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What is Ultimately Possible in Physics? 
A Geometrical Approach Towards a Theory of Everything (TOE) 

by Ray B. Munroe, Jr., mm_buyer@comcast.net, Mays-Munroe, Inc, Tallahassee, FL USA 32308 
 

Abstract – In 2007, A. Garrett Lisi published “An Exceptionally Simple Theory of Everything” 
[1] (TOE) in which he presented a geometrical approach towards TOE based on E8 and the 
Gosset lattice. Although Lisi’s approach has been very well received by FQXi members and pop 
culture, it has received some serious physics critique – most notably from Prof. Jacques Distler of 
the University of Texas. Distler’s [2] fundamental complaint is that E8 is not large enough to 
properly contain three chiral generations. Still, it seems appropriate to consider Lisi’s geometrical 
approach a reasonable way to model an approach towards a TOE – a “toy model” TOE as such. 
 
Introduction  – The author recently posted “A Case Study of the Geometrical Nature of 
Exceptional Theories of Everything” [3] and published a book on “New Approaches Towards A 
Grand Unified Theory” [4]. These two papers present the possibility of a geometrical approach 
towards a TOE. Geometry enters into this approach to TOE in two different ways: 1) Yang-Mills 
Boson GUT’s are derived by recognizing similarities between certain crystal symmetries and 
certain SU(N) Lie Algebra symmetries, and 2) Particle multiplets are constructed from Simplices, 
and the product of these Simplices builds representative multi-dimensional lattices.                                 
It is anticipated that this geometrical approach may be an axiomic breakthrough that allows us to 
bypass the apparent complications of Gödel’s Incompleteness Theorem and ask the question 
“What is Ultimately Possible in Physics?” – A Geometrical Approach Towards a TOE. 
 
The Geometry of Yang-Mills Theories – A simple example of the geometrical nature of              
Yang-Mills Boson GUT’s is provided in the comparison between the Tetrahedral Conjugacy [5] 
classes and the Georgi-Glashow SU(5) Boson GUT [6]: 
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Equation (1) Legend – 2C = Rotation by 180º (degree 2), 3C = Rotation by 120º (degree 3),                 

1 = Identity, 4S = Rotoreflection by 90º (degree 4), dσ = reflection in a plane through two 

rotation axes (degree 4), B = Weak Hypercharge of ( )YU 1 (degree 1), g = Gluons of ( )CSU 3  

(degree 3), γ = Photon, W = neutral and charged W’s of ( )LSU 2  (degree 2),                                           
X &  Y = hypothetical Georgi- Glashow leptoquark bosons (degree 4), and Z = neutral Weak IVB. 

 Here, the Strong/ Color force is placed in the top left position, followed along the 
diagonal by the next stronger Electromagnetic force (related to Weak Hypercharge), followed by 
the weaker Weak force in the bottom right position. The Georgi-Glashow SU(5) GUT has an 
order of 24 as does the total number of tetrahedral conjugacy classes. Color Theory has degree 
and order of three and eight (8 gluons) as does 3C , the class of tetrahedral rotations by 120º.     

All other sub-symmetries follow similar comparisons. These reflection symmetries 4S  and dσ  

have a higher degree of symmetry than the rotation symmetries 2C  and 3C , and are, therefore, 
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intentionally placed in off-diagonal positions, thus representing higher rank terms. The B and W 
names reflect the unbroken Electroweak symmetries. After Spontaneous Symmetry Breaking of 

the Electroweak symmetry, these ( )±WWB ,, 00  mix quantum states to become ( )±WZ ,, 00γ . 

 These Yang-Mills Boson GUT’s extended to analogies between the Octahedral 
Conjugacy classes and a proposed SU(7) Boson Gut with an order of 48 (Equation 2),  
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Equation 2 Legend – Same as Equation 1 plus: 2
4C = Rotation by 180° about a 4-fold axis,        

4C = Rotation by 90° (degree 4), i = Inversion, 6S = Rotoreflection by 60º (degree 6),                       

hσ = reflection in a plane perpendicular to a 2-fold axis (degree 2), 4σ = reflection in a plane 

perpendicular to a 4-fold axis (degree 4), C, D, E, w and z = Hyperflavor ( )4,2SO  bosons  
(degree 4 – see Ref. [3]), φ,H = Higgs, and V  = SU(7) Grand bosons (degree 6). 

