
The Ultimate Physics of Number Counting

by Andreas Martin Lisewski

"The sequence of natural numbers turns out to be unexpectedly more than a mere stringing together of identical

units: it contains the whole of mathematics and everything yet to be discovered in this �eld."

| C.G. Jung

This essay puts forward the idea that the elemen-

tary physical process in the universe is the counting

procedure of natural numbers. If true, it would imply

that the ultimate possibility in physics is the discovery

of this archetypal and fundamental numerical order in

nature. In pursuing this astounding idea with methods

from modal logic and set theory, it is argued that the

number counting process may indeed be su�cient for a

complete quantum description of the evolving universe.

Completeness means that the universe is understood as

a quantum system without an external classical world

and without any outside observers. As a consequence,

the observable world including its cognizant observers

become emergent phenomena that arise from inside

the system. Emergence is known from systems with

a su�cient number of physical constituents and with

a su�ciently complex evolution of the latter. It man-

ifests itself in global physical behavior that cannot be

understood properly by looking only at the local con-

stituents.

Imagining the universe as a closed and discrete quan-

tum system is not a very new thought. Already in

1982 Feynman [10] outlined some implications of the

assumption that the universe is a quantum computer

representable as a tensor product of many �nite Hilbert

spaces of low dimension, such as qubits. Considera-

tions like this look at the cosmological evolution of the

universe as a run of a quantum automaton. This hap-

pens in a similar manner to classical cellular automata,

like for example Conway's Life [11], which do evolve

in a sequence of discrete steps. A quantum automa-

ton is thus a �nite system in some prede�ned initial

state together with some rules that govern its step-

wise evolution. The rules themselves have to be con-

sistent with the laws of quantum physics; classical cel-

lular automata can therefore only be a limiting case of

quantum automata. But even in simple classical cellu-

lar automata rich varieties of complex patterns emerge

[21], it is therefore at least not implausible to think

of the physical universe as the output of a quantum

automaton.

The quantum automaton

paradigm and its problems

The hypothesis that natural numbers are all-that-is and

all-that-can-be has a relationship to the quantum stage

paradigm of the universe (see, for example, the works

of Eakins and Jaroszkiewicz [7, 8, 9]). In this setting

the universe is represented as a quantum automaton in

a Hilbert space H of very large but �nite and �xed di-

mensionality N, where a pure state vector 	� 2 H rep-

resents the current stage of the universe. This state is

an element of an orthonormal basis given through the

family of non-degenerate eigenstates of a Hermitian

operator �� acting on H; the family of eigenstates of

�� is the preferred basis while the operator itself is re-

ferred to as the self-test of the universe. Also, the state
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of the universe is subject to change which is governed

by some rules, yet unknown, that map 	� onto its suc-

cessor 	�+1. Thus the index � labels the successive

stages of the universe; it is called exotime. These rules

guarantee further that 	�+1 also is an eigenvector but

this time of a di�erent Hermitian operator ��+1. The

argument goes that at each stage � the Hilbert space

H factors in a tensor product

H = H1 
 : : :
Hn

of n Hilbert spaces each having a prime dimensional-

ity. States in H can be total factor states, they can

be totally entangled, or they may contain factors of

entangled states. Thus 	� admits the general form

	� = 	1
� 
 : : :
	f�

�

where f� � n. Since it is believed that any self-test has

the capacity to change the factor structure of a given

state 	� when going from stage � to the next stage

� + 1, the corresponding transition amplitude calcu-

lated with Born's rule may or may not factorize. This

observation allows to look at groups of factors that be-

come entangled in the successor stage, or at entangled

states from subregisters that become factorized within

the next stage. When followed over several succes-

sive stages, the transition amplitudes between states

resemble the structure of causal sets (for details, see

[8]); it is in this manner that the building blocks of Ein-

stein locality seem to be accessible. Moreover, Eakins

and Jaroszkiewicz speculate about further implications

of their approach, such as the possibility that highly

factorized states should correspond to a quantum sys-

tem with emergent classical behavior.

These preliminary results and thoughts surely moti-

vate for further work in this direction, but our immedi-

ate goal is to take a step back and to recapitulate the

common assumptions and prerequisites that form the

basis of this quantum stage approach to the universe.

