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Abstract

We argue that the notion of space-time has a physical meaning only for
describing real classical bodies while for constructing fundamental quantum
theories this notion is not needed at all. As an illustration, we describe our
approaches to the cosmological constant problem and gravity.

The phenomenon of quantum field theory (QFT) has no analogs in the
history of science. There is no branch of science where so impressive agreements
between theory and experiment have been achieved. At the same time, the level of
mathematical rigor in QFT is very poor and, as a result, QFT has several well-known
difficulties and inconsistencies. The absolute majority of physicists believe that agree-
ment with experiment is much more important than the lack of mathematical rigor,
but not all of them think so. For example, such a famous physicist as Dirac who made
a great contribution to QFT, wrote in Ref. [1]: ”The agreement with observation is
presumably by coincidence, just like the original calculation of the hydrogen spectrum
with Bohr orbits. Such coincidences are no reason for turning a blind eye to the
faults of the theory. Quantum electrodynamics is rather like Klein-Gordon equation.
It was built up from physical ideas that were not correctly incorporated into the theory
and it has no sound mathematical foundation.” In addition, QFT fails in quantizing
gravity since the gravitational constant has the dimension (length)2 (in units where
c = 1, h̄ = 1), and as a result, quantum gravity is not renormalizable.

One of the key ingredients of QFT is the notion of space-time background.
We will discuss this notion in view of the measurability principle, i.e. that a definition
of a physical quantity is a description of how this quantity should be measured. Since
physics is based on mathematics, intermediate stages of physical theories can involve
abstract mathematical notions but any physical theory should formulate its final
results only in terms of physical (i.e. measurable) quantities. Typically the theory
does not say explicitly how the physical quantities in question should be measured (a
well-known exclusions are special and general theories of relativity where the distances
should be measured by using light signals) but it is assumed that in principle the
measurements can be performed. In classical (i.e. nonquantum) theory it is assumed
that any physical quantity can be measured with any desired accuracy. In quantum
theory the measurability principle is partially implemented by requiring that any
physical quantity can be discussed only in conjunction with the operator defining this
quantity. However, quantum theory does not specify how the operator of a physical
quantity is related to the measurement of this quantity. Probably this problem will
be solved in the future quantum theory of measurements.
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In classical physics, the space-time background is the four-dimensional
space, the coordinates (t, x, y, z) of which are in the range (−∞,∞) (e.g. the Galilei
or Minkowski space). The set of all points of the space is treated as a set of possible
events for real particles in question and the assumption is that at each moment of time
t the spatial coordinates (x, y, z) of any particle can be measured with the absolute
accuracy. Then a very important observation is that, from the point of view of the
measurability principle, the space has a physical meaning only as a space of events for
real particles while if particles are absent, the notion of empty space has no physical
meaning. Indeed, there is no way to measure coordinates of a space which exists
only in our imagination. In mathematics one can use different spaces regardless of
whether they have a physical meaning or not. However, in physics spaces which
have no physical meaning can be used only at intermediate stages. Since in classical
physics the final results are formulated in terms of the Galilei or Minkowski space,
this space should be physical. For example, the Maxwell equations make it possible
to calculate the electric and magnetic fields, E(t, x, y, z) and B(t, x, y, z), at each
point of Minkowski space. These fields can be measured by using test bodies at
different moments of time and different positions. Hence in classical electrodynamics,
Minkowski space can be physical only in the presence of test bodies but not as the
empty space.

In General Relativity (GR) the range of the coordinates (t, x, y, z) and the
geometry of the space-time are dynamical. They are defined by the Einstein equations

Rµν +
1

2
gµνRc + Λgµν = (8πG/c4)Tµν (1)

where Rµν is the Ricci tensor, Rc is the scalar curvature, Tµν is the stress-energy
tensor of matter, gµν is the metric tensor, G is the gravitational constant and Λ is
the cosmological constant (CC). In modern theory space-time in GR is treated as a
description of quantum gravitational field in classical limit. The coordinates and the
curvature of the space-time are the physical quantities which can be measured by using
(macroscopic) test bodies. Since matter is treated as a source of the gravitational field,
in the formal limit when matter disappears, the gravitational field should disappear
too. Meanwhile, in this limit the solutions of Eq. (1) are Minkowski space when
Λ = 0, de Sitter (dS) space when Λ > 0 and anti-de Sitter (AdS) space when Λ < 0.
Hence in GR, Minkowski, dS or AdS spaces can be only empty spaces, i.e. they
are not physical. This shows that the formal limit of GR when matter disappears is
nonphysical since in this limit the space-time background survives and has a curvature
- zero curvature in the case of Minkowski space and a nonzero curvature in the case
of dS or AdS spaces.

