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A simple general system is defined that has exactly three properties: the system is 
non-continuous, non-deterministic, and has a well-defined, consistent metric.  It is 
asserted that many of the basic concepts, principles, and equations of quantum 
mechanics and classical mechanics, including those of special and general 
relativity, are derivable, and indeed are unavoidably emergent from first 
principles given these three properties, and these three properties only. 

 
For the past four years I’ve been attending a series of lectures given by Profession 
Leonard Susskind, the Felix Bloch professor of physics at Stanford University.  During 
the course of these lectures, lectures that explore the mathematical foundations of modern 
physics, I have been struck by common lines of reason that parallel the mathematics of 
physics with the mathematics of systems theory and information theory.  This paper is the 
direct result of a series of brief conversations I had and questions I posed to Susskind 
regarding the relationship between physics and systems theory. 
 
In the spring of 2009 I met with Professor Susskind to discuss some ideas I had regarding 
the modelling of physical systems as stochastic processes.  After some discussion 
Susskind challenged me to describe a stochastic system as a function of a complex 
wavefunction.  During two years I spent to trying to resolve this still outstanding problem 
it became apparent that the solution could be easily expanded to describe a wide variety 
general physical processes.  This paper represents the culmination of my efforts to 
complete this challenge.  

 
This paper treats the description of physical systems as a systems theoretic construct 
rather than an extension of long accepted physical principles.  In essence, the purpose of 
this exercise is to look at physical systems with ‘fresh eyes’, to view physical systems as 
general systems which are imbued with invariant modes of emergent behavior.  Rather 
than building on the long and storied legacy of theoretical physics, the resulting general 
system is axiomatic.  It stands alone as a self-consistent mathematical object independent 
from other physical theories. 
 
The reason for this approach is based on practical considerations.  Exceptional claims 
must be accompanied by exceptional proof and evidence.  As an axiomatic system, the 
model is subject to formal proof, or disproof. If mathematical consistency can be claimed, 
then the following question can be posed: 
 
Do the behaviors of this formal model accurately mimic those of real physical systems? 
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This question can only be answered by experimentation and validated by empirical 
evidence.  If the evidence points to an answer of ‘yes, the model does appear to behave in 
a manner similar to physical systems’, then the general system can then be elevated to the 
level of ‘candidate physical theory’. 
 
This paper outlines a formal model of a one-dimensional stochastic system.  The system, 
called 

! 

S, is modelled as an abstract random walk.  That is, the system

! 

S  is associated with 
the notion of state and the state of 

! 

S changes in a non-deterministic manner.  Each 
change of state, or state transition, is labelled an event.  Furthermore, the system 

! 

S is 
subject to the constraint that it satisfies a metric with the property that the distance to the 
n-th event is proportional to n.  The system described by 

! 

S is axiomatic and is an 
example a general system.  The term general system implies that the model can used to 
describe any real life system that satisfies the defined criteria, the axioms that define the 
model.  Examples of such systems may be found is a disparate set of disciplines ranging 
from biological systems, chemical systems, economic systems, and others.  A specific 
example of this kind of system, and one that is familiar to the physics community is a 
one-dimensional random walk where the system state represents the position of a particle.    
 
In summary, let the system 

! 

S  be is an axiomatic system that satisfies the two postulates: 
 

• Let 

! 

S  be a random walk 
• Let the distance to the 

! 

n-th event in 

! 

S  be proportional to 

! 

n  
 
Once the behaviour of and characteristics of the system 

! 

S  are thoroughly explored, the 
model can shown to be equivalent to the following three, more general axioms: 
 

• Let the system

! 

S  be discrete, not continuous 
• Let the system

! 

S  be non-deterministic; the system is stochastic 
• Let the system

! 

S  be associated with a well-defined, consistent metric 
 
Restated in terms of a physical system, this paper claims that defining a general system 
to be both discrete and non-deterministic, and also associated with a consistent metric 
is sufficient to construct a model of a physical system that is consistent with many of 
the generally accepted laws and theories of physics. 
 
