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What is Ultimately Possible in Physics?
A Geometrical Approach Towards a Theory of Everythng (TOE)
by Ray B. Munroe, Jr., mm_buyer@comcast.net, Maysiide, Inc, Tallahassee, FL USA 32308

Abstract — In 2007, A. Garrett Lisi published “An Exceptally Simple Theory of Everything”
[1] (TOE) in which he presented a geometrical apphotowards TOE based &8 and the
Gosset lattice. Although Lisi’s approach has beeny well received by FQXi members and pop
culture, it has received some serious physicgjaeti most notably from Prof. Jacques Distler of
the University of Texas. Distler’'s [2] fundamentamplaint is thaE8 is not large enough to
properly contain three chiral generations. Stilkeems appropriate to consider Lisi’'s geometrical
approach a reasonable way to model an approachdswal OE — a “toy model” TOE as such.

Introduction — The author recently posted “A Case Study of @eometrical Nature of
Exceptional Theories of Everything” [3] and pubksha book on “New Approaches Towards A
Grand Unified Theory” [4]. These two papers predéet possibility of a geometrical approach
towards a TOE. Geometry enters into this approachQE in two different ways: 1) Yang-Mills
Boson GUT's are derived by recognizing similaritiestween certain crystal symmetries and
certainSUN) Lie Algebra symmetries, and 2) Particle mukiglare constructed from Simplices,
and the product of these Simplices builds repregeet multi-dimensional lattices.

It is anticipated that this geometrical approacly i@ an axiomic breakthrough that allows us to
bypass the apparent complications of Gddel's Indetepess Theorem and ask the question
“What is Ultimately Possible in Physics?” — A Gedriwal Approach Towards a TOE.

The Geometry of Yang-Mills Theories— A simple example of the geometrical nature of
Yang-Mills Boson GUT's is provided in the compansbetween the Tetrahedral Conjugacy [5]
classes and the Georgi-Glash8W((5) Boson GUT [6]:
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Equation (1) Legend -€,= Rotation by 180° (degree 2¥;,= Rotation by 120° (degree 3),
1 = Identity, S,= Rotoreflection by 90° (degree 4y, = reflection in a plane through two
rotation axes (degree 43 = Weak Hypercharge ofl (1), (degree 1)g = Gluons of SU(3).
(degree 3),y = Photon, W = neutral and chargedWs of SU(2)L (degree 2),
X & Y = hypothetical Georgi- Glashow leptoquark bosalegifee 4), and = neutral Weak IVB.

Here, the Strong/ Color force is placed in the teft position, followed along the
diagonal by the next stronger Electromagnetic f¢retated to Weak Hypercharge), followed by
the weaker Weak force in the bottom right positidbhe Georgi-GlashoveU5) GUT has an
order of 24 as does the total number of tetrahembajugacy classes. Color Theory has degree
and order of three and eight (8 gluons) as dGgsthe class of tetrahedral rotations by 120°.

All other sub-symmetries follow similar comparisoiiiese reflection symmetrieS, and o
have a higher degree of symmetry than the rotatfomreetriesC, and C;, and are, therefore,
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intentionally placed in off-diagonal positions, threpresenting higher rank terms. TBiandW
names reflect the unbroken Electroweak symmetrié®r Spontaneous Symmetry Breaking of

the Electroweak symmetry, the@O,WO,Wi) mix quantum states to becor{}eO,ZO,Wi).

These Yang-Mills Boson GUT's extended to analogletween the Octahedral
Conjugacy classes and a propoSéq7) Boson Gut with an order of 48 (Equation 2),
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Equation 2 Legend — Same as Equation 1 plb$= Rotation by 180° about a 4-fold axis,
C,= Rotation by 90° (degree 4), = Inversion, S;= Rotoreflection by 60° (degree 6),
o, = reflection in a plane perpendicular to a 2-foldsa(degree 2),0,= reflection in a plane
perpendicular to a 4-fold axis (degree €),D, E, w and z = Hyperflavor Sd2,4) bosons
(degree 4 — see Ref. [3]H, ¢ = Higgs, andv = SW7) Grand bosons (degree 6).