In doing so we list a group of questions that are at the

source of all arguments presented in this work.

1. If the universe admits a representation by means

of a Hilbert space H of �xed �nite dimension N,

what causes the choice of the number N? For

now, there does not seem to be an immediate

physical reason behind the choice of N. We know

that at present time this number must be gigantic

but has this been the case throughout the history

of the universe? In other words, is it necessary

that the Hilbert space is static with a �xed num-

ber of dimensions? Additionally, N must not be

prime since otherwise no non-trivial tensor prod-

uct of subregisters is available. Is there a physical

reason behind this?

2. We know that Hermitian operators represent ob-

servables in quantum physics, but why should the

self-test of the universe �� be Hermitian and

non-degenerate. At least such an extrapolation

from local physical experience to the universe as

a whole is quite bold. Must we simply accept

it as a matter of fact or can we possibly �nd a

reason that explains these properties of ��?

3. How does the preferred basis, i.e. the family

of orthonormal eigenvectors of ��, emerge at

each stage of the universe? This question|

also known as the problem of pointer states|

has been a central issue in various approaches

to the measurement process in quantum physics

(e.g., in the decoherence framework and in the

many-worlds approach).

4. How does state reduction or, more appropriately

phrased, state selection occur at each stage of

the universe? In [8] it has been plausibly argued

that 	� always is a pure state, but how does

the universe make a choice between the avail-

able elements of the preferred basis? This ques-

tion addresses the second central and undecided

issue of the quantum measurement process: is

von Neumann's formal characterization of the

measurement procedure, that is the distinction

between processes of type II (unitary dynamics)

and type I (reduction), the �nal word or can we

do better in characterizing a (non-deterministic)

process responsible for state selection?

5. What is the mathematical structure of the Hilbert
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space H? Since any quantum theory of the uni-

verse should propose a construction of the phys-

ical Hilbert space, we ask whether we can iden-

tify the preferred basis elements of H. This is

the step of going from an abstract to a concrete

Hilbert space where physical states are explicitly

given.

All �ve questions are about the ultimate physical

nature of observers, about the observable world, and

about the process of measurement. Our goal is to in-

troduce two basic principles and to �nd their proper

mathematical representations in order to gain further

insights into these problem statements and, eventu-

ally, into the nature of the quantum universe. To the

knowledge of the author, these principles as well as the

mathematical methods related to them have not yet

been widely used in this fundamental problem domain.

An imperfect quantum world

The �rst principle concerns the ability to perceive na-

ture through experiments (every measurement we call

an experiment). By experiments we do not only mean

an experimental physical set-up and its conduction in

the usual sense but also the ultimate class of experi-

ments that we carry out on ourselves in order to be-

come aware of any experiment whatsoever: sensory

perception. The imperfection principle says that every

experiment in nature has to be blurred in some sense.

This means that there should always be a set of sev-

eral measurement outcomes such that each member

of this set must not be perceptually separated from

any other member of the same set. Experiments of

this kind we call imperfect experiments, and hence the

principle demands that any experiment in nature must

be imperfect. This makes sense in many cases because

empirically we know that experimental data has limited

precision. But there are types of experiments where it

is apparently more di�cult to recognize the validity of

the imperfection principle.

For example, consider a Stern-Gerlach experiment

with a detector screen placed behind the magnetic �eld.

The spin value in z-direction, along which the measure-

ment is performed, of a spin 1/2 particle shall be de-

termined. Imagine the measurement outcome now is a

dot at the upper half of the screen signalizing that the

measured particle has a value of +1/2 in z-direction.

As it seems, there is no fuzziness in the measurement

outcome since the particle spin in z-direction has been

uniquely derived by measurement. But is this really

the case? In this situation the experiment outcome

consists of the physical object 'screen' together with a

physical object 'dot' on it. If we now come closer to

the screen we may observe a chemical reaction, blurred

across an area on the screen, which gives rise to the

visible dot. The dot, being a cloud of chemically inter-

acting parts (these parts can be groups of molecules,

for example), has many physical degrees of freedom

and these degrees of freedom are correlated with the

measured particle because they materialize the exper-

imental result. In quantum physics it is only through

the experiment result that a quantum entity becomes

a physical object with a measured physical attribute.