In order to meet Lenny Susskind’s challenge to model a stochastic system through the use 
of complex wavefunctions the model must satisfy the following criteria: 
 

• The model is axiomatic 
• Each step is subject to formal proof 

• The stochastic model may be completely described by the equation 1= !(d) 2
d=!"

"

# , 

where d represents the discrete position of a particle in a single spatial 
dimension, and 

! 

"  is a discrete complex wavefunction such that 
P(d) =!(d)!*(d) = !(d) 2  
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1 Introduction 
 
This paper describes a stochastic system from the perspective of a systems theorist.  An abstract 
stochastic model is first presented.  The properties of the model are examined, and then 
compared to the properties of a physical system.  If a close match between the abstract system 
and the physical system is established, then the abstract model is elevated to candidate status as a 
formal description of the physical model. 
 
The abstract system is axiomatic.  That is, a set of two axioms is presented and examined.  The 
properties and behaviours of the axiomatic system are elucidated through the use of formal 
proofs based solely on the two axioms.   
 
This paper is a synopsis of a larger, more complete, and more formal model that is available as a 
draft. 

2 The Two Axioms 
 
Let a system called 

! 

S  be stochastic.  Associated with 

! 

S is the notion of state.  An event, or state 
transition, is said to occur when the state of 

! 

S  changes. The state of the system 

! 

S after a series of 

! 

n events is defined to be 

! 

"(n) .  Because the system is stochastic, associated with each value of 

! 

"(n)  is the probability that the system will end up in that state, 

! 

P "(n)( ) .  The 
probability

! 

P "(n)( )  represents the probability that the system 

! 

S is in state 

! 

"(n)  after 

! 

n  events.  
This type of system is typically called a ‘random walk’.   
 
The properties and behaviors of random walk systems are well known. 
 
Now, let a metric be assigned to 

! 

S  such that the distance to the 

! 

n-th event is proportional to 

! 

n . 
Let the proportionality factor be called 

! 

c . 
 
The two axioms may now be made explicit: 
 

• Let 

! 

S  be a random walk 
• Let the distance to the 

! 

n-th event in 

! 

S  be proportional to 

! 

n  
 

The system 

! 

S  will be shown to exhibit a remarkably rich variety of emergent properties and 
behaviors.  Furthermore, these properties and behaviors closely mimic those of traditional 
physical systems. 

3 The Structure of the Model 
 
The formal description of the system 

! 

S  will be broken down into the number of discrete 
sections.  Each section iteratively builds on the results of the previous section until the criteria of 
the model are satisfied.  The sections, or steps, used to prove the Susskind challenge are: 
 



 

   4 

• Determination of the coordinate system demanded by the axioms 
• Analysis of the probabilities associated with each of the coordinates 
• Introduction of complex wavefunctions as a function of state 
• Derivation of the displacements associated with a state 
• Assignation of units of measurement to each of the two axes 
• Renaming of constants, relationships, and behaviors of the system with labels familiar to 

the physics community 
• Final proof of the prime assertion in terms familiar to familiar to the physics community 

 
If each of the steps can be formally proven then it will be claimed that the system 

! 

S  is 
mathematically consistent. 
 
The final step is to examine and compare the emergent behaviors of the general system 

! 

S  with 
the behaviors physical phenomena.  In other words, can the system 

! 

S  be used to explain and 
predict the behaviors of physical phenomena, and furthermore does the model lead to results and 
predictions and can be experimentally validated that are not explained by current, more standard 
physical models. 

3.1 The Determination of the Resulting Coordinate System 
 
Examine a system representing a single event, where 

! 

n =1, or 

! 

S(1).  Assuming an initial state of 
0, the final state system of a single event can be represented by the two coordinates {1,-1}.   The 
system 

! 

S(1) satisfies both axioms.  The system is random walk and the distance from the 
coordinate 0 to both 1 and -1 is proportional to the number of events.  As 

! 

c  is the proportionality 
constant, the distance to both 1 and -1 is equal to 

! 

1*c = c . 
 
Now examine 

! 

S(2).  The system 

! 

S(2) must be in one of the states {2,1,0,-1,-2).  The probability 
that the system 

! 

