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There have already been many attempts in the literature to modify the Wightman or Haag-
Kastler axioms to be closer to the empirically successful Lagrangian approach to quantum
field theory. It is suggested here that insofar as one fundamental difficulty of both Wightman
and Lagrangian QFT is the postulate that the quantum field is an operator-valued distribu-
tion —a linear map from a linear space of test functions to a linear space of operators—, we
are motivated to consider taking a quantum field to be a non-linear map from a linear space
of test functions to a linear space of operators, an approach that to my knowledge has not
previously been proposed. Constructively, some of the non-linear possibilities for the scalar
field case are introduced and discussed. The introduction of non-linearity widens the range
of well-defined theories enough that they may provide worthwhile effective field models even
if they cannot provide ultimately correct models.

I. INTRODUCTION

The reconciliation of the mathematically coherent Wightman axioms with the empirically suc-

cessful Lagrangian approach to interacting quantum field theory is a longstanding problem. The

nature of the mismatch between interacting quantum fields such as QED and the Standard Model

of particle physics and the Wightman axioms is not entirely clear, however it does appear that the

introduction of products of distributions in Lagrangian QFT is one heart of the difficulty.

It is of course possible to question the postulate that the dynamics is Lorentz invariant, both

at very large distances and at very short distances, as has already been done in a number of ways,

however we here suppose the dynamics to be Lorentz invariant, essentially ruling out, in particular,

the concerns of quantum field theory in curved space-time and of quantum gravity. We also here

accept the utility of Hilbert space for modeling evolving statistics of multiple experimental datasets,

taking the view that quantum field theory is, mathematically, an elaborate form of signal analysis in

the presence of a Lorentz invariant quantum noise, and remaining ontologically neutral to whether

there is no hidden signal, whether there are signal components that have not been measured that

contain whatever conspiracies or correlations are needed to reproduce the deterministic evolution

of statistics that we observe, or whether there is any explanation at all for the effectiveness of

quantum field models.

A fundamental postulate of quantum field theory is that a quantum field φ̂(x) is an operator-
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valued distribution, so that the operators of the theory are obtained by “smearing”, for a well-

behaved linear space of “test” functions,

φ̂f ,
∫
φ̂(x)f(x)d4x. (1)

Notoriously, products of distributions are mathematically problematic, so that although we may

straightforwardly introduce integer powers of operators, such as (φ̂f )n, we cannot in general intro-

duce integer powers of distributions, such as φ̂(x)n. We will therefore work only with operators such

as φ̂f , for a well-behaved linear space of test functions, allowing, however, for the non-linear case,

that ξ̂ : f 7→ ξ̂f may be a non-linear functional of the test functions, so that in general ξ̂f+g 6= ξ̂f+ξ̂g

and ξ̂λf 6= λξ̂f , essentially denying the linearity that is implied by Eq. (1). Nonetheless, the action

of the algebra of operators on Hilbert space vectors is taken to be linear, (ξ̂f + ξ̂g)ψ = ξ̂fψ + ξ̂gψ

and (λξ̂f )ψ = ξ̂fλψ. Streater [1, §3.4] discusses a number of ways in which the Wightman axioms

have been questioned, but there is no mention of the introduction of non-linearity of this form.

One immediate consequence of non-linearity is that a Hilbert space that supports a representa-

tion of the Poincaré group will not be separable (that is, there will not be a countable basis). Al-

lowing non-separable Hilbert spaces is possible, and in time mathematical control of non-separable

Hilbert spaces may improve, but it is also possible to require only that the construction of the

Hilbert space of a quantum field theory is Lorentz and translation covariant (preferably manifestly

so), which is mathematically much weaker than requiring that the Hilbert space support a rep-

resentation of the Poincaré group. Requiring only covariance is compatible with model-building

in Physics, which does not require that every possible model that is related to a given model by

Lorentz transformations or by translations is encompassed by a single Hilbert space, only that a

new Hilbert space can be readily constructed for any given Lorentz transformation or translation.