Hence, it makes little sense to say that the observed

particle has only one degree of freedom (+1/2 or �1/2

in z-direction) because what we actually observe as a

measurement result (by means of the chemically inter-

acting cloud on the screen) is a physical system that

has many. Parts can therefore be viewed as the ma-

terial constituents of the physical object 'particle with

spin +1/2 in z-direction'. Many of these parts can be

visually resolved and separated but others become in-

discernible in our visual �eld no matter how close we

observe the cloud because every time we zoom-in a

new family of parts may emerge. In this sense every

experiment result can be partitioned such that the im-

perfection principle holds.

The imperfection principle is intimately related to

our senses (not only to our visual sense but to all our

senses that interact with the outer world) in that every

physical experiment ultimately is an experiment carried

out through our sensory apparatus. From a mathemat-

ically point of view any family of parts forms a complete

ortholattice realized through a non-transitive binary re-

lation called the proximity relation. From a physical
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point of view we can recognize parts as a realization of

Poincar�e's physical continuum.

A physical continuum is a conceptual alternative to

the mathematical continuum of the real numbers: it

allows a �nite set of experimental outcomes, or sensa-

tions to appear continuous in the sensory �eld of the

observer. Even though it has never become part of the

canon in modern physics, this concept has an interest-

ing history. Poincar�e, for instance, made a clear dis-

tinction between the physical continuum and the math-

ematical continuum of the reals, noting that both al-

ternatives are admissible [17].

The physical continuum can be mathematically in-

troduced as follows. Let X denote a set of �nite size

N representing mutually exclusive events that in our

context represent the set of all possible outcomes of

a physical experiment, and let P(X) be its power set.

A proximity relation P is a binary relation between the

elements of X that is re
exive and symmetric, but not

necessarily transitive, and the pair (X; P ) is the prox-

imity space [4, 19, 3]. For each x 2 X the set

Qx = fy 2 X : xPyg

is called a quantum associated to x 2 X. A quantum is

the smallest recognizable subset of X, and any subset

of X that is a union of of some quanta is called a

quantum set [19] or a part [3, 4]. We denote the set

of all quantum sets as QP .

Fundamentally, proximity relations represent indis-

tinguishable outcomes in perceptive �elds. They ex-

press an inherent and irreducible limitation in our ability

to receive information from nature through any percep-

tive apparatus|no matter how intricate the latter may

be physiologically or technically.1

As anticipated, quantum sets can be used to con-

struct models of quantum logic. The set QP is rec-

ognized as a complete ortholattice, that is a tuple

1In [4] Bell uses this classi�cation to demonstrate that the

human visual �eld resembles quantum behavior through superpo-

sition. More recently, Planat [16] gave an interpretation of the

perception of time on the grounds of Poincar�e's ideas.

LP = (QP ;\P ;[P ;
? ), if we equip QP with a join op-

eration [P taken as the usual set-theoretic union, with

a meet operation \P of two quantum sets as the union

of all quanta in their set-theoretical intersection, and

with an unary relation ? with

?Q = fy 2 Xj (9x =2 Q)(xPy)g

for any Q 2 QP . A complete ortholattice is known to

be a proper model for quantum logic in the sense of von

Neumann and Birkho� [5]. However, it has not been

introduced here as a lattice of closed subspaces of a

Hilbert space but rather as a lattice of quantum sets

(or, parts) for a given proximity space. In this manner

proximity relations can be viewed as an alternative entry

to the quantum realm [3].

Not all sets in P(X) are quantum sets; nevertheless

a given proximity relation o�ers a mathematical clas-

si�cation of any two sets in P(X) as follows: Given

A;B 2 P(X), we say A and B are separated if A\B =

; and if for all x 2 A it is Qx \ B = ;; and due to the

symmetry of the proximity relation the same holds for

the elements of B. Generally, for any two sets A and

B which are not separated one distinguishes two cases:

superposition and incompatibility [19, 3, 4]. Both cases

resemble situations in Hilbert spaces of quantum sys-

tems where two states may arise in a linear superposi-

tion, and where two observables may be incompatible,

respectively.

