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1. Introduction

Quantum mechanics has always been considered to be the epitome of a linear science.  How-
ever, because modern chaos theory effectively did not come into being until after Lorenz’ mete-
orological discoveries concerning the “butterfly effect”  [1], the founders of quantum mechanics 
did not have access to it or to much of nonlinear dynamics, so they were forced to fit quantum 
mechanics into a linear mold [2].   It is quite conceivable that much of the strangeness, many of 
the paradoxes inherent in quantum mechanics originate from forcing it to fit into such a linear 
framework.  Nonlinear dynamics, especially modern chaos theory, had to await the advent of 
modern computers and computer graphics to make sense of the unwieldy wealth of numbers that 
can be so easily generated.  As a result, it is only during the last few decades that chaos theory 
has come to the fore, yet it has successfully permeated most of science — from pure mathemat-
ics to chemistry and biology, even to economics and traffic patterns.  Its most notable lack of 
success has been with quantum mechanics; in fact, some physicists question whether or not there 
is such a thing as “quantum chaos” [3]. 

Nonlinear behavior does occur in quantum systems, however, and there have been a number 
of attempts to explain it — however, with only very limited success.  These have mostly been 
concerned with nonlinear perturbations on fundamentally linear systems, “weakly”  nonlinear 
systems in which chaos cannot develop.  Mielnik [4] sums up this situation nicely:

I cannot help concluding that we do not know truly whether or not nonlinear QM 
generates superluminal signals — or perhaps, it resists embedding into too narrow a 
scheme of tensor products.  After all, if the scalar potentials were an obligatory tool 
to describe the vector fields, some surprising predictions could as well arise!  …the 
nonlinear theory would be in a peculiar situation of an Orwellian ‘thoughtcrime’ 
confined to a language in which it cannot even be expressed.  … A way out, per-
haps, could be a careful revision of all traditional concepts…

During the last few years increasing evidence has accumulated demonstrating that many of 
the so-called imponderables generated by the Copenhagen interpretation of quantum mechanics 



have surprisingly similar parallels that can be generated by nonlinear dynamics and its extreme 
form, modern chaos theory [5,6].  Superficially, chaos theory is just as peculiar as quantum me-
chanics — that is, until one examines it closely, when its “weirdness”  is seen to arise naturally 
out of feedback loops and the taking of limits.   And it can arise only in “strongly”  nonlinear 
situations [7], which means that it cannot be applied as a perturbation to linear quantum mechan-
ics.  What if quantum mechanics contains fundamental nonlinear, even chaotic elements?  Chaos 
theory is fundamentally deterministic, yet because of extreme, exponential sensitivity to initial 
conditions (the “butterfly effect”), it must be interpreted statistically.  It could provide a bridge 
between the determinism so dear to Einstein’s heart and the statistical interpretation of Bohr.  It 
is conceivable that the incompatibility of their arguments was an artifice — both Einstein and 
Bohr could have been right in their debates!

Chaos is ubiquitous.  In nature nonlinearity and feedback are the rule rather than the excep-
tion.  Modern deterministic chaos theory promises to change not only the way we do science, but 
also to change the way we perceive the world.  Indeed, some of its adherents claim that it is the 
third pillar — along with relativity and quantum mechanics — of modern physics.  Whether or 
not this is true is yet to be seen; yet physicists, especially quantum mechanicians, ignore it at 
their own risk.  It is complex, messy, and nonintuitive: it delves into regions where our intuitions 
fail us just as badly as they do with quantum mechanics — areas such as self-similarity, self-
affinity, and physical behavior when taking infinite limits.  This essay raises questions rather than 
answers them.  Its primary intent is to examine the question of compatibility between chaos the-
ory and quantum mechanics.  However this question has more far-reaching consequences than 
merely collecting examples of quantum paradoxes having nonlinear parallels.  Ultimately, it 
questions the validity of our beloved linear models, raises doubts about reductionism itself, and 
even places limits on the validity of how we scientists are accustomed to thinking.