We will introduce two very different non-linear constructions, one that approximately follows

the method that is used by Lagrangian QFT to construct an interacting quantum field, in Section

IV, and another, in Section V, that modifies the free field algebra of creation and annihilation

operators. It is likely that other ways to introduce non-linearity into 3+1-dimensional quantum

field theory will be invented in future. Section II describes some standard interacting QFT, then

Section III presents the same material in a way that motivates the construction in Section IV. It

seems preferable when modeling laboratory-scale Physics for us not to engage too heavily with extra

dimensions or noncommutative and other relatively exotic geometry until non-linear constructions

in 3+1-dimensional space-time are exhausted.
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II. SOME STANDARD QUANTUM FIELD THEORY

A well-known textbook way to construct an interacting scalar quantum field is to introduce a

time-dependent transformation of a free quantum field φ̂(x) [2, §6-1-1],

ξ̂(x) , U−1(x0)φ̂(x)U(x0) where U(τ) , T

e
−i

τ∫
−∞

Ĥ(y)d4y

 ,
= T†

e
−i
∞∫
−∞

Ĥ(y)d4y

T

φ̂(x)e
−i
∞∫
−∞

Ĥ(y)d4y

 , (2)

where Ĥ(y) is a local operator, constructed as a sum of normal-ordered products of φ̂(y) and its

derivatives.

A standard first step is a heuristic derivation of the time-ordered Vacuum Expectation Values

(VEVs) for the interacting field,

〈0|T
[
ξ̂(x1) · · · ξ̂(xn)

]
|0〉 =

〈0|T

φ̂(x1) · · · φ̂(xn)e
−i
∞∫
−∞

Ĥ(y)d4y

 |0〉
〈0|T

e
−i
∞∫
−∞

Ĥ(y)d4y

 |0〉
, (3)

which in turn allows the construction of Feynman integrals and the corresponding Feynman dia-

grams. The time-ordering of the left-hand side of this equation compromises its connection to the

Wightman axioms, for which the foundation is a set of non-time-ordered VEVs that are distribu-

tions and that satisfy six sets of Conditions (Cluster Decomposition, Relativistic Transformation,

Spectrum, Hermiticity, Local Commutativity, and Positive Definiteness), which would allow the

use of the Wightman reconstruction theorem to construct a Wightman field [3, §3-4].

A standard alternative is to construct an S-matrix, which time-evolves vector-valued distri-

butions such as φ̂(x1) · · · φ̂(xn)|0〉 (or the equivalent in wave-number coordinates), which form

an improper basis for the free field Hilbert space of initial states, using the formal construction

T

e
−i
∞∫
−∞

Ĥ(y)d4y

 as the evolution operator, then use the inner product with a final state, a vector

in a Hilbert space that is unitarily equivalent to the free field Hilbert space of initial states. We

obtain constructions such as

〈0| φ̂(ym) · · · φ̂(y1)T

e
−i
∞∫
−∞

Ĥ(y)d4y

 φ̂(x1) · · · φ̂(x)n) |0〉, (4)

which allow us to compute transition probabilities. This, however, also cannot be used to construct

a Wightman field.
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Neither the time-ordered VEVs construction nor the S-matrix construction is well-defined, be-

cause, at least, the integral
∞∫
−∞

Ĥ(y)d4y does not exist, however regularization and renormalization

allows these and other constructions to make contact with experiment, which is unsurprisingly

taken by most Physicists to be more important than making contact with the Wightman axioms.

III. A DIFFERENT CONSTRUCTION

Here we directly construct non-time-ordered VEVs for the interacting quantum field by noting

that the components of U(τ) that are space-like separated from x commute with φ̂(x), so that the

interacting field ξ̂(x) can also be written Lorentz invariantly as

ξ̂(x) = T†
[
e−iL(x)

]
φ̂(x)T

[
e−iL(x)

]
, where L(x) ,

∫
N(x)

Ĥ(y)d4y (5)

and N(x) = {y : (y− x)2 ≥ 0 and y0 < x0} is the region of space-time that is light-like or time-like

separated from and earlier than x. Furthermore, the adjoint action of φ̂(x) on a time-ordered

expression is a derivation, because time-ordering ensures commutativity, so that, taking a quartic

scalar interaction with Hamiltonian density λ
4!

: φ̂4(y) : as an example,[
φ̂(x),T

[(∫
: φ̂4(y) : d4y

)n]]
= T

[∫
4ni∆(x− z) : φ̂3(z) : d4z

(∫
: φ̂4(y) : d4y

)n−1]
,

where

i∆(x− z) = −i(Gret(x− z)− iGadv(x− z)) = [φ̂(x), φ̂(z)]

is the free field commutator and Gret(x− z) and Gadv(x− z) are the retarded and advanced Green

functions [2, §1-3-1]. For the interacting field, therefore, we have the construction

ξ̂(x) = T†
[
e−iL(x)

]
φ̂(x)T

[
e−iL(x)

]
= T†

[
e−iL(x)

]T [e−iL(x)] φ̂(x)− T

 iλ
3!