There is a physical di�erence, however. To see it we

can choose LH, a complete ortholattice of closed sub-

spaces in a Hilbert space H, but at the same time we

may obtain another complete ortholattice LP through

any Hermitian operator admitting an orthonormal ba-

sis b � H of eigenvectors. Each eigenvector x 2 b

corresponds to a measurement outcome documented

with the associated eigenvalue �x 2 R, and a proximity

relation P is given as

(xPy) exactly if (�x is indistinguishable from �y ):

Now use P to de�ne LP and there is no necessity to

imply that LH and LP are isomorphic ortholattices in

any obvious sense.

4



Remarkably, the proximity space approach to quan-

tum logic is general. This follows because all com-

plete ortholattices LH representing closed subspaces

of a separable Hilbert space H are isomorphic (as or-

tholattices) to proximity spaces based on the proximity

relation

(sP t) exactly if (s; t) 6= 0 ;

for all s; t 2 Hnf0g, and where (:; :) is the inner prod-

uct on H [3]. It is in this sense that proximity re-

lations give a general approach to the mathematical

foundations of quantum physics. We can now make

this thought to a guiding principle.

Imperfection Principle. Every measurement within

the universe is imperfect, that is, it gives rise to a non-

trivial proximity relation.

With this basic statement at hand, a direct connec-

tion can be made to modal logic, i.e. a non-classical

logic that allows for modalities of propositions such as

possibility and necessity. This connection follows be-

cause every proximity relation naturally de�nes a model

of modal logic, referred to as Kripke model (or, Kripke

structure), where the proximity relation P becomes the

accessibility relation between possible worlds [19, 12].

However, such a link to modal logic presumes that a

proximity relation is already given. Thus, to be more

meaningful, can we point to a truly elementary acces-

sibility relation? Arguably the most basic relation in

mathematics is the membership relation '2' between

members and their sets, and in the next paragraphs

we lay out how modern set theory may create a large

variety of possible worlds. Let's begin this task by in-

troducing the second guiding principle.

Counting, simulating, and being in

the quantum universe

The simulation principle says that the physical uni-

verse is a discrete quantum automaton which executes

an unlimited and elementary process known from set

theory. The set theory in question is the Structural

Theory of Sets (STS) [1] which is a universal, non-

wellfounded set theory based on in�nitary modal logic.

Non-wellfounded set theories are more general than

conventional set theories, such as the classical Zermelo-

Fraenkel-Axiom of Choice (ZFC) set theory: they do

not have an Axiom of Foundation. In the former exotic

sets like

a = fb; ag or a = : : : fffbggg : : :

may appear which are unde�ned or which can lead to

paradoxes in conventional ZFC set theory. These un-

usual sets are termed hypersets: they represent self-

referential structures and situations because, in a seem-

ingly strange twist, a non-wellfounded set may become

a member of its own member [2]. Indeed, paradoxes

that plague classical set theory can be resolved in hy-

perset theory [1]. Structural set theory is a universal

set theory for two reasons. First, its model M can be

seen as the largest extension of a model of ZFC set

theory that still preserves the property of modal char-

acterization; and second, it circularly contains its own

model in M.

Structural set theory operates concurrently on two

sides. On one side it is formulated in in�nitary modal

logic, i.e. a modal logic which includes in�nite logical

conjunctions, while on the other side it represents all

those sets that satisfy modal sentences. These modal

sentences are analytical experiments which means they

are possible statements about a set, and the result is

the set that satis�es a statement. In this manner STS

is an analytical set theory where sets are discovered as

opposed to synthetic set theories, such as ZFC, where

sets are built by means of the usual iterative concept

of set.

There is a natural process that comes with a recur-

sive formulation of modal sentences about a set that

is the object of structural analysis. This process is rep-

resented as a counting sequence ordered by instances

of the ordinals. Each ordinal � gives rise to a stage

of structural unfolding of a set. Thus a priori an arbi-

trary set is completely unknown; instead it reveals its

structure only step-wise through the successive stages

of unfolding. The higher the stage ordinal � the better
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Figure 1: (A) Universal structural unfolding of the

set U for the �rst three stages ("1", "2", "3", ...).