 

…and the Icosahedral Conjugacy [7] classes and a proposed SU(11) Boson GUT [3,8] with an 
order of 120 (Equation 3). 
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Equation 3 Legend – Same as Equations 1 and 2 plus: 5C = Rotation by 72° about a 5-fold axis                 

(degree 5), 2
5C = Rotation by 144° about a 5-fold axis (degree 5), 10S = Rotoreflection by 36º                

(degree 10), 3
10S = Rotoreflection by 108º (degree 10),σ = reflection (degree 2), a = “Color”              

20-plet, b = ( )YU 1  “Photon”, c = “Higgs-Weak” 12-plet, d = Hyperflavor ( )4,2SO ,                               

F = “Fifthons” = WIMP-Gravitons, G = Graviton, R, S, T and U = ( )11SU  Grand bosons. 
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Simplices as Particle Multiplets – Consider the example of a 3-simplex (tetrahedron) as a 
particle multiplet. This is the simplest example that demonstrates all of the basic properties of 
these simplices. We will assume an ( )4SU  Lie algebra with diagonal operators ( )1583 ,, CCC . 
 We want to construct a simplex with the following properties: 1) the sum of all charges 
within a particle multiplet equals zero, and 2) all particles have the same distance from each 
other. As a consequence of these two requirements, we realize that all particles must also have the 
same radius about the origin. 
 Table 1 is deduced by process of trial and error. Note that the strengths of the charges 

( )1583 ,, CCC  are introduced in a ratio of ( )6,3,1 . In the general case, this approaches a ratio 
of the square root of the progression of Special Orthogonal orders 

( )( )21,,15,10,6,3,1 +nnK . These four particle vectors ( )DCBA ,,,  exist in a three-

dimensional space ( )1583 ,, CCC , are each one unit from each other, and are each 8
3 ’s of a unit 

from the origin. In the general case, our n-simplex will exist in n-dimensions; have ( )1+n  

particle vectors that are one unit from each other, and ( )22 +nn  of a unit from the origin. 

Note, that by construction, we have ∑ =++= −

DCBA

C
,,,

2
1

2
1

3 00 , ∑ =+−+=
DCBA

C
,,,

2
1

2
1

8 001 3 , and 

∑ =+++= −−−

DCBA

C
,,,

2
3

2
1

2
1

2
1

15 0 6 . 

 

Table 1 – A 3-Simplex Multiplet                    Figure 1 – Petrie Diagram of a 3-Simplex 

Fermions

Charges

↓
→

 3C  

×3
 8C  

×6
 15C  

8C′
 

A 2
1  2

1  2
1−  0 

B 2
1−  2

1  2
1−  0 

C 0 1−  2
1−  2

1−  

D 0 0 2
3  2

1  

Sum 0 0 0 0 

8C′

3C

D

C

B

A

 

 
 Grand Unified Theories (GUT’s) generally require this feature within a particle multiplet. 
Interestingly enough, a secondary conserved quantum number emerges from the mathematics: 

( ) ,1,,03 6 3 2
1

1588 ±±=+=′ CCC etc. This is due to the fact that both charges have a common 

factor of 3 , and has a net effect of collapsing the algebra down into one fewer dimensions and 
introducing a broken symmetry. In the general case, we will have more secondary conserved 

quantum numbers, such as ( ) ,1,,05 15 10 2
1

352424 ±±=+=′ CCC etc., and so on.                           
These geometrical constraints may be related to Clifford bivectors and the first-class constraints 
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of BRST formalism (Becchi, Rouet, Stora and Tyutin) [9]. Note that antiparticles could simply be 
the inversion operator applied to these particle states, thus yielding a nested dual tetrahedron. 

 A direct application of the 2-Simplex (equilateral triangle) is Color Theory. With the 

substitution of A = Red (r), B = Green (g), C = Blue (b), 3
3 gC =  and 8

8 gC = , we are 
immediately led to the same definition of Color Theory that Lisi used in his paper. 