S  is in state 1 or state -1 is 0.  The probabilities oscillate between positive and 0 
values.  The probability that the system 

! 

S  is in state 2, state 0, or state -2 is positive.  The system 
is a random walk and therefore satisfies the first axiom.  However the system, as currently 
described, does not satisfy the second axiom.  This may be shown as follows. 
 
If the state of the system 

! 

"(n)  is either 2 or -2, the second axiom is satisfied.  The distance to the 
second event is 

! 

2*c .   However, if the resulting state of the system 

! 

S(2) is 0, then the second 
axiom is not satisfied.  The distance from the initial state 0 to the final state in 

! 

S(2), also 0, by 
definition, is 0 not 2.  Since the system is axiomatic, the model must be modified in order to 
satisfy the second axiom: Let the distance to the 

! 

n-th event in 

! 

S  be proportional to 

! 

n .   
 
The only way to satisfy the second axiom is to assign the state of 

! 

S(2) to the coordinate 

! 

(0,2), 
where the X-coordinate represents the state of the system, 

! 

"(n) , and the Y-coordinate represents 
an imaginary state, 

! 

i"(n).  Thus for 

! 

S(2) to satisfy the second axiom the complete state the 
system must be represent by the complex coordinate 

! 

"(n),i"(n)( ). 
 
If an analysis of all possible states of 

! 

S(n) is undertaken a list of complex coordinates results.  
An example for small values of 

! 

n  is seen below: 
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! 

S(0) = {0} 

! 

S(1) = {1,"1} 

! 

S(2) = {(2,0),(1,1),(0,2),("1,1),("2,0)} 

! 

S(3) = {(3,0),(2,1),(1,2),(0,3),("1,2),("2,1),("3,0)} 
 
The union of all values of 

! 

S(n), where 0 ! n <"  defines a coordinate system, namely the set of 
all ordered pairs on or above the X-axis, the northern semi-plane.   Actually, this is not exactly 
correct.  The ordered pair (0,1) is not defined for the coordinate system. The reason is that the 
ordered pair (0,1) it not consistent with the first axiom, since there is no change of state.  The 
system starts out in state 0 and after a single event, the system remains in state 0.  Therefore 
there is no state transition.  The coordinate (0,1) is an example of a mathematical singularity.  It 
turns out that the implications of this singularity are profound. 
 
Associated with each integer coordinate 

! 

(X,Y ) defined by the system S  are the following. 
 

! 

X  : The value of the state of the system: 

! 

"(n) 

! 

Y  : The value of the imaginary state of the system: 

! 

i"(n) 

! 

n  : The unique number of events associated with the coordinate: 

! 

n = X +Y  

! 

x  : The value of the displacement in the X direction 

! 

y  : The value of the displacement in the Y direction 

! 

P  : The probability that a system of 

! 

n  events will end up in the state (X,Y): 

! 

P(X,Y )  
 

A unique 6-tuple (X,Y,n,x,y,P) is associated with every defined point in the coordinate system. 
 
With the sole exception of the probability P, the other 5 values of every 6-tuple must be identical 
for all systems defined by the two axioms.  Let 

! 

S1 and 

! 

S2  represent any two instances of 

! 

S .  The 
coordinate systems of the two systems must be identical. 

3.2 Analysis of the Probabilities Associated with Each of the 
Coordinates 

 
To this point in the discussion the system 

! 

S  is static.  There is no dynamic component, no 
mechanism that drives the system to new states.  This is like trying to build a model of physics 
without acknowledging the notion of energy.  For the axiomatic system 

! 

S  the dynamic 
component is driven by the probabilities associated with each coordinate.  The idea of least 
action is replaced by the concept of entropy.   The informational, or Shannon entropy, associated 
with the set of probabilities is the dynamic that drives the system. 
 
Basic probability theory states that the sum of the probabilities associated with all coordinates 
associated with 

! 

S(n)  must be equal to 1. 
 

(1)   1= P k, (n! k )( )
k=!n

n

"
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Furthermore, the discipline of information theory demands that the probability density function 
(PDF) associated with

! 