The evolving tree structure represents the succession

of natural numbers, represented through ordinals, as

the elementary process in the physical universe. (B)

Illustration of the Bisimulation Principle realized at the

third stage: � = 3. Objects in M3
U are sets in non-

wellfounded set theory and links represent the member-

ship relation '2'. Bisimilar objects in M3
�
are possible

experimental outcomes of the universal quantum sys-

tem (the elements of the preferred basis b3). Links

depict the proximity relation between them, and the

root  � is the selected state of the current stage. The

universe as a quantum system thus becomes a simula-

tion of the structural unfolding process.

is our information about the analyzed set. For �nite �

the structural unfolding process becomes the recursive

formulation of natural numbers through von Neumann

ordinals, as shown in Figure 1 for the �rst three stages,

where each von Neumann ordinal is the well-ordered set

of all smaller ordinals.

But how to construct a quantum computer out of

this unfolding sequence of natural numbers? It turns

out that the Bisimulation Principle is entirely su�-

cient for this task. Structural unfolding generates a

�-sequence fM1
U ;M

2
U ; : : :g of Kripke models. At each

stage of unfolding a Kripke model forms a rooted tree

with edges that de�ne the accessibility relation through

the elementary membership relation 2 between sets

and their members (which in general are sets again).

This tree of structual unfolding then becomes the sim-

ulation object on the universal quantum automaton,

de�ned through the Kripke structure M�
�
with a prox-

imity relation P�
�
. More rigorously, a simulation is es-

tablished by the mathematical concept of bisimulation:

two Kripke structures are bisimilar if they are satis�ed

by the same collection of modal sentences, and bisim-

ulation is an equivalence relation �B between Kripke

structures.

Thus the decisive thought is to realize that two

Kripke models,M�
U andM�

�
, are equivalent in the sense

of bisimulation even though both represent di�erent

mathematical structures: M�
U refers to an abstract

membership structure in set theory revealed through

universal unfolding, while M�
�

refers to the physical

space of indiscernible experimental outcomes. In this

manner the preliminary simulation principle turns into

its proper mathematical form, the Bisimulation Princi-

ple, which says:

Bisimulation Principle. The physical universe is a

quantum simulation of the structural unfolding process

of an absolutely unknown set U; thus for all ordinal

stages � of structural unfolding of the universe U the

Kripke models M�
U and M�

�
are bisimilar, viz. M�

U �B

M�
�
:

That this is not an empty statement warrants the

next result, Proposition 1, which shows that the phys-
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ical space comes with the desired Hilbert space prop-

erties of quantum systems. This positive result [12]

directly addresses the �ve questions about the quan-

tum stage paradigm of the universe and it becomes a

cornerstone of the Bisimulation Principle.

Proposition 1 The Bisimulation Principle valid at ev-

ery �nite ordinal �, M�
U �B M�

�
, implies the following

statements:

(i) There is a Hilbert space H� � H��1 with even

dimensionality dimH� = N = 2�.

(ii) There is a preferred basis b� � H�, i.e. the basis

elements form a family of orthonormal elements

in H� such that each basis element is a non-

degenerate eigenvector of a Hermitian operator

�� acting on H�.

(iii) There is a unique basis element  � 2 b� which

is the selected quantum state of the universe at

stage � bisimilar to the root of the treeM�
U . This

basis element encodes the maximum information

about the current stage.

A basic test for any quantum mechanical descrip-

tion of the universe is the necessity for an explana-

tion of an apparently smooth three-dimensional man-

ifold structure that on many length scales does not

exhibit any quantum character whatsoever. A smooth

three-dimensional space is one of the basic pillars of

our external experience. Surely, there are further lev-

els of di�culties related to this issue; for instance, the

problem of how a quantum model of the universe may

plausibly emerge into a uni�ed description of space and

time resulting in a four-dimensional manifold structure

being locally isomorphic to Minkowski space. And �-

nally, the question of how a general representation of

space, time and matter could ever be accomplished to

incorporate full general relativity. With regard to any

solution of these problems we may have just gained

�rst insights into the possible building blocks of local-

ity in physics; for example, the factor structure of the

selected state of the universe may be responsible for a

classical Einstein universe, where the interplay of fac-

torized and entangled states may give rise to causal

sets [8, 9].