2. Peculiarities of Chaos Theory

2.1.  Chaos Can Be Counterintuitive
Chaos is the unpredictable and apparently random behavior that can occur in simple nonlin-

ear systems.  It originates from within the system itself and is not the result of complex interac-
tions or external influences, and it can arise whenever there is feedback and the system is at least 
quadratic in nature.  Perhaps this can be explained most easily with the simplest example, the 
logistic map, which was originally studied as a simple model for biological populations:

	

 xn+1  = Axn (1− xn )  
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Here xn is the population of the present generation, xn+1 is the population in the next generation, 
and A is a control parameter, such as the birth rate.  (All populations are assumed to be normal-
ized between 0 and 1, with 0 representing extinction and 1, the maximum population, and the 
iterations are continued a large, effectively infinite number of times.)  Without the term in paren-
theses, this equation is that of compound interest or Malthusian, exponential growth.  However, 
the term (1 − xn ) represents “room for growth,”  i.e., the difference between the present popula-
tion and the maximum possible population.  It can easily be seen that population growth is 
smallest both when xn is close to 0 and when it is near its maximum of 1, and growth is greatest 

when it lies near 0.5.  A 
value of A less than 1 ob-
viously leads to extinc-
tion, whereas, as the birth 
rate increases above 1, 
the population growth 
accelerates.  However, 
something peculiar hap-
pens when A reaches the 
value of 3, as can be seen 
in Fig. 1, where the ulti-
mate values of xn are 
plotted against A. Just 
above (even if only infini-
tesimally above) 3, the 
map bifurcates, with the 
final value x∞ oscillating 
between two different 
points (period 2).  As the 
value of A continues to 

increase, further bifurcations occur, with periods 4, 8, 16, …  Finally, for A > 3.44948… chaotic 
behavior sets in, in which the map never settles down but continues to hit seemingly random val-
ues ad infinitum.  (For values of A > 4 the map diverges, with all values heading toward −∞.)

Several things should be noted:  First, the equation is quadratic, just about the simplest quad-
ratic equation one can construct; thus, it represents an exceedingly simple physical model having 
no interferences from the outside.  Second, this bifurcation diagram is a fractal, and like most 
fractals it exhibits self-similar (more correctly, self-affine) behavior.  If one blows up a portion of 
the diagram, the resulting figure is the same as the (here, mirrored) original diagram, and this  
continues ad infinitum.  (Zooming in on the Mandelbrot set produces similar, perhaps more fa-
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miliar, behavior.)  Third, there are windows of stability (closed cycles) in the midst of chaotic 
behavior — the largest one is the period-3 gap near A = 3.82; again, this continues ad infinitum.

2.2.  Properties of Nonlinear Dynamics and Chaos of Interest to Quantum Mechanics
Nonlinear dynamics and chaos theory produce many more or less nonintuitive effects, far too 

many to explain in this short essay.  And although the literature on chaos theory is vast, books 
jump from the simple [8,9] to the advanced, with little in between; I have found the book by Hil-
born [10] to be relatively accessible yet rigorous.   Here I simply summarize a number of proper-
ties of nonlinear dynamics and chaos that could have relevance to quantum mechanical thinking.

1)  Innate or quantized modes.  Many classical but nonlinear systems exhibit preferred 
modes.  Examples are the resonances in bridges (Tacoma Narrows or, more recently, the Cen-
tennial Bridge in London) and regularities in heartbeats and brain waves.  Such systems can 
be represented by eigenvalue equations.
2)   Extreme sensitivity to initial conditions — the “butterfly effect.”  This was demon-

strated by the logistic map in the previous section, and it occurs throughout nature, ranging 
from weather predictions to predator-prey relations.  A particularly clear example is a pendu-
lum having an iron bob and and swinging over three magnets that attract the bob [6, 11]. 
3)   Basins of Attraction.  Oftentimes different starting conditions can lead to different in-

nate modes.  Sometimes these basins are so intimately mixed together that they can be termed 
“riddled,”  in which case infinitesimal differences can lead to widely different final values.  
Again, the pendulum swinging above three magnets illustrates this.
4)   Order in chaos.  The existence of regions of order (periodic behavior) intimately mixed 

in with chaotic behavior can lead to diffraction-like behavior.  For example, chaotic scattering 
from three or more disks or spheres [12] shows not only extreme sensitivity to initial condi-
tions, but also can  produce patterns surprisingly resembling diffraction patterns.  
5)   Spontaneous symmetry breaking  — nonconservation of parity.  Many nonlinear sys-

tems governed by odd-order equations — e.g., cubic or sine maps — can spontaneously break 
their symmetry.  A simple example is the separation of well-mixed powders into separate 
bands when subjected to nonlinear tumbling [13].
6)   Knife-edge stability of equilibrium states in conservative systems.  This involves the 

successive breaking of Kolmogorov-Arnol’d-Moser (KAM) tori in integrable Hamiltonian 
systems [12]  and might be termed a posteriori extreme sensitivity to conditions.
7)   Emergent Behavior.  The self-organization of systems starting from highly-disorganized 