∫
N(x)

i∆(x− z) : φ̂3(z) : d4ze−iL(x)




= φ̂(x)− T†
[
e−iL(x)

]
T

 iλ
3!

∫
N(x)

i∆(x− z) : φ̂3(z) : d4ze−iL(x)


= φ̂(x)− iλ

3!

∫
N(x)

i∆(x− z)T†
[
e−iL(x)

]
T
[
: φ̂3(z) : e−iL(x)

]
d4z,

= φ̂(x)− iλ
3!

∫
N(x)

i∆(x− z)T†
[
e−iL(z)

]
: φ̂3(z) : T

[
e−iL(z)

]
d4z,
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= φ̂(x)− iλ
3!

∫
N(x)

i∆(x− z) : ξ̂3(z) : d4z

[
: ξ̂3(z) : , T†

[
e−iL(z)

]
: φ̂3(z) : T

[
e−iL(z)

]]

= φ̂(x)− λ
3!

∫
Gret(x− z) : ξ̂3(z) : d4z, (6)

where the restriction to the backward light cone N(x) is equivalent to replacing the propagator

i∆(x − z) by −iGret(x − z). Insofar as we can take : φ̂3(z) : formally to be an infinite multiple of

φ̂(z) subtracted from φ̂3(z), we can take : ξ̂3(z) : formally to be the same infinite multiple of ξ̂(z)

subtracted from ξ̂3(z).

φ̂(x) satisfies the homogeneous Klein-Gordon equation, (� + m2)φ̂(x) = 0, and Gret(x − z)

satisfies (�+m2)Gret(x− z) = δ4(x− z), so, generalizing from the quartic scalar interaction, ξ̂(x)

satisfies the differential equation

(�+m2)ξ̂(x)+ :F (ξ̂(x)) := 0, (7)

where normal-ordering for F (ξ̂(x)) is defined as it was for ξ̂3(z), in terms of normal ordering for

the free field.

The above construction shows that, apart from the mathematical necessity to regularize and

renormalize, to construct an interacting field we replace φ̂(x) at a point by a complex of operators at

points of the backward light cone of x, using the propagator Gret(x−z). Once we have constructed

ξ̂(x) as a functional of φ̂(z), using Gret(x − z) to propagate to all points in the backward light

cone, all contractions of the resulting objects, in accordance with Wick’s theorem, use the positive

frequency propagator i∆+(x − y). This contrasts with the time-ordered VEVs of Eq. (3), which

use only the Feynman propagator; and with the S-matrix construction of Eq. (4), which uses

the positive frequency propagator for the operators used to construct the initial and final states,

and uses the Feynman propagator between all pairs of points that occur within the time-ordering.

Nonetheless, all three constructions are quite direct consequences of Eq. (2).

The distinction between the two propagators i∆+(x) and Gret(x), the first being confined to the

forward light-cone in wave-number space and the second being confined to the forward light-cone

in real space, gives an alternative to conventional discussions of virtual particles, in that we have

used the virtual propagator Gret(x) to construct an interacting field operator as a complex of free

field operators that are confined to the backward light-cone. The free field operator products that

are introduced by this construction using only Gret(x) are then reduced by the vacuum state, in

accordance with Wick’s theorem, to give products of factors that use the positive frequency on-

shell propagator i∆+(x). This alternative discussion of course does not undermine conventional
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discussions or computations, but it gives a relatively clear idea of an interacting field operator ξ̂(x)

being associated with the backward light cone of x.