To avoid this problem one might try to treat the space-time background
as a reference frame. In standard textbooks (see e.g., Ref. [2]) the reference frame
in GR is defined as a collection of weightless bodies, each of which is characterized
by three numbers (coordinates) and is supplied by a clock. Such a notion (which
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resembles ether) is not physical even on classical level and for sure it is meaningless
on quantum level.

In approaches based on holographic principle it is stated that the space-
time background is not fundamental but emergent. For example, as noted in Ref. [3],
”Space is in the first place a device introduced to describe the positions and movements
of particles. Space is therefore literally just a storage space for information...”. This
implies that the emergent space-time background is meaningful only if matter is
present. The author of Ref. [3] states that in his approach one can recover Einstein
equations where the coordinates and curvature refer to the emergent space-time.
However, it is not clear how to treat the fact that the formal limit when matter
disappears is possible and the space-time background formally remains although, if
it is emergent, it cannot exist without matter.

As noted above, from the point of view of quantum theory, any physical
quantity can be discussed only in conjunction with the operator defining this quantity.
From this point of view, a problem arises how time should be defined on quantum
level and whether it is possible to define an operator corresponding to time. For
example, we cannot construct a state which is the eigenvector of the time operator
with the eigenvalue -5000 years BC or 2013 years AD. The problem is very difficult
and is discussed in a vast literature (see e.g., Refs. [4] and references therein).

In standard quantum mechanics the position operator of each particle is
well defined but the quantity t is only a parameter defining evolution in classical limit.
A problem arises how to define the position operator in relativistic quantum theory.
Here a particle is described by an irreducible representation (IR) of the Poincare al-
gebra implemented in the momentum space, i.e. in the space of functions ψ(p) such
that the momentum operator P is the operator of multiplication by p. By analogy
with nonrelativistic theory, one might try to define the position operator by using the
Fourier transform of wave functions in momentum space. However, it has been well-
known since the 1930s [5] that, when quantum mechanics is combined with relativity,
there is no operator satisfying all the properties of the spatial position operator. In
other words, the coordinates cannot be exactly measured even in situations when
exact measurements are allowed by the non-relativistic uncertainty principle. For
example, in the introductory section of the well-known textbook [6] the following
arguments are given in favor of this statement. Suppose that we measure the coor-
dinates of an electron with the mass m. When the uncertainty of coordinates is of
the order of h̄/mc, the uncertainty of momenta is of the order of mc, the uncertainty
of the energy is of the order of mc2 and hence creation of electron-positron pairs is
allowed. As a consequence, it is not possible to localize the electron with the accu-
racy better than its Compton wave length h̄/mc. Hence, for a particle with a nonzero
mass the exact measurement is possible only either in the non-relativistic limit (when
c → ∞) or classical limit (when h̄ → 0). If m = 0 is possible, the problem becomes
even more complicated since the photon can create other photons with lesser energies.

A rather striking example demonstrating problems with space-time in rel-
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ativistic quantum theory is as follows. Consider a photon emitted in the famous 21cm
transition line between the hyperfine energy levels of the hydrogen atom. The phrase
that the lifetime of this transition is of the order of τ = 107 years implies that the
width of the level is of the order of h̄/τ , i.e. experimentally the uncertainty of the
photon energy is h̄/τ . Hence the uncertainty of the photon momentum is h̄/(cτ) and
with standard definition of the coordinate operators the uncertainty of the coordinate
is cτ , i.e. of the order of 107 light years. Then there is a nonzero probability that
immediately after its creation at point A the photon can be detected at point B such
that the distance between A and B is 107 light years.