...and the Icosahedral Conjugacy [7] classes antdpogedSU11) Boson GUT [3,8] with an
order of 120 (Equation 3).
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C, ¢ C, C, C, ¢ C § § c2ci|l=lccdddcdUU S S
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S, S S, S S S S 0 g o o TTTUUUUTFFFF
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Equation 3 Legend — Same as Equations 1 and 2 @lus:Rotation by 72° about a 5-fold axis
(degree 5),C2= Rotation by 144° about a 5-fold axis (degree S),= Rotoreflection by 36°
(degree 10),S2 = Rotoreflection by 108° (degree 16) reflection (degree 2)a = “Color”
20-plet, b = U(1), “Photon”, ¢ = “Higgs-Weak” 12-plet,d = Hyperflavor SQ(24),

F = “Fifthons” = WIMP-GravitonsG = Graviton,R, S, TandU = SU(11) Grand bosons.
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Simplices as Particle Multiplets— Consider the example of a 3-simplex (tetrahediam a
particle multiplet. This is the simplest examplattilemonstrates all of the basic properties of

these simplices. We will assume 8t(4) Lie algebra with diagonal operatd@;,Cq,Cys).

We want to construct a simplex with the followipgpperties: 1) the sum of all charges
within a particle multiplet equals zero, and 2) pdirticles have the same distance from each
other. As a consequence of these two requirementsealize that all particles must also have the
same radius about the origin.

Table 1 is deduced by process of trial and eMaote that the strengths of the charges

(C3,C8,C15) are introduced in a ratio C{L \/5\/6) In the general case, this approaches a ratio
of the square root of the progression of Special th&@onal orders

(l\/?’a,\/g,\/ﬂ),\/ﬁ,...,,/nfn +15/2). These four particle vectorfA, B,C,D) exist in a three-

dimensional spac(acg,Cs,ClS), are each one unit from each other, and are Q%I’s of a unit
from the origin. In the general case, ausimplex will exist inn-dimensions; have(n +1)

particle vectors that are one unit from each othed 1/n/(2n+25 of a unit from the origin.
Note, that by construction, we haved C,=1+2+0=0, Y 4/3Cy=1+1-1+0=0, and

AB,C,D AB,C,D
> V6C; =3 +3+3+3=0.
AB,C,D
Table 1 — A 3-Simplex Multiplet Figure 1 — Petrie Diagram of a 3-Simplex
D
Charges- c V3x | J6x o
| Fermions| ° | Cs | Cis °

A | K| 72| 0

Sum 0 0 0 0

Grand Unified Theories (GUT’s) generally requinestfeature within a particle multiplet.
Interestingly enough, a secondary conserved quamwmber emerges from the mathematics:

Cg = (\/5 Cg + \/_6015)/3= 0+ % ,+1 etc. This is due to the fact that both charges laasemmon
factor of /3, and has a net effect of collapsing the algebrandinto one fewer dimensions and
introducing a broken symmetry. In the general cage will have more secondary conserved
quantum numbers, such asC;, = (\/1_0 C,, +\/1_5C35)/5= 0+%,tletc., and so on.
These geometrical constraints may be related tiflo@li bivectors and the first-class constraints
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of BRST formalism (Becchi, Rouet, Stora and Tyuf8]) Note that antiparticles could simply be
the inversion operator applied to these particéest thus yielding a nested dual tetrahedron.

A direct application of the 2-Simplex (equilatetabngle) is Color Theory. With the
substitution of A = Redrf, B = Green @), C = Blue b), C,=g° and C;=¢°, we are
immediately led to the same definition of Color ®hethat Lisi used in his paper.

A relevant application of the 3-Simplex (tetralwdr is Electro-Color. With the
additional substitution of D = Whitenj (the “color” of leptons) and/6 Cis = %Y' (whereY’'is
a “universal” hypercharge that accounts for prodo$&/eak” interactions of Left or Right-
handed helicity, see Ref's [3, 4]), then we haw&Simplex of Electro-Color. The four “colors”
(r,g,b,w) are the four corners of this 3-Simplex. This ab&#edron and its dua(F,q,B,v_v)

collectively comprise a cube. One of the triangsides of this tetrahedron contains color theory,
and we obtain the important GUT result:

g, =(Cs) <[ =3) 23
sin HW_(TJ _(ZJEJ 5 (4)

A Proposed TOE Lattice — The author is proposing a TOE based on a “netice’ called
K12 because of its similarities to the 12-dimensioGaketer-TodoK12 lattice [10]. TheK12
lattice has756=12x (7x9) minimal roots, and the simil&£12 lattice has672=12x (7 x8)
roots (plus 12 basis vectors for an order of 684)is K12 shares an isomorphism with the
semi-simple E8x H4 product of Lie Algebras, and contains two of Klsiny(7) hyperbolic

curves [11] (or 10-dimensional laminated latticds, [12]) with an order of 336 each.
Coincidentally K12 and A, are both shallow holes of the 24-dimensional Ldatiice [12].