 A relevant application of the 3-Simplex (tetrahedron) is Electro-Color. With the 

additional substitution of D = White (w) (the “color” of leptons) and YC ′= −
2

3
15 6  (where Y’ is 

a “universal” hypercharge that accounts for proposed “Weak” interactions of Left or Right-
handed helicity, see Ref’s [3, 4]), then we have a 3-Simplex of Electro-Color. The four “colors” 
(r,g,b,w) are the four corners of this 3-Simplex. This tetrahedron and its dual ( )wbgr ,,,  
collectively comprise a cube. One of the triangular sides of this tetrahedron contains color theory, 
and we obtain the important GUT result: 
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A Proposed TOE Lattice – The author is proposing a TOE based on a “new” lattice i called 
K12’  because of its similarities to the 12-dimensional Coxeter-Todd K12 lattice [10]. The K12 
lattice has ( )9712756 ××=  minimal roots, and the similar K12’  lattice has ( )8712672 ××=  
roots (plus 12 basis vectors for an order of 684). This K12’  shares an isomorphism with the                   
semi-simple 48 HE ×  product of Lie Algebras, and contains two of Klein’s )7(χ  hyperbolic 

curves [11] (or 10-dimensional laminated lattices 10Λ  [12]) with an order of 336 each. 

Coincidentally, K12’  and 10Λ  are both shallow holes of the 24-dimensional Leech lattice [12]. 

 An important decay route for K12’  is ( ) ( ) 8241321 ESOSUK ××→′ , where the 

interpretation is that the ( ) ( )2413 SOSU ×  of rank 12 and order 444 is a Super Yang-Mills Boson 
GUT with tensor, vector and scalar boson content – many of which are hypothetical and as yet 
undiscovered (Ref. [3] has an expansion of the prior Icosahedral example – Equation 3), and the 
E8 of rank 8 and order 240 is a Fermion particle multiplet. From its Dynkin diagram, E8 has 
symmetries of ( )5328240 ×××= , and thus exhibits two-fold “duality”, three-fold “triality” and 
five-fold “pentality” symmetries in an eight-dimensional “octality” space. To the author’s 
knowledge, Lisi never identified the pentality symmetry. Curiously, H4 has the same symmetries 
of ( )5324120 ×××=  in a four-dimensional “tetrality” space. Table 2 represents these E8 
component symmetries as products of Simplices within a 12-dimensional K12’  lattice.                      
We already reviewed the 3-Simplex of Electro-Color, and learned that this sub-theory implies that 
leptons possess the neutral Strong Color charges of white and anti-white. The next new physics is 
revealed in a study of the 4-Simplex of “Gravi-Weak”. 

                                                 
i Ref’s [3, 4] called this lattice E12 because of its isomorphism with E8 x H4. 
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Table 2 – Component Simplex Symmetries of an E8 within a K12’ 

E8 Roots 240 = ×plet-4  ×plet-5  ×plet-2  ×plet-2  plet-3  

Component 
Simplices 

3-Simplex of 
Electro-Color 

4-Simplex of 
Gravi-Weak 

Collapsed “ 3C ” and “ 8C′ ” 
of a 3-Simplex of Helicity 
and Matter/ Anti-Matter 

2-Simplex of 
Generations 

(Lisi’s Triality) 

12 Dimensions 
= (acts like 11-

D =) 
3-D + 4-D + 

3-D +                                  
(acts like 1-D + 1-D +) 

2-D 

 

A 4-Simplex of Gravi-Weak – Lisi’s E8 TOE used a Gravi-Weak unification of a Pati-Salam 
Weak force and a Gravitational force based on Clifford algebra. At first glance, this seems to be 
as odd of a pairing of forces as Electro-Color, but these strange relationships may yield clues to 
the structure of Spacetime and Hyperspace. 
 The 4-simplex of Gravi-Weak in Table 3 is partially inspired by Hyperflavor-Weak 
Theory (a hypothetical extension of the Standard Weak Force that is defined in Ref’s [3, 4]),               
and the fact that this K12’  lattice requires the five-fold symmetry of a 4-Simplex (pentachoron) 
particle multiplet. This secondary conserved quantum number is important, and has the 

interpretation of a right-handed weak isospin projection operator, ( ) 3 6 3  8 33 HFHFR TTT += . 
The fifth vertex of this 4-simplex has unusual characteristics. 
 