initial conditions.  This is best exemplified by cellular automata and by evolutionary computer 
programs.  A stunning presentation of emergent computation is given by Hillis [14], in which 
he shows that it is possible to evolve programs that perform tasks efficiently, at times more 
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efficiently than those produced by human programmers — but then it is impossible to analyze 
or understand just how such programs go about performing these tasks!
8)   Non-additivity of correlated statistics.  Many classical systems exhibit their own ver-

sion of “entanglement.”   It turns out that non-ergodic behavior (i.e., preferential population of 
certain regions of phase space) can masquerade as action-at-a-distance.  Among the best-
studied of such effects is the idea of nonextensive thermodynamics, in which the entropies of 
two systems are not additive but contain an “interference” term” [15].
9)   Global Interaction of Attractor Basins in Phase Space.  This can easily lead to appar-

ent action-at-a distance, and systems subject to it can be described by fractional calculus 
(which understandably is a field ripe for development).  An excellent overview of these ideas 
can be found in the book by West, Bologna, and Grigolini [16].
10)   Universality in Chaos.  Many diverse chaotic systems, even from seemingly unrelated 

fields, have been found to obey identical laws.  Feigenbaum termed this “universality”  in 
chaos [17].  This has proved to be both a blessing and a curse: a blessing because chaotic sys-
tems fall into classes, meaning that one does not have to start from scratch for each new sys-
tem; a curse because one cannot determine a specific mechanism for a given system just from  
knowing its quantitative behavior.

3.  Quantum Paradoxes Having Nonlinear Parallels

Obviously, this is an immense, complicated — and necessarily controversial — subject.  
Here I primarily raise questions to whet your appetite.  For more details you can peruse my pa-
pers on the subject [5,6].   I would, however, like to present two relatively straightforward exam-
ples in slightly more detail.  

3.1.  Mocking up radioactive decay via a prisoner-escapee routine using the quadratic 
(logistic) iterator.   One of the problems that has plagued scientists ever since radioactive decay 
was discovered is how to explain its exponential, statistical nature.  It is impossible to determine 
when a given radioactive nucleus will decay; yet given enough nuclei to make a statistically sig-
nificant sample, their decay follows a straightforward first-order exponential law.

A common explanation is to invoke an analogy with actuarial data, say, life-expectancy ta-
bles.  Again, it is difficult to predict a particular person’s lifetime, but insurance companies make 
their profits by relying on the precise results on life expectancies of large populations.  However, 
this is a false analogy:  A human population is quite diverse, and so are the causes of death.  It 
seems clear that this is an exercise in complexity, where a myriad of interactions, many of them 
external, influence a complex system.  On the other hand, to paraphrase Gertrude Stein, “A nu-
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clide is a nuclide is a nuclide!”   One of the fundamental tenants of quantum mechanics is that 
identical bodies or particles are truly identical.

Among the ideas proffered by the earlier detractors of the orthodox Copenhagen interpreta-
tion of quantum mechanics was the interaction of the microscopic world with an even smaller 
submicroscopic background [18].  One does not need to go this far, however, to find a possible 
parallel.  Any uncertainty, however minute, in the in the initial conditions of a given nucleus 
could affect its subsequent behavior provided the system is in a region of phase space subject to 
extreme sensitivity to initial conditions.  Let’s give it a try.  Following Ockham’s Razor, we 

choose the sim-
plest case, the 
logistic map, and 
p e r f o r m a 
prisoner-escapee 
routine, as de-
picted in Fig. 2.  
Here 10,000 
points were cho-
sen randomly in 
an initial interval,  
[0.2, 0.2 +  10−11]; 
these  represent 
the initial state.   
The iterations 
then represent 
whatever physi-
cal process is 
necessary for the 

decay to take place, e.g., hits at the Coulomb barrier for  α decay or oscillations of an electro-
magnetic multipole for γ decay.   The iterations were followed until they escaped into a final in-
terval, [0.53, 0.54], representing the final state.  The results are shown in Fig. 3, where the num-
ber of survivors is plotted against the number of iterations.  A well-defined exponential “decay 
curve” results from the procedure.