S(n)  must be the one that is described where the entropy functional is 
maximized, subject to possible additional informational constraintsi: 

(2)   H (n) = ! P k, (n! k )( )
k=!n

n

" log2 P k, (n! k )( )
 

 
Given no further constraints the PDF associated with 

! 

S(n) is binomial.  However, it was pointed 
out in section 3.1 that the probabilities associated with state of the system oscillate between a 
positive value and 0.  The probabilities exhibit a wavelike characteristic. 

3.3 Introduction of Complex Wavefunctions as a Function of State 
 
As the collective probabilities or PDF of 

! 

S(n) exhibits wavelike characteristics, let the 
probabilities of 

! 

S(n) be described by the discrete wavefunction 

! 

" .  As the wavefunction 

! 

"  
operates on a set of complex coordinates, 

! 

"  is by definition complex, 

! 

" #(n),i#(n)( ).  
 
Therefore the specific PDF associated with system 

! 

S , as defined by the entropy functional 

! 

H(n), is described by the wavefunction 

! 

" .  
 
The probabilities 

! 

P "(n),i"(n)( )  may now be re-written in terms of the wavefunction: 
 
(3)   

! 

P "(n),i"(n)( ) =# ("(n),i"(n))
  

The normalized equation 1= P k, (n! k )( )
k=!n

n

"
 
may be re-written in terms of the complex 

wavefunction 

! 

" . 

(4)   1= ! k, (n! k( )
k=!n

n

"
 

 
Now define the complex wavefunction in terms of displacement rather than state. 

3.4 Derivation of the Displacements Associated with a State 
 
The displacement x  along the X-axis is an independent variable and can be written as: 
 
(7) x = !(n)c  
 
The same cannot be said for displacement in the Y dimension since the displacement in the Y 
dimension is always a function of the state of 

! 

S , 

! 

"(n), and not a function of the imaginary state 
of 

! 

S , 

! 

i"(n).  The displacement in the Y dimension is a dependent variable. 
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Assuming the underlying coordinate system is geometrically flat the second axiom demands that 

! 

nc = x 2 + y 2  for any system of 

! 

n  events, where 

! 

x  and 

! 

y  are the displacements on the X and 
Y-axes, respectively.  As both the distance along the diagonal and the distance along the X-axis 
are well defined, it is possible to determine the distance in the Y-dimension. 
 
Solving for y : 
 

(8) y = nc 1! !(n)
n

"

#
$

%

&
'
2

 

 
The displacements for both the X and Y coordinates may be explicitly defined and written in 
terms of the proportionality constant 

! 

c . 

3.5 Assignation of Units of Measurement to Each of the Two Axes 
 
Utilizing the principles of dimensional analysis units of measurement will be assigned to both 
axes. 
 
Assign a unit of measurement on the X-axis.   Call the unit of measurement 

! 

m .  Let the 
relationship between 

! 

c  and 

! 

m  be defined as 

! 

c = km m , where 

! 

km  is a constant that is 
measured in units of 

! 

m . 
 
The displacement on the X-axis, 

! 

"(n)c , may now be written in unit of 

! 

m , namely: 
 
(9) 

! 

x = "(n)kb m  
 
The Y-axis can similarly be written in units of 

! 

m .  Care must be taken to guarantee units of 
measurement are handled properly.  
 

(10) 

! 

y m = nkm m * 1" #(n)
n

$ 

% 
& 

' 

( 
) 
2

 

 
However, since 

! 

c = km m = ks s  the original equation may be rewritten as: 
 

(11) y m *
ks s
ks s

=
ks s
ks s

* nkm m( )
2
! !(n)km m( )

2
= nks s *

nkm m( )
2

nks s( )
2 !

!(n)km m( )
2

nks s( )
2

 

 

Let the normalized ratio between 

! 

km m  and 

! 

ks s , namely 

! 

"(n)
n
* kms m /s , be called the 

Displacement Velocity vD .  The only thing that has changed is the unit of measurement.  Since 
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vD  is by definition normalized, vD  has the property 1! vD ! 0 .   For convenience purposes let 
the maximum value of vD  be labelled as 

! 

c . 
 
