
somewhat	 trivial,	 illustration	of	 these	connections,	 let	a	noisy	channel	be	any	recursive	 function	𝐶𝐶	
that	 recurs	 at	 each	 time	 step	while	 a	message	 is	 in	 transit	 such	 that	 there’s	 probability	 1	 of	 the	
message	sequence	𝑋𝑋	being	changed	 to	some	𝑋𝑋’	during	 that	 time	 interval.	The	probability	of	 losing	
the	message	is	then	1	when	𝐸𝐸(𝑎𝑎)	for	all	elements	𝑎𝑎 	of	𝑋𝑋,	since	by	definition	those	are	the	elements	
that	 terminate	𝐶𝐶	when	 varied.	 Hence,	 for	 any	 noisy	 channel,	 the	 loss	 of	 a	 message	 is	 maximally	
predictable	when	all	its	elements	are	critically	explainable.	
	
12	After	 preparing	 this	 present	 work,	 I	 became	 aware	 of	 Rovelli’s	 recent	 study	 of	 a	 physical	
definition	 of	 ‘meaningful	 information’	 (Rovelli	 2017).	 I	 believe	 the	 function	Κℳ 	is	 related	 to	 that	
definition,	though	examining	exactly	how	would	be	a	topic	for	another	day.	
	
13	An	interesting	technical	note	is	that	we	can	define	an	extended	version	of	the	functions	𝛿𝛿	and	𝛿𝛿 	
to	take	sets	of	sequences	as	arguments,	thus	allowing	for	compositions	like	𝛿𝛿 𝛿𝛿(𝑥𝑥) .	Indeed,	this	
seems	far	more	natural,	but	it	would	also	be	more	complicated,	and	unnecessary	for	this	essay.	
	
14	In	 the	 body	 of	 the	 essay,	 I	 didn’t	 provide	much	detail	 about	what	 it	means	 for	 an	 oracle	 to	 be	
‘ideal’.	 For	 technically-minded	 readers,	 let	me	now	provide	 a	more	 rigorous	 definition.	An	 ‘ideal’	
oracle	ℳ	is	one	where	you	can	always	find	an	𝑛𝑛 ∈ ℕ	such	that	 	0 < Κℳ(𝑥𝑥) < 𝑛𝑛	for	any	𝑥𝑥	that	ℳ	
can	interpret	as	a	recursive	function.	This	is	useful,	since	if	Κℳ(𝑥𝑥)	returns	an	infinite	set,	we	can’t	
use	 it	 as	 a	measure.	And	 if	 	Κℳ(𝑥𝑥)	returns	null,	 then	 our	 oracle	 has	 no	 critical	 explanation	 for	𝑥𝑥,	
implying	ℳ 	isn’t	 perfect.	 Essentially,	Κℳ 𝑥𝑥 = ∅	means	 either	𝑥𝑥 	is	 not	 an	 input	 sequence	 that	
contains	an	element	𝑎𝑎 	such	that	𝐸𝐸(𝑎𝑎)	for	any	recursive	function	known	to	ℳ	or	𝑥𝑥	doesn’t	encode	a	
recursive	 function	 that	 can	 be	 terminated	 by	 any	means	 known	 to	ℳ.	 In	 either	 case,	Κℳ 𝑥𝑥 = ∅	
signals	 either	𝑥𝑥 	is	 not	 critically	 explainable,	 or	ℳ 	is	 not	 a	 perfect	 oracle.	 But	 if	𝑥𝑥 	encodes	 a	
consistent	function,	it	must	determine	critically	explainable	inputs.	And	since	𝑥𝑥	is	just	a	sequence	of	
symbols,	 it	must	have	FAS	that	 it’s	critical	 to.	Hence,	 if	𝑥𝑥	specifies	a	consistent	FAS	and	𝑥𝑥 ∈ 𝐿𝐿(ℳ),	
yet	Κℳ 𝑥𝑥 = ∅,	then	the	fault	is	with	ℳ	and	so	ℳ	isn’t	an	ideal	oracle.	
	
15	For	recommended	reading	with	regards	to	how	we	might	ethically	grow	in	Κ,	 I	suggest	starting	
with	Parfit’s	final	thesis	that	everyone	ought	to	follow	the	principles	that	produce	the	maximum	good	
consequences	because	it	is	only	these	optimific	principles	that	everyone	would	have	sufficient	reasons	
to	choose,	and	could	therefore	rationally	choose.	See	(Parfit	2011).	