The same basic results can be obtained by iterating any unimodal map, another example of 
“universality”  in chaos.  Naturally, an analogy of this sort is far from a proof — something actu-
ally impossible to attain for any quantum mechanical phenomenon.  Nevertheless, it illustrates 
that minute differences in initial conditions can lead to significant differences in trajectories in 
phase space, and consequently in behavior.  Although this kind of argument provides no insight 
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Graphical iteration of the logistic map, demonstrating the “prisoner-escapee” procedure for generating an

exponential decay law.  Random points are selected from the initial interval I, which represents the initial

decaying state.  A vertical line up to the parabola locates the next point.  A horizontal line over to the

diagonal (where the ordinate equals the abscissa) takes this point into position for input into the next

iteration.  The procedure is continued until the trajectory “escapes” into the interval J, which corresponds to

the final state.  A record of the number of surviving states is kept, and these are plotted against the number
of iterations to obtain an empirical decay curve.

Figure 2



into mechanisms, it does provide a parallel with first-order quantum transitions, whether they be 
radioactive decay or atomic or molecular de-excitations.

3.3 Bell-Type Inequalities and Conditional Statistics.  Bell’s theorem [19] and Bell-type 
inequalities lie at the heart of renewed interest in the foundations of quantum mechanics.  Bell-
type inequalities place limits on the statistical correlations between “entangled”  pairs of particles 
generated in common (e.g., a singlet [spins antiparallel] pair of electrons) but whose properties 
(e.g., spins or polarizations) are measured “at a distance.”   These limits are derived for “classi-
cal”  systems; quantum mechanics allows these limits to be exceeded under certain conditions.  
During the last several decades dozens of experiments have been performed, and they vindicate 
quantum mechanics.  Conclusions drawn from these results usually involve statements declaring 
that “local reality”  does not exist — Einstein’s “spooky action-at-a-distance”  does exist!  (Sig-
nals travel faster than the speed of light.)  For an excellent overview of the history, experiments, 
and philosophical interpretations resulting from the flurry of activity on Bell-type systems, read 
some of the essays in Quantum [Un]Speakables [20], particularly Chapter 6 by Clauser, which 
details the difficulties encountered by those who dared question the orthodox Copenhagen inter-
pretation of quantum mechanics.

Let us examine the “classical”  derivation of a simple, experimentally-friendly Bell-type ine-
quality, the CHSH inequality [21].  A pair of particles is prepared, and one particle is sent to each 
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Exponential decay curve produced by iterating the logistic map with A = 4.  To represent the initial state,

10,000 evenly-spaced points were chosen from the interval, [0.2, 0.2 + 10
!11

], and the resulting trajectories

were followed until they escaped into the interval, [0.53, 0.54], representing the final state.  This plot of the

number of survivors vs the number of iterations produces an empirical exponential decay curve having a
half-life of about 107 iterations

Figure 3



of the prototypical information-theory experimentalists, Alice and Bob, who are separated far 
apart and are effectively incommunicado.  Alice is equipped to make measurements Q  and R on 
her particles, each of which could result in an outcome of +1 or −1 — e.g., Q could be a meas-
urement of spin or polarization with respect to a vertical axis, R with respect to a skewed axis.  
Similarly, Bob can make measurements S  or T.  Alice and Bob each choose which measurement 
to make at random, and they can decide on which measurement to make even after the particles 
have left their point of origin.  After accumulating measurements on enough pairs to be statisti-
cally meaningful, Alice and Bob get together to compare results.  They decide to compare the 
quantity,

	

     
Note the minus sign on each side.  Because Q and R independently can be +1 or −1, one or the 
other terms on the right side must be 0.  Either way,

	

    
When experimental efficiencies are included and speaking in terms of probabilities,

	

 	


where E(QS) is the mean probability obtained for QS, with corresponding terms for the other 
pairs.  This “CHSH inequality”  puts an upper limit on the statistical correlations on a particular 
combination of products obtained by presumably independent measurements made at effectively 
infinite separation.
	

 Derivation of the quantum mechanical version is similar, except the particles are prepared 
in the explicit Bell singlet state,

	

 	

  

where ⎢01〉 means the first and second particle show spin down and up, respectively, and ⎟10〉, 
vice versa.  The follow-through is a bit more intricate than the classical derivation [21,22], but 
since I shall not be questioning it, here is the end result:

	

 	



Here 〈⋅⋅〉 are the quantum mechanical expectation values.  Quantum mechanics allows greater 
correlations than does “classical”  mechanics,  and the experiments have observed such increased 
correlations, vindicating quantum mechanics and squelching classical mechanics.