An important decay route foK12 is K12' - SU(13)x SO24)x E8, where the
interpretation is that th&U(13)x SA(24) of rank 12 and order 444 is a Super Yang-Mills ®os
GUT with tensor, vector and scalar boson contemtany of which are hypothetical and as yet
undiscovered (Ref. [3] has an expansion of therpdosahedral example — Equation 3), and the
E8 of rank 8 and order 240 is a Fermion particletipigt. From its Dynkin diagranE8 has
symmetries of240:8><(2><3>< 5), and thus exhibits two-fold “duality”, three-fofttiality” and
five-fold “pentality” symmetries in an eight-diméaeal “octality” space. To the author's
knowledge, Lisi never identified the pentality syetny. CuriouslyH4 has the same symmetries
of 120:4><(2><3><5) in a four-dimensional “tetrality” space. Table 8presents thes&8
component symmetries as products of Simplices withi 12-dimensionalk12 Iattice.
We already reviewed the 3-Simplex of Electro-Cotord learned that this sub-theory implies that
leptons possess the neutral Strong Color chargesiodé and anti-white. The next new physics is
revealed in a study of the 4-Simplex of “Gravi-Weéak

' Ref's [3, 4] called this latticE12 because of its isomorphism wiB x H4.



RB Munroe Jr, What is Ultimately Possible in Phgsi® Geometrical Approach Towards a TOE

Table 2 — Component Simplex Symmetries of aB8 within a K12

E8 Roots 240 =| 4-pletx 5- pletx 2 - pletx 2-pletx 3- plet
Component | 3-Simplex of | 4-Simplex of Collapsc—?‘d C;" and (?8_ 2(;S|mpli:'x of
Simplices | Electro-Color| Gravi-Weak | ©f @ 3-Simplex of Helicity| ~ &>énerations
and Matter/ Anti-Matter | (Lisi's Triality)
12 Dimensions 3D+
= (ac[t)s :I|)ke 11-| 3D+ 4-D + (acts like 1-D + 1-D +) 2-D

A 4-Simplex of Gravi-Weak — Lisi’'s E8 TOE used a Gravi-Weak unification of a Pati-Salam
Weak force and a Gravitational force based on @liffalgebra. At first glance, this seems to be
as odd of a pairing of forces as Electro-Color, thase strange relationships may vyield clues to
the structure of Spacetime and Hyperspace.

The 4-simplex of Gravi-Weak in Table 3 is pargalhspired by Hyperflavor-Weak
Theory (a hypothetical extension of the StandardakVEorce that is defined in Ref's [3, 4]),
and the fact that thiK12' lattice requires the five-fold symmetry of a 4-$iex (pentachoron)
particle multiplet. This secondary conserved quantoumber is important, and has the

interpretation of a right-handed weak isospin g operator,T,;, =(\/:_3T3HF + 6T8HF) 3.
The fifth vertex of this 4-simplex has unusual auderistics.

Table 3 — A 4-Simplex of Gravi-Weak

Charge.s_' Ta V3 V6 Viox Tr | T
| Fermions Tane Teur Ts
fi=(.8) | % 7 7 % 0|0
fiy = (dL ; 7el_) 7 % b % 0 0
fir = (UR . éR) 0 1 7 b % 0
fir :(dR'VeR) 0 0 % b % | 0
sf, = (sq, sl_) 0 0 0 -2 0| ¥%

This new “particle” appears to have propertiesivant to a “scalar fermion” [13]. It is
a “fermion” because it belongs to this fundameptaticle multiplet. But it has quantum numbers
that imply a zero spinT; = @nd T, = Q thus it has neither a left-handed nor a righteeah
isospin projection. Doessy =T, +T,5 +T5 =%%,%%,... define a generalized Gravi-Weak
Fermion? Are the spin projections for these newntpdidden in a Hyperspace dimension?
Do these “scalar fermions” manifest themselvesaabyons, BRST or Faddeev-Popov ghosts,
or physical particles? The designation for these geanta in Table 3 is preceded by ahtb

indicate generation-dependent scalar fie(df@,sfl,sfz,sfz,sfs,sﬂ) with all four electro-color
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guantum numbers(r,g,b,w). A 4-simplex plus its dual contains 10 particléates
(fLD, £, 62, 12, sf, 0,17, £, fRD,sf_). These newsf scalar fermions have electric charges

of (%.%,%.%) for color charges of((r,g,b),w,(F,@,B),v_v), and are thus not the

supersymmetric partners to the known fermions. dalll enumerates the Electro-Color-
Gravi-Weak quantum numbers for the first generatioh fermions. Note the new

conservation lawsgy = (V3 0% - %Y')/3=0,4%,..., Tue = (V38T + V6 Toue )/3=0,4%,... and
Tg :(JF)TG + Fs)/S:O, . ...., where the secondary gravity quantum numigr is defined
with the expectation that Gravity and a new WIMRxGty (denoted byF) will collectively
comprise a Clifford bivector and mix charges suat T = (\/ETG F %)/5= 0,%;, etc.