It is essential that time-ordering ensures that the complexes of operators in the backward light

cones of two space-like separated points do not modify the Local Commutativity of the interacting

field, because the product ξ̂(x)ξ̂(y) can be written as

U−1(x0)φ̂(x)U(x0)U
−1(y0)φ̂(y)U(y0) = U−1(y0)U(y0)U

−1(x0)φ̂(x)U(x0)U
−1(y0)φ̂(y)U(y0)

= U−1(y0)U
−1(x0, y0)φ̂(x)U(x0, y0)φ̂(y)U(y0). (8)

When x and y are space-like separated, we can note that there is a choice of time coordinates in

which x0 = y0, U(x0, y0) , U(x0)U
−1(y0) = 1, or we can, alternatively, note that for arbitrary

time coordinates U−1(x0, y0)φ̂(x)U(x0, y0) replaces φ̂(x) by a complex of operators at points of the

backward light cone at x that are all at space-like separation from y. Hence, as for the free field

φ̂(x), ξ̂(x) satisfies [ξ̂(x), ξ̂(y)] = 0 when x and y are space-like separated.

Regularization and renormalization of this construction is as much a problem as it is for the

conventional construction of time-ordered VEVs and of the S-matrix, however what we are con-

structing is somewhat clearer, and closer to the Wightman axioms in character, because we have

largely eliminated the conceptual distraction of time-ordering.

IV. A NON-LINEAR CONSTRUCTION

As well as “smearing” with a test function, we may also take some motivation from signal

analysis to construct a convolution of a quantum field with a smooth window function w(·),

φ̂w(x) , [φ̂ ? w](x) =

∫
φ̂(x− y)w(y)d4y =

∫
φ̂(y)w(x− y)d4y, (9)

which satisfies the linear differential equation (� + m2)φ̂w(x) = 0 and for which we have the

commutation relations [φ̂w1(x), φ̂w2(y)] = [w1 ? i∆ ? w
(−)
2 ](x − y), where w(−)(z) , w(−z). We

could equally well present this convolution in terms of smearing as φ̂w(x) , φ̂wx , where we define

the indexed set of test functions wx as wx(y) , w(x − y), however Particle Physics has become

something of an extreme exercise in processing large numbers of electronic signals, where window

functions are more familiar than test functions.

A deformation that follows the construction of Section III requires ξ̂w(x) to satisfy a non-linear

differential equation that depends on the window function,

(�+m2)ξ̂w(x) + λ[w]
3!

(
ξ̂w(x)3 − 3µ[w]ξ̂w(x)

)
= 0, (10)
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where µ[w] , [φ̂w(x), φ̂w(x)] = [φ̂w(0), φ̂w(0)] so that the term −3µ[w]ξ̂w(x) has the same effect

as normal-ordering, and the interaction functional λ[w] should be manifestly Poincaré invariant.

Given this construction, ξ̂w(x) in general cannot be a linear functional of wx. Solutions of this

differential equation may be constructed perturbatively as

ξ̂w(z) = φ̂w(x)− λ[w]
3!

∫
Gret(x− z)

(
ξ̂w(z)3 − 3µ[w]ξ̂w(z)

)
d4z. (11)

When w(·) is not close to the Dirac δ-function, there is apparently no guarantee that ξ̂w(x) com-

mutes with ξ̂w(y) when x and y are space-like separated enough to make the supports of φ̂w(x)

and φ̂w(y) space-like separated, because we cannot use Eq. (8), but when w(·) approaches the

Dirac δ-function, Eq. (10) approaches the conventional Eq. (7), with a potentially infinite λ[w],

and ξ̂w(x) approaches the ξ̂(x) of Eq. (5).

The functional dependence of λ[w] can be taken to be an explicit way to control the mathematics

of regularization and renormalization, with the dependence on w(·) replacing the usual dependence

on the renormalization scale; it is apparent that different functional properties of λ[w] can be used

to tune the variation of VEVs for different choices of w, and that modification of the functional

dependence of the mass term µ[w] may also be useful. In contrast to the usual formalism, however,

different window functions may be used for different measurements, representing different non-

linear responses for different apparatuses.

V. NON-LINEAR CREATION AND ANNIHILATION ALGEBRAS

Rather different non-linear constructions can be introduced if we note that the conventional

GNS-construction of a Fock space that is based on a ∗-algebra of creation operators a†fi and annihi-

lation operators afi , for some countable set of test functions {fi}, depends only on the commutator

matrix [afi , a
†
fj

] = (fi, fj) being a positive semi-definite matrix. For the free field, this is ensured by