A problem arises how this phenomenon should be interpreted. For ex-
ample, one might say that the requirement that no signal can be transmitted with
the speed greater than c has been obtained in Special Relativity which is a classical
(i.e. nonquantum) theory which operates only with classical space-time coordinates.
In quantum theory the existence of particles moving with the speed greater than c
(tachyons) is not prohibited (see e.g. a discussion in Ref. [7]). On the other hand,
a fully opposite explanation (pointed out to me by Alik Makarov) is as follows. We
can know about the photon creation only if the photon is detected and when it was
detected at point B at the moment of time t = t0, this does not mean that the photon
travelled from A to B with the speed greater than c since the time of creation has an
uncertainty of the order of 107 years. Note also that in this situation a description
of the system (atom + electric field) by the wave function (e.g. in the Fock space)
depending on a continuous parameter t has no physical meaning (since roughly speak-
ing the quantum of time in this process is of the order of 107 years). If we accept
this explanation then we should acknowledge that in some situations a description of
evolution by a continuous classical parameter t is not physical. This is in the spirit
of the Heisenberg S-matrix program that in quantum theory one can describe only
transitions of states from the infinite past when t→ −∞ to the distant future when
t→ +∞.

In QFT particles are described not only by IRs but also by local quantum
fields. A quantum field ψ(x) = ψ(t,x) combines together two IRs with positive and
negative energies. The IR with the positive energy is associated with a particle and
the IR with the negative energy is associated with the corresponding antiparticle. In
that case there is no physical operator corresponding to x, i.e. x is not measurable.
In addition, as it has been shown for the first time by Pauli, in the case of fields with
an integer spin it is not possible to construct a positive definite charge operator and
in the case of fields with a half-integer spin it is not possible to construct a positive
definite energy operator.

Hence a problem arises why we need local fields at all. They are not
needed if we consider only systems of noninteracting particles. Indeed, such systems
are described by tensor products of IRs and all the operators of such tensor products
are well defined. Local fields are used for constructing interacting Lagrangians which
in turn, after quantization, define the representation operators of the Poincare algebra
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for a system of interacting particles under consideration. Hence local fields do not
have a direct physical meaning but are only auxiliary notions.

It is well-known (see e.g. the textbook [8]) that quantum interacting local
fields can be treated only as operatorial distributions. A well-known fact from the
theory of distributions is that their products at the same point are poorly defined.
Hence if ψ1(x) and ψ2(x) are two local operatorial fields then the product ψ1(x)ψ2(x) is
not well defined. This is known as the problem of constructing composite operators. A
typical approach discussed in the literature is that the arguments of the field operators
ψ1 and ψ2 should be slightly separated and the limit when the separation goes to zero
should be taken only at the final stage of calculations. However, no universal way
of separating the arguments is known and it is not clear whether any separation
can resolve the problems of QFT. Physicists often ignore this problem and use such
products to preserve locality (although the operator of the quantity x does not exist).
As a consequence, the representation operators of interacting systems constructed in
QFT are not well defined and the theory contains anomalies and infinities. Also, one
of the well-known result in QFT is the Haag theorem and its generalizations (see e.g.
Ref. [9]) that the interaction picture in QFT does not exist. We believe it is rather
unethical that even in almost all textbooks on QFT this theorem is not mentioned
at all.

In Loop Quantum Gravity (LQG), space-time is treated on quantum level
as a special state of quantum gravitational field. This construction is rather compli-
cated and one of its main goals is to have a quantum generalization of space-time
such that GR should be recovered as a classical limit of quantum theory. However, so
far LQG has not succeeded in proving that GR is a special case of LQG in classical
limit.

We believe that in view of this discussion, it is unrealistic to expect that
successful quantum theory of gravity will be based on quantization of GR or on
emergent spacetime. The results of GR might follow from quantum theory of gravity
only in situations when space-time coordinates of real bodies is a good approximation
while in general the formulation of quantum theory should not involve the space-time
background at all.

If the reader is still reading this note, he or she might say: ”Well, suppose
that I accept the above arguments. However, any criticism can be constructive only
if something positive is proposed instead. Are there any ways to construct quantum
theory without space-time?”. In the remaining part of this note we argue that the
answer is ”yes” and, as an example, we describe our approach to the cosmological
constant problem and gravity.