Table 4 — Electro-Color-Gravi-Weak Quantum Numbersfor Select Fundamental Fermions

Charge.sa o V3x | ¥x T J3x | 6% | 10x o I
| Fermions g® \4 Taue | Tour Te
ug ol Y Y| K| H b2 b2 % |1 0| 0] O
u’ Y| K V| K| N b2 b J | 0] 0] O
uy O | -1 | % | B| KB | K% | % | H|%]o]o0
e 0 0 o | K 7 7 %1% | 0] O
di ol Y Y | | Hh b2 b2 % |1 0| 0] O
d? T | Y Y| | N % % % |1 0| 0] O
df O| -1 | % | %| % | % | h | %H|lxn]o]|o
Vel 0 0 B K| % 7 7 %1% | 0| O
Ug ol % 7% | 0 1 b Ve 70| % | O
up Y| % % | 0 1 b2 b2 |l 0| x| O
Up o | -1 | KB |Oo| L | ¥ | ¥ | K|HK| K]|O
er 0 0 % 0| -1 | % 7 nlrX| %|O0
dr ol % 7% | 0 0 % Ve 7 0| % | O
dg Yl K 7% | 0 0 % Ve 7% 0| % |0
dg O| -1 | % |O0| 0| % | K | H|lrn|H]|O
Ver 0 0 % 0 0 % 7 Blr| x| o
sq | % | % | o 0 0 -2 | K|l o] 0| %
sq Y JA » 0 0 0 -2 B 0 0 B
sq 0 -1 % 0 0 0 -2 | || 0| h
sl 0 0 A 0 0 0 2 IA I 0 I
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A 3-Simplex of 4-Spinors— The next relevant Simplex represents Diyag-Spinors. Table 5
demonstrates how a 3-Simplex of 4-Spinors mightodgmse into the product of two
1-Simplices of Spinors and Matter/ Anti-Matter witharges given byF; and the secondary

effective chargeF; = (\/1_3 Fs +/6 F15)/3 (note the similarities to Figure 1 with the sutgions

C; = F; andC; = Fy). This application yields either: 1) a properlyfided 3-Simplex of Dirag
4-Spinors or 2) pairs of two-component (1-SimplB&ulic spinors that collectively comprise a
twistor [14]. This dimensional collapse reflects bmoken symmetry. Prior to collapse,
the 3-Simplex is three dimensional. However, thgaent collapse into Spinors and Matter
seems to decrease the effective dimensionalithisfdomponent of the theory into 2 = 1 + 1.
Thus the complete theory with all of the Simplitisged in Table 2 might collapse from twelve to
eleven effective dimensions — possibly consistétit #-Theory.

Table 5 — A 3-Simplex of 4-Spinors Collapsing IntGwo 1-Simplices of Helicity & Matter
Charges- Charges-
! Spi?]ors Fo | V3Fy | V6P | Fy ! Spi?]ors E Fs
Oa I A Y 0 matter g; Y 0
T, B JA % 0 matter o, » 0
Ou 0 -1 7 % anti-mattero; 0 7
Ty 0 0 % IA anti-mattero, 0 %

A 2-Simplex of Generations— The final component of this theory is to includsi’s triality
concept as two nested 2-Simplices (equilaterahgtes) of Generations shown in Table 6 and
Figure 2. Note that if we multiply the twenty Elex=Color-Gravi-Weak Fermion root states of
Table 4 with the four spinor states of Table 5 dhd three generation states of Table 6
(anti-particles were already counted in Table Bgnt we have a Fermion multiplet with
240=20x4x 3 distinct particle states as proposed in Table tds E8 240-plet bears many
similarities with Lisi’'s, but with important diffences: 1) the eight-dimensiong8 does not
include all of Spacetime and Hyperspace (of 11 2dimensions) but is an important subset,
2) this E8 does not include any bosons, they are a Supeg-Whlfs 444-plet as described in
Ref. [3], and 3) thi€8 predicts new fermionsf) with scalar or anyonic [15] behavior that may
be tachyons.