The present work permits for a slightly broader view

on the problem of the basic building blocks of the uni-

verse, which are the elusive fundamental degrees of

freedom in physics. Today there are at least two roads

leading to this problem. The �rst is followed in those

attempts which surmise that the fundamental degrees

of freedom of the universe should be closely related to

geometrical points in general relativity. All attempts

that try to construct a canonical quantization of gen-

eral relativity can be found here. But there is a sec-

ond path where en route it is not presumed that such

a relationship to general relativity exists. Physical ap-

proaches of the second type look for other fundamental

aspects of nature that are not directly associated with

relativistic space-time structure. Thus even though a

consistency proof with general relativity remains to be

done, other aspects of nature may be relevant to the

problem. Can we begin to explore these aspects and

identify their degrees of freedom?

There is a notion of continuity and distance for

proximity spaces. Given a proximity space (X; P ) we

say (X; P ) is P -continuous if for any x; y 2 X there is

a set fx; z1; : : : ; zm; yg, with integer m � 0, such that

the set fxPz1; : : : ; zmPyg exists. Thus even though

X is discrete, a proper notion of perceptual continuity

can be de�ned because within each sequential pair of

points in fx; z1; : : : ; zm; yg one point is indiscernible

from the other. We call the set fx; z1; : : : ; zn; yg open

path from x to y and concurrently assume that an open

path does not contain closed paths, i.e. each element

appears exactly once along the way. De�ne the length

of an open path as l(x; y) := m, and set the trivial

case l(x; x) = 0 for all x; y 2 X. It follows that for

any ordinal stage of the quantum universe the Kripke

structure M�
�
is P -continuous because it is a proximity

space. Since M�
�
is a rooted tree the path is unique

and we can de�ne the tree metric d�T on M�
�
as

d�T : b� � b� ! N0 with dT ( ; 
0) := l( ; 0):

We see that the Bisimulation Principle invokes a
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tree metric structure on all possible worlds in the pre-

ferred basis. But what does this metric mean physi-

cally? To better answer this question, let us �rst brie
y

reconcile the general character of metrics in physics,

and here especially the role of distance in space.

In classical physics, the elementary similarity rela-

tion between objects is their distance in three-dimensio-

nal space. It is given by a value of a function conven-

tionally understood as a metric on a three-dimensional

Riemannian manifold. Distance in space has been the

fundamental mathematical relation in physics because

space itself has been understood as the stage where

all physical action happens. Before general relativity

space had the role of a completely rigid and passive

structure unable to expose any interaction or feedback

with physical objects. Space (and time) served solely

as a block universe|not more than a convenient la-

beling method for physical objects in coordinates of

three-space and in time. General relativity gave space

and time a dynamical role and therefore a true physi-

cal meaning. However, general relativity still shares the

point of view that (local) three-dimensional space and

time ought to be fundamental elements of physical ex-

perience. This heritage is a remainder from times when

the universe was regarded as a rigid bock and it �nds

its expression in the fact that Einstein's �eld equations

determine a metric tensor of a four-manifold as a so-

lution. But, in a broader perspective, quantum theory

showed us that physical systems may in general have

degrees of freedom that do not require a representation

in three-dimensional space.2

The quest for a theory of quantum gravity is the

search for a theory of the fundamental degrees of free-

dom in physics; therefore di�culties can be expected

early in any attempt to construct a quantum version

of general relativity, simply because the latter initially

narrows the view to points three-space and time as the

main candidates while the former allows for a broader

view where the elementary degrees of freedom might be

altogether di�erent. What, then, can be said at least

about the fundamental degrees of freedom? A rea-

sonable minimum assumption would be the possibility

2For example, consider a quantum spin system.

of pairwise comparison because in any physical theory

there should be observationally accessible and distin-

guishable degrees of freedom; further, there should be

a degree of similarity for already distinguished degrees

of freedom.

In the present approach such a similarity relation

naturally comes with a tree metric. So, with the previ-

ous thoughts in mind, we want to extend our view on

similarity relations in physics and ask: are there physical

objects that are comparable by means of a tree met-

ric? There are such objects and to �nd them one has

to remember that physical objects are carriers of infor-

mation. This means that in general a physical object's

identity is not fully con�ned to its geometric points

in classical space-time, but that an essential part of

the object's identity in the universe can be found only

within the information that it carries.