Table 3 – A 4-Simplex of Gravi-Weak 

Fermions

Charges

↓

→
 LT3  

×3  

HFT3  
×6  

HFT8  
×10  

GT  RT3  GT ′  

( )LLL euf ,1 =∧  2
1  2

1−  2
1  2

1  0 0 

( )eLLL df ν,1 =∨  2
1−  2

1−  2
1  2

1  0 0 

( )RRR euf ,1 =∧  0 1 2
1  2

1  2
1  0 

( )RRR edf ν,1 =∨  0 0 2
3−  2

1  2
1−  0 

( )lssqsf ,1 =  0 0 0 2−  0 2
1−  

 
 This new “particle” appears to have properties equivalent to a “scalar fermion” [13]. It is 
a “fermion” because it belongs to this fundamental particle multiplet. But it has quantum numbers 
that imply a zero spin: 03 =LT  and 03 =RT , thus it has neither a left-handed nor a right-handed 

isospin projection. Does ,..., 2
3

2
1

33
±±=′++= GRLF TTTs  define a generalized Gravi-Weak 

Fermion? Are the spin projections for these new quanta hidden in a Hyperspace dimension?         
Do these “scalar fermions” manifest themselves as tachyons, BRST or Faddeev-Popov ghosts,                
or physical particles? The designation for these new quanta in Table 3 is preceded by an “s” to 
indicate generation-dependent scalar fields ( )332211 ,,,,, fssffssffssf  with all four electro-color 
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quantum numbers ( )wbgr ,,, . A 4-simplex plus its dual contains 10 particle states 

( ,,,,, sfffff RRLL
∨∧∨∧ )fsffff RRLL ,,,, ∨∧∨∧ . These new sf  scalar fermions have electric charges 

of ( )2
1

6
1

2
1

6
1 ,,, −−  for color charges of ( ) ( )( )wbgrwbgr , ,,, , ,, , and are thus not the 

supersymmetric partners to the known fermions. Table 4 enumerates the Electro-Color-                
Gravi-Weak quantum numbers for the first generation of fermions. Note the new                    

conservation laws: ( ) ,...,03 3 2
1

2
38

8
±=′−=′ Ygg , ( ) ,...,03 6 3 2

1
 8 33

±=+= HFHFR TTT  and 

( ) ,...,05 10 2
1

3
±=+=′ FTT GG , where the secondary gravity quantum number GT ′  is defined 

with the expectation that Gravity and a new WIMP-Gravity (denoted by F) will collectively 

comprise a Clifford bivector and mix charges such that ( ) etc. , ,05 10 2
1

2
1 ±==′ mGG TT  

 
Table 4 – Electro-Color-Gravi-Weak Quantum Numbers for Select Fundamental Fermions 

Fermions

Charges

↓

→
 3g  

×3  
8g  

×−
2

3  

Y′  LT3  
×3  

HFT3  
×6  

HFT8  
×10  

GT  3F  8g′  RT3  GT ′  

r
Lu  2

1  2
1  2

1−  2
1  2

1−  2
1  2

1  2
1−  0 0 0 

g
Lu  2

1−  2
1  2

1−  2
1  2

1−  2
1  2

1  2
1−  0 0 0 

b
Lu  0 1−  2

1−  2
1  2

1−  2
1  2

1  2
1−  2

1−  0 0 

w
Le  0 0 2

3  2
1−  2

1  2
1−  2

1−  2
1  2

1  0 0 

r
Ld  2

1  2
1  2

1−  2
1−  2

1−  2
1  2

1  2
1−  0 0 0 

g
Ld  2

1−  2
1  2

1−  2
1−  2

1−  2
1  2

1  2
1−  0 0 0 

b
Ld  0 1−  2

1−  2
1−  2

1−  2
1  2

1  2
1−  2

1−  0 0 

w
eLν  0 0 2

3  2
1  2

1  2
1−  2

1−  2
1  2

1  0 0 

r
Ru  2

1  2
1  2

1−  0 1 2
1  2

1  2
1−  0 2

1  0 

g
Ru  2

1−  2
1  2

1−  0 1 2
1  2

1  2
1−  0 2

1  0 

b
Ru  0 1−  2

1−  0 1 2
1  2

1  2
1−  2

1−  2
1  0 

w
Re  0 0 2

3  0 1−  2
1−  2

1−  2
1  2

1  2
1−  0 

r
Rd  2

1  2
1  2

1−  0 0 2
3−  2

1  2
1−  0 2

1−  0 

g
Rd  2

1−  2
1  2

1−  0 0 2
3−  2

1  2
1−  0 2

1−  0 

b
Rd  0 1−  2

1−  0 0 2
3−  2

1  2
1−  2

1−  2
1−  0 

w
eRν  0 0 2

3  0 0 2
3  2

1−  2
1  2

1  2
1  0 

rsq1  2
1  2

1  2
1−  0 0 0 2−  2

1−  0 0 2
1−  

rsq1  2
1−  2

1  2
1−  0 0 0 2−  2

1−  0 0 2
1−  

rsq1  0 1−  2
1−  0 0 0 2−  2

1−  2
1−  0 2

1−  

wsl1  0 0 2
3  0 0 0 2 2

1  2
1  0 2

1  

 
 