Substituting in the new terms the Y displacement 

! 

y  is now defined in units of 

! 

s  and 

! 

m /s .    
The equation may now be written as: 
 

(12) 

! 

y s = nks s 1" vD
2

c 2
 

 
Where 

! 

nks s  is the maximum displacement on the Y-axis for a system of 

! 

n  events measured in 
units 

! 

s . 
 
The displacements 

! 

x m  and 

! 

y s  are the two displacements x and y of the coordinate 

! 

(X,Y ) . 

3.6 Renaming of Constants, Relationships, and Behaviors of the 
System with Labels Familiar to the Physics Community 

 
The X and Y coordinates will now be assigned names.  As with the units of measurement, the 
names (to this point) are syntactic. 
 
Let the X-axis be labelled the <distance axis>, <d>. 
Let the Y-axis be labelled the <time axis>, <t>. 
 
As such, the unit of measurement 

! 

m  quantifies the amount of displacement on the distance 
axis, while the unit of measurement 

! 

s  quantifies the amount of displacement on the time axis.  
It must be re-emphasized that, although both terms are loaded, to this point the assignations 
<time> and <distance> to the X and Y-axes are symbolic, pseudo-random, and entirely 
syntactic.  No semantic content is demanded, although the implications are obvious. 
 
Furthermore, additional labels will be syntactically assigned to key relationships associated with 
time axis and distance axis. 
 

• Let the unit value of distance be called Planck length, 1*km m = !P  
• Let the unit value of time be called Planck time, 1*ks s = tP  
• Let the maximum displacement on the <distance axis>, that is let 

! 

"(n) = n , be called 
proper distance, or   

! 

nkm m = n! P  
• Let the maximum displacement on the <time axis>, that is let 

! 

"(n) = 0, be called proper 
time, 

! 

" , or 

! 

nks s = ntP  
• As described previously, let the maximum value of the displacement velocity, 

  

! 

vD = nkms m /s =
nkM m
nks s

=
n! P
ntP

=
! P
tP

, be called the luminal velocity, or 

! 

c  

• Let the system 

! 

S  itself be labelled a frame of reference 



 

   9 

3.7 Final Proof of the Prime Assertion in Terms Familiar to the 
Physics Community 

 
The basic probabilistic relationships may now be re-written in terms of the distance and time 
displacements of the discrete wavefunction 

! 

" .  It must again be re-emphasized that the terms 
the distance and time are syntactic assignations and to this point have nothing to do with 
commonly accepted notions of time and distance. 
 
(13) 

! 

P "(n),i"(n)( ) =# ("(n),i"(n)) =# (d,t) 
 

(14) 1= P k, (n! k )( )
k=!n

n

" = ! k, (n! k )( )
k=!n

n

" = ! d = n!P, t = f (d,n)( )
d=!n

n

"  

 
The next step is to write the last equation is terms of distance, rather than in terms of distance 
and time.  Multiplying the wavefunction by its complex conjugate is the final step in this process.  
The unitary property of probability theory leads to: 
 

(15) 1= ! d, t( )
d=!n!P

n!P

" = !(d
d=!n!P

n!P

" )!*(d) = !(d) 2
d=!n!P

n!P

"  

 
Finally, as 

! 

n"# the system 

! 

S can be completely described by the equation: 
 

(16) 1= !(d) 2
d=!"

"

#  

 
Where the displacement d  represents the discrete position of a particle on a one-dimensional line 
and 

! 

"  is a discrete complex wavefunction. 

4 Conclusion 
 
It has been formally shown that a stochastic system can be modelled using complex 
wavefunctions.  Furthermore, the general model can be reconstituted into a form consistent with 
standard physics terminology.   The reader will be hard pressed to find an inconsistency between 
the properties of time and distance and the properties defined by the axiomatic constructs called 
time and distance.  As such, it is suggested that the underlying structure of physics is both 
discrete and non-deterministic.  Lenny Susskind’s challenge has been met. 
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