Three examples may better illustrate this idea. A

printed book, for instance, could be correctly described

by means of a large amount of individual physical par-

ticles altogether forming a certain solid state. Such a

description would involve a vast collection of equations

representing the fabric of the paper, while other equa-

tions would describe the behavior of ink particles, and

so on. However, such a representation would make

it practically impossible to decipher the book's story

and an immanent part of the book's identity would be

lost. Another example are black holes. Black holes

can be interpreted as classical solutions to Einstein's

�eld equations but this is probably a minor part of

the whole story. Theoretical evidence holds that black

holes are carriers of information placed on their surface,

the event horizon, and this information will likely be

accessible through a full quantum description of black

holes. A classical black hole solution in general relativ-

ity merely becomes a description of the physical carrier

but it is probably not a suitable representation of the

information the black hole carries. Our third example

is the biological macromolecule DNA. Here too we may

give a reductionist description giving rise to a large col-

lection of interacting atoms in three spatial dimensions,

yet again such a representation would hardly reveal the

genetic code and its biological meaning.
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Hence, it is not hard to �nd physical objects which

are primely carriers of information and which play a

secondary role as extended objects in space, and any

theory which claims to present the universal physical

degrees of freedom should address this issue. Think

again of DNA: the essential similarity relation between

DNA strands is not their distance in three-dimensional

space but their phylogenetic distance in the Tree of

Life of all phyla. And, indeed, tree metrics and related

structures turn out to be very useful when it comes to

compare the information encoded on physical objects

[15].

We can now begin to study the discrete tree met-

ric structure that follows naturally from the Bisimula-

tion Principle of structural unfolding. Any tree met-

ric can be isometrically embedded through code words

into the Banach spaces L1 and l1. This characteriza-

tion determines an embedding of the tree metric into

the Euclidean space l2. The construction of an Eu-

clidean distance matrix out of the embedded vectors in

the Hilbert space l2 represents the self-test �
� and its

eigenvectors form a non-degenerate basis ofH�, which

constitute the possible worlds of the Kripke structure.

These are|in brief summary|the essential steps to

arrive, through induction over the ordinals [12], at the

main Proposition 1.

With regard to an emergent classical manifold struc-

ture Euclidean distance matrices for large N have re-

markable properties [6]; for example, when going from

small negative to large negative eigenvalues the corre-

sponding eigenvectors undergo a localization-delocali-

zation transition (Euclidean distance matrices have one

positive eigenvalue and all other eigenvalues are nega-

tive.) Large negative eigenvalues admit a continuous

representation of the Euclidean distance matrix lead-

ing to an integral equation locally similar to a Laplace

equation.

The follow-up problem of a three-dimensional space

can be approached by reverting to J. A. Wheeler's

old "bucket of dust" pregeometry model from 1964

[20] which, many years later and after Wheeler himself

dismissed it, was picked up again and generalized by

Nagels [14]. The model input is kept at a minimum

and assumes only a set of abstract nodes ("things")

which can be freely linked into pairs. Given (a) the

probability p of two arbitrarily chosen nodes to be ad-

jacent, i.e. to be a pair in the proximity relation, is

uniform and small, and (b) that the total number of

nodes is large, it can be shown that the most likely dis-

tribution of nodes has striking similarities with a closed

three-dimensional space of constant positive curvature.

Both prerequisites are met in our model as for higher

stages of structural unfolding, � � 1, this probability

p becomes inversely proportional to the (truly gigantic)

number of elements in the preferred basis, N = 2�.

Another interesting observation arises from the re-


exivity property of the proximity relation:  P�
�
 for

all preferred basis elements  2 b�. This is true math-

ematically because x 2 Qx for any quantum Qx , which

simply means that any measured result is indistinguish-

able from itself. As a consequence, through bisim-

ulation, self-referentiality is imposed onto all possible

worlds in M�
U leading to non-wellfounded sets. To this

end, re
exivity of an accessibility relation has been as-

signed to self-awareness of an agent represented by the

underlying Kripke structure [18], and the self-referential

structure of hypersets in structural set theory can be

directly linked to representational self-awareness [13].

Hence, with the Bisimulation Principle, deeper implica-

tions about the non-wellfounded quantum universe are

within reach.

It then appears not unreasonable to conclude that

natural numbers may indeed become both the primary

archetypes of the physically possible, and the tangible

connection between the spheres of matter and mind.
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