RB Munroe Jr, What is Ultimately Possible in Physics - A Geometrical Approach Towards a TOE 

 7 

A 3-Simplex of 4-Spinors – The next relevant Simplex represents Dirac γ 4-Spinors. Table 5 
demonstrates how a 3-Simplex of 4-Spinors might decompose into the product of two                         
1-Simplices of Spinors and Matter/ Anti-Matter with charges given by 3F  and the secondary 

effective charge ( ) 3 6 3 1588 FFF +=′  (note the similarities to Figure 1 with the substitutions 

33 FC =  and 88 FC ′=′ ). This application yields either: 1) a properly defined 3-Simplex of Dirac γ 
4-Spinors or 2) pairs of two-component (1-Simplex) Pauli σ spinors that collectively comprise a 
twistor [14]. This dimensional collapse reflects a broken symmetry. Prior to collapse,                             
the 3-Simplex is three dimensional. However, this apparent collapse into Spinors and Matter 
seems to decrease the effective dimensionality of this component of the theory into 2 = 1 + 1. 
Thus the complete theory with all of the Simplices listed in Table 2 might collapse from twelve to 
eleven effective dimensions – possibly consistent with M-Theory. 
 
Table 5 – A 3-Simplex of 4-Spinors Collapsing Into Two 1-Simplices of Helicity & Matter 

Spinors

Charges

↓

→
 3F  8 3 F  15 6 F  8F ′  

Spinors

Charges

↓

→
 3F  8F ′  

Aσ  2
1  2

1  2
1−  0 matter 1σ  2

1  0 

Aπ  2
1−  2

1  2
1−  0 matter 2σ  2

1−  0 

A′σ  0 1−  2
1−  2

1−  anti-matter 1σ  0 2
1−  

A′π  0 0 2
3  2

1  

 

anti-matter 2σ  0 2
1  

 
A 2-Simplex of Generations – The final component of this theory is to include Lisi’s triality 
concept as two nested 2-Simplices (equilateral triangles) of Generations shown in Table 6 and 
Figure 2. Note that if we multiply the twenty Electro-Color-Gravi-Weak Fermion root states of 
Table 4 with the four spinor states of Table 5 and the three generation states of Table 6               
(anti-particles were already counted in Table 5), then we have a Fermion multiplet with 

3420240 ××=  distinct particle states as proposed in Table 2. This E8 240-plet bears many 
similarities with Lisi’s, but with important differences: 1) the eight-dimensional E8 does not 
include all of Spacetime and Hyperspace (of 11 or 12 dimensions) but is an important subset,              
2) this E8 does not include any bosons, they are a Super Yang-Mills 444-plet as described in                
Ref. [3], and 3) this E8 predicts new fermions (sf  ) with scalar or anyonic [15] behavior that may 
be tachyons. 
 
Table 6 – Dual 2-Simplices of Generations 

sGen'

Charges

↓

→
 3Q  8 3Q  

sGen'

Charges

↓

→
 3Q  8 3Q  

1st Gen 2
1  2

1  Anti-1st Gen 2
1−  2

1−  

2nd Gen 2
1−  2

1  Anti-2nd Gen 2
1  2

1−  

3rd Gen 0 1−  

 

Anti-3rd Gen 0 1 
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Figure 2 – Dual 2-Simplices of Generations 

( )3,,,, sfbt τντ

( )2,,,, sfsc µνµ

( )1,,,, fedu seν

( )3,,,, fsbt τντ

( )1,,,, sfedu eν

( )2,,,, fssc µνµ

8Q

3Q

 

What about Bosons?  In this Geometrical K12’  Theory, Fermions are eight-dimensional lattice 
points embedded in a twelve dimensional theoretical framing. Reference [3] predicts a large 
number of hypothetical Super Yang-Mills Bosons of various dimensionalities including 
dimensions one through seven plus nine and eleven. These multi-dimensional Bosons allow 
transitions from one Fermion/ lattice point to another Fermion/ lattice point. As such, all of the 
basic interactions between Bosons and Fermions are three-legged Fermion-Boson-Fermion 
Feynman diagrams. Higher-legged Feynman diagrams have their origins in non-Abelian Lie 
Algebras, which are contained in this Super Yang-Mills Theory. Because these Bosons are 
differences between Fermions/ lattice points, we may represent Bosons as a reciprocal lattice. 
Table 7 is a listing of the six non-basis gluons as two-dimensional basis difference vectors 