Table 6 — Dual 2-Simplices of Generations

e o oo | [ o] b
1" Gen JA JA Anti-1% Gen B A A
2" Gen A Y Anti-2"Gen | % A
39 Gen 0 -1 Anti-3" Gen 0 1
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Figure 2 — Dual 2-Simplices of Generations

(f,E,r,v,,st) Qs

(c,s,,u,|7ﬂ,sf2) (u,d,é,Ve,sfl)
Qs
(U,a,e,ve,sfl) (C,g,ﬂ,l/lu,Sf-z)

What about Bosons? In this GeometricaK12 Theory, Fermions are eight-dimensional lattice
points embedded in a twelve dimensional theoretiGhing. Reference [3] predicts a large
number of hypothetical Super Yang-Mills Bosons ddrigus dimensionalities including

dimensions one through seven plus nine and eleVkase multi-dimensional Bosons allow
transitions from one Fermion/ lattice point to drestFermion/ lattice point. As such, all of the
basic interactions between Bosons and Fermionstlaee-legged Fermion-Boson-Fermion
Feynman diagrams. Higher-legged Feynman diagrame kaeir origins in non-Abelian Lie

Algebras, which are contained in this Super YangsviTheory. Because these Bosons are
differences between Fermions/ lattice points, we/ mepresent Bosons as a reciprocal lattice.
Table 7 is a listing of the six non-basis gluonstas-dimensional basis difference vectors

(Ag3,AgB). A simple example of how these operators perf@mgf2 = g%%q%, whereq?® is

the initial quark “lattice point” state (such asrad” left-handed up,u;), g®* is the gluon
“difference vector” operator (such as a “green-aedi’ gluon, g% ), and q% is the final quark
“lattice point” state (such as a “green” left-haddm, u?).

Table 7 — The Off-Diagonal Gluons as Translation Vi@ors

o Lo [ [ [ [ o [T o
g 1 0 o] o g -1 0 o | o
g® 2| % 0 [ % 9" 7| | 0| R
g% T | % 0 [ % g% | 7| 0 | T
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Brane-Structure — In the author’'s opinion, these lattices areifigly lattices” or nets of
Simplices on branes, and share similarities withr'ivory [16] and with Causal Dynamical
Triangulation (CDT) [17]. Analysis of the Super YpMills Boson GUT’s (Ref. [3]) implies that
Space is a 3-brane, Time is a 1-brane, and Hypegspaan M2-brane, a 1-brane, and a D5-brane
(that further decomposes into a 3-brane and a2ehra

The origin of Entanglement may be hidden in thelw primary dimensional basis

quantum numbers (gs, 0%.Y \Ta . Tae o Tone o T o Fa 0 Fs , Fis Qs ,Q8) and in the four
secondary geometrically-conserved quantum num(g;grsTgR TG FS’). These conserved quanta
may remain as fossils of the now-collapsed mutietisional lattice.

What is Ultimately Possible in Physics? This paper implies that a Geometrical TOE may
ultimately be possible, and laid out some of theugd work for such an approach.
This geometrical approach has similarities to kisépproach, and may be an axiomic
breakthrough that allows us to bypass the apparemplications of Gddel's Incompleteness
Theorem.

One version of Occam’s razor says “Plurality ougéver be posited without necessity.”
And although this theory introduces a large amaidrlurality/ Complexity/ non-Simplicity by
virtue of a 444-plet of mostly hypothesized Supany-Mills bosons, it does so in an interest to
respect important or naturally-occurring symmet(eauty?) such as Tetrahedral (Equation 1),
Octahedral (Equation 2), Icosahedral (Equatiomjti-dimensional Simplices (Table 1), Gosset
(Table 2 and Ref. [1]) and LeeckK¥2 is one of its shallow holes, see Ref. [12]) lattic
symmetries. Is this a matter of coincidence, orughave naturally expect Nature to repeat and
reapply useful structures? Are Beauty and Symmeé&gessary reasons to trump Simplicity?
If Simplicity always trumps Necessity, then we sldobe satisfied with the “ugly but practical”
Standard Model ofSU(3). xU (1), x SU(2), and a separate General Theory of Relativity, and

we need to stop talking about such “foolishnessTlasories of Everything or Not Everything.

This TOE is not complete. Although many geometrdetails were presented in this
paper and in References [3, 4], it will take tinmeenumerate all of the Feynman diagrams,
derive all of the Lagrangian components, and folynméie this K12 Theory into General
Relativity, M-Theory, CDT or whatever other Thearimay be related.

What is ultimately possible? Certainly, the foursdef Quantum Mechanics had no idea
of the profound effects that QM would have on owdern lives. Likewise, it is impossible to
know if or how a 2% Century TOE will affect the people of the"2Zentury. But the ultimate
possibility of a Geometrical TOE that containspatticles and all interactions is worth the effort!
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