(fi, fj) being a Gram matrix of the positive semi-definite inner product (f, g) on the test function

space, which is diagonal in the wave-number basis, [a(k), a(k′)†] = (2π)4δ4(k−k′)2πδ(k2−m2)θ(k0);

the factor θ(k0) implements the positive spectrum condition. We also require, for locality for a

quantum field ξ̂f = af∗ +a†f , that [ξ̂f , ξ̂g] = [af∗ , a
†
g]− [ag∗ , a

†
f ] is zero when f and g have space-like

separated supports. Extending this construction to the non-linear case, we may also construct the

commutator matrix [afi , a
†
fj

] as a positive semi-definite matrix by introducing Hadamard products

such as

[afi , a
†
fj

] = (fi, fj)1 + (fi, fj)2(fi, fj)3 + (fi, fj)4(fi, fj)5 + ...+ (fi, fj)6(fi, fj)7(fi, fj)8 + ..., (12)
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for some set of positive semi-definite inner products (fi, fj)n that satisfy the positive spectrum

condition, because the Hadamard product (M ◦ N)ij = MijNij of positive semi-definite matrices

is positive semi-definite. This construction also straightforwardly satisfies locality and the positive

spectrum condition.

We may also introduce convolution powers of test functions, equivalent to simple powers in

momentum space, such as

[afi , a
†
fj

] = (fi, fj)1 + (fi ? fi, fj ? fj)2 + ..., (13)

which is positive definite because it is again a Gram matrix construction, and which also satis-

fies locality and the positive spectrum condition. This construction does not directly introduce

interactions between different wave-numbers, but it may be combined with the use of Hadamard

products as in the example given above, Eq. (12). Note that only convolution powers may be used,

convolution polynomials in general result in constructions that are not translation invariant.

We might also introduce smooth functionals of test functions in real space, which would also

be a Gram matrix construction and would also satisfy locality, however this construction results in

contributions due to negative frequency components of the test functions, which might therefore

be understood to contradict the positive spectrum condition. Questioning the positive spectrum

condition is somewhat in conflict with the correspondence principle, insofar as frequency is generally

taken to correspond linearly to classical energy, however the GNS-construction still results in a

vacuum state.

All these constructions result in a vacuum state that is Gaussian, so there is a subsidiary need

to construct non-Gaussian vacuum states, which can be achieved using the methods of Section IV,

however we might also proceed by regarding a Gaussian state as a starting point for constructing

other Lorentz and translation invariant states. The tools of this section can be applied equally well

to fermionic quantum fields, albeit of course the corresponding vacuum state is not Gaussian.

Quantum field theory is a higher-order mathematical structure than classical field theory, even

more so when non-linearity is introduced, so it seems possible that the construction given in this

section may not be expressible in a Lagrangian formalism.

VI. DISCUSSION

There are some high-Mathematical postulates in the Wightman axioms that are given little

notice by most Physicists, but that introduce quite forceful constraints on the overall mathematical

structure. The postulate that the quantum field is a distribution is one, that the Hilbert space must
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be separable is another, and that the Hilbert space must support a representation of the Poincaré

group is another. The main suggestion here has been that we might more investigate non-linearity

and not requiring the physical Hilbert space to support a representation of the Poincaré group,

because the latter is not needed for the ways in which Physics is generally modeled using quantum

field theory. Physics often uses only a limited range of frequencies and only requires covariance of

a model, not that a model includes every possible frequency.

One aspect of the use in models of only a limited set of test functions is that the test functions

that are used in constructing a quantum field model for a given set of experiments effectively de-

termine a maximum length scale and a maximum energy scale. If we take those length scales to

determine an infrared regularization and the renormalization scale, then we effectively make the

construction of the interacting quantum field theory weakly non-linearly dependent on the whole set

of test functions, which is somewhat comparable to the proposals above, provided the non-linearity

that is introduced is weak enough. An alternative view of regularization and renormalization is

that the auxiliary length scales that are introduced modify the space of test functions [4], so that

the quantum field remains a distribution; this choice is effectively an additional postulate for the

structure of quantum fields. The effects of Sections IV and V are to apply non-linearity to each

individual observable and to pairs of observables, respectively, instead of introducing ill-defined

non-linear differential equations such as Eq. (7) and non-linearly re-engineering their meaning by

regularization and renormalization, dependent on length scales that are either introduced indepen-

dently or that are determined by the whole set of test functions.

Regardless of the merits of the particular non-linear constructions that are suggested here,

Lagrangian QFT introduces non-linear interaction terms into the Lagrangian, so it seems desirable

to consider what form of non-linearity to introduce into the Wightman or Haag-Kastler axioms.
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