( )83, gg ∆∆ . A simple example of how these operators perform is: 1122  cccc qgq = , where 1cq  is 

the initial quark “lattice point” state (such as a “red” left-handed up, r
Lu ), 12 ccg  is the gluon                   

“difference vector” operator (such as a “green-anti-red” gluon, rgg ), and 2cq  is the final quark 

“lattice point” state (such as a “green” left-handed up, g
Lu ). 

 
Table 7 – The Off-Diagonal Gluons as Translation Vectors 

Bosons

Charges

↓

→
 

3g∆  

8

3

g∆

×
 

Y′∆
×−

2
3

 8g′∆  

Bosons

Charges

↓
→

 

3g∆  

8

3

g∆

×
 

Y′∆
×−

2
3

 8g′∆  

grg  1 0 0 0 rgg  1−  0 0 0 

brg  2
1  2

3  0 2
1  rbg  2

1−  2
3−  0 2

1−  

bgg  2
1−  2

3  0 2
1  

 

gbg  2
1  2

3−  0 2
1−  
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Brane-Structure – In the author’s opinion, these lattices are “stringy lattices” or nets of 
Simplices on branes, and share similarities with M-Theory [16] and with Causal Dynamical 
Triangulation (CDT) [17]. Analysis of the Super Yang-Mills Boson GUT’s (Ref. [3]) implies that 
Space is a 3-brane, Time is a 1-brane, and Hyperspace is an M2-brane, a 1-brane, and a D5-brane 
(that further decomposes into a 3-brane and a 2-brane). 
 The origin of Entanglement may be hidden in the twelve primary dimensional basis 

quantum numbers ( )831583833
83 , , , , , , , , , ,  , QQFFFTTTTYgg GHFHFL′  and in the four 

secondary geometrically-conserved quantum numbers ( )838 , , , FTTg GR ′′′ . These conserved quanta 
may remain as fossils of the now-collapsed multi-dimensional lattice. 
 
What is Ultimately Possible in Physics?  This paper implies that a Geometrical TOE may 
ultimately be possible, and laid out some of the ground work for such an approach.                              
This geometrical approach has similarities to Lisi’s approach, and may be an axiomic 
breakthrough that allows us to bypass the apparent complications of Gödel’s Incompleteness 
Theorem. 
 One version of Occam’s razor says “Plurality ought never be posited without necessity.” 
And although this theory introduces a large amount of Plurality/ Complexity/ non-Simplicity by 
virtue of a 444-plet of mostly hypothesized Super Yang-Mills bosons, it does so in an interest to 
respect important or naturally-occurring symmetries (Beauty?) such as Tetrahedral (Equation 1), 
Octahedral (Equation 2), Icosahedral (Equation 3), multi-dimensional Simplices (Table 1), Gosset                  
(Table 2 and Ref. [1]) and Leech (K12’  is one of its shallow holes, see Ref. [12]) lattice 
symmetries. Is this a matter of coincidence, or should we naturally expect Nature to repeat and 
reapply useful structures? Are Beauty and Symmetry necessary reasons to trump Simplicity?       
If Simplicity always trumps Necessity, then we should be satisfied with the “ugly but practical” 
Standard Model of ( ) ( ) ( )LYC SUUSU 213 ××  and a separate General Theory of Relativity, and 
we need to stop talking about such “foolishness” as Theories of Everything or Not Everything. 
 This TOE is not complete. Although many geometrical details were presented in this 
paper and in References [3, 4], it will take time to enumerate all of the Feynman diagrams,                
derive all of the Lagrangian components, and formally tie this K12’  Theory into General 
Relativity, M-Theory, CDT or whatever other Theories may be related. 
 What is ultimately possible? Certainly, the founders of Quantum Mechanics had no idea 
of the profound effects that QM would have on our modern lives. Likewise, it is impossible to 
know if or how a 21st Century TOE will affect the people of the 22nd Century. But the ultimate 
possibility of a Geometrical TOE that contains all particles and all interactions is worth the effort! 
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