Or do they?  The quantum particles were clearly prepared in the “entangled”  singlet state, 
and presumably the classical particles were also prepared in a correlated state; yet there is noth-
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QS + RS + RT −QT  = (Q + R)S + (R −Q)T .

QS + RS + RT −QT  = ±2.

E(QS) + E(RS) + E(RT ) − E(QT ) ≤ 2,

Ψ  = 
01 − 10

2
,

QS + RS + RT − QT  = 2 2



ing in the “classical”  derivation above that prevents the classical state from being factored — and 
entanglement requires that a global state cannot be factored.  Perhaps we are not comparing clas-
sical mechanics against quantum mechanics but independent probabilities against conditional 
probabilities.

Classical mechanics is rife with unexpected correlations.  Many of these, such as correlations 
in wind velocities in tornadoes and hurricanes or correlations in cosmic ray distributions, have 
been studied in the context of nonextensive (Tsallis) entropy, as noted under point 8) in §2.2 
above.  Different subsystems of these classical systems do show correlations with other subsys-
tems, and their entropies are not additive but contain an interference term, which can make the 
overall entropy greater (or less) than the sum of the individual entropies — in other words, the 
whole can be greater (or less) than the sum of its parts.  This casts doubts on inequalities such as 
the CHSH inequality above,  for it means that in nonlinear classical systems the upper limit on 
statistical correlations is too restrictive.  And if the classical limit can increase into the region 
predicted by quantum mechanics, the use of such inequalities to rule out classical mechanics be-
comes ineffective or moot.

4.  Conclusion: The Physics of Limits and Unexpected Correlations

Nonlinear dynamics can be every bit as counterintuitive as quantum mechanics, or for that 
matter, relativity.  However, like relativity, once one examines nonlinear dynamics in detail, it 
becomes quite reasonable.  And the existence of peculiarities generated by nonlinear dynamics 
and chaos that are peculiarly similar to so-called paradoxes produced by the Copenhagen inter-
pretation of quantum mechanics — these should at the very least raise our eyebrows and make us 
question whether or not quantum mechanics is strictly linear.

Our brains are not innately wired to thinking naturally about infinite or infinitesimal limits, 
nor are we completely comfortable with conditional probabilities.  We have progressed far since 
Zeno’s paradoxes, yet nonlinear dynamics and chaos theory, although permeating almost every 
field of science, still has not hit the mainstream of physics or its textbooks.  Perhaps we need a 
paradigm shift in our way of thinking.

To appreciate modern, deterministic chaos theory fully one must think in terms of taking lim-
its.  That is what the “butterfly effect,”  extreme exponential dependence (and divergence of tra-
jectories in phase space) on initial conditions is all about.  (In fact, one can even envision philo-
sophical ramifications about questions such as free will:  If chaos is deterministic, yet in the  in-
finitesimal limit unpredictable — is this a sort of predestination that actually becomes free will?!)

We also tend to ignore unexpected correlations in classical systems — splitting a problem up 
into independent, linear parts makes computation so much simpler and neater.  After all, nonlin-
ear dynamics is inherently cumbersome and messy — almost no calculations can be accom-
plished in closed form.  Yet nature is inherently nonlinear, as the biologists have led the way in 
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demonstrating.  Physicists should be more wary of drawing far-reaching conclusions from 
strictly linear arguments.

A humorous yet serious example of the difficulties we have in thinking about probabilities is 
the Monty Hall problem.  A contestant (on the old TV show, “Let’s Make a Deal”) has a choice 
of which of three doors to open.  Behind one door is an automobile, and behind the other two are 
goats.  When the contestant picks a particular door, which remains unopened, the host of the 
show opens one of the other doors to show a goat behind it.  Now the contestant has the choice 
of remaining with his/her original choice or switching to the remaining unopened door,  What 
should the contestant do to maximize the chances of winning the car?  Almost everyone’s first 
take is that it doesn’t matter whether or not he/she switches — the chances remain at 1/3 for each 
door.  To the contrary, the contestant doubles chances of winning by switching.  Conditional 
probabilities are involved: the contestant’s first choice limits the host’s actions.  Think about it, 
or even play a game about it by tossing coins — or go on-line to read about it [23].  The impor-
tant point is that similar conditional probabilities come into play when considering the ramifica-
tions of Bell-type experiments.

Nonlinear dynamics and chaos may well change the way we think about nature.  Ignoring 
nonlinear dynamics places undue limits on how we do science.  Indeed, the limits of physics are 
intimately involved with the physics of limits and unanticipated correlations.
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