As noted above, space-time is not needed if we consider only systems of
free particles and in standard theory space-time is used for constructing Lagrangians
of interacting field. The interaction Lagrangians where the fields interact at the same
points is the main source of difficulties and inconsistencies of QFT. So a problem
arises whether the notion of interaction can be modified and moreover, whether this

5



notion is needed at all.
Let us consider an isolated system of two particles and pose a question of

whether they interact or not. In classical nonrelativistic and relativistic mechanics
the criterion is clear and simple: if the relative acceleration of the particles is zero
they do not interact, otherwise they interact. However, those theories are based on
Galilei and Poincare symmetries, respectively, and there is no reason to believe that
such symmetries are exact symmetries of nature. We will see below that in quantum
theory based on de Sitter symmetry the relative acceleration of two particles is not
zero even if no interaction is introduced (i.e. the particles are treated as free).

The usual approach to symmetry on quantum level is as follows. Since
classical space-time (e.g. Minkowski or de Sitter space-time) is invariant under the
action of a group (e.g. the Poincare or de Sitter group), the operators describing the
symmetry should satisfy the commutation relations of the Lie algebra of the symmetry
group. This approach is in the spirit of the well-known Klein’s Erlangen program in
mathematics.

However, as we argue in Refs. [7, 10], quantum theory should not be based
on classical space-time background and the approach should be the opposite. Each
system is described by a set of independent operators. By definition, the rules how
these operators commute with each other define the symmetry algebra. So, a question
is not what space-time background is ”better” but what symmetry algebra is more
pertinent for describing nature. From this point of view, the dS and AdS algebras
are more pertinent than the Poincare algebra and detailed arguments are given e.g.
in Refs. [7, 10]. In particular, the Poincare algebra is simply a special case of the de
Sitter algebras when a parameter R, which can be called the radius of the Universe,
goes to infinity. In the literature, instead of R the cosmological constant Λ is often
used and the relation between those quantities is Λ = 3/R2.

The calculation of the relative acceleration of two free particles in de Sitter
invariant quantum theory involves the following steps.

At the starting point we have no space-time and no dimensionful parame-
ters. The only information we have is how wave functions describing particles under
consideration are constructed and how the operators of the algebra act on such wave
functions. This is the maximum possible information in quantum theory.

The next step is that we introduce a parameter R with the dimension
length and instead of the dS operators M40 and M4k (k = 1, 2, 3) (see e.g. Refs.
[7, 10]) work with the energy operator E = M40/R and the momentum operator P
such that P k = M4k/R. Then we define classical time t as a parameter describing
the evolution according to the Schroedinger equation and define the position operator
rj of particle j (j = 1, 2) such that it acts on wave functions ψ(pj) of particle j in
momentum representation as ih̄∂/∂pj (as in standard quantum mechanics).

A standard quantum-mechanical calculation, which is described in detail
in our papers (see e.g. Ref. [10] and references therein) shows that in classical ap-
proximation to the dS quantum theory the relative acceleration a of two free particles
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is a = Λc2r/3 where r is the classical vector of the relative distance between the
particles and Λ = 3/R2. This result shows that the space-time description arises only
in classical limit of quantum theory. From the formal point of view, the result is the
same as in GR on dS space. However, our result has been obtained by using only stan-
dard quantum-mechanical notions while dS space, its metric, connection etc. have not
been involved at all. The derivation clearly demonstrates that the phenomenon of the
cosmological acceleration can be easily and naturally explained from first principles
of quantum theory without involving dark energy, empty space-time background and
other artificial notions (see Refs. [7, 11] for a more detailed discussion).

The above example shows that the choice of the symmetry algebra results
in an effective interaction between the particles. Hence one might pose the following
problem: for which symmetry algebra the relative acceleration of two free particles is
the same as for the Newton gravitational law (with possible relativistic corrections)?
In view of the above result one might think that the necessary alebra is not the
dS one since the relative acceleration of two bodies in dS theory is repulsive and
proportional to r, i.e. not attractive and proportional to 1/r2 for gravity as one
would expect. In this connection we note the following. Since all the dS operators
are conventional or hyperbolic rotations, the distances in dS theory should be given
in terms of dimensionless angular variables. The angular distance ϕ and the standard
distance r are related as ϕ = r/R (see a discussion in Ref. [7]). It is well known
that classical approximation to quantum mechanics cannot be applied for calculating
quantities which are very small. If the distance between two bodies is large then
the angular distance ϕ is not anomalously small and can be calculated in classical
approximation. However, the distances between bodies in the Solar System are much
less than R and therefore the angular distances between them are very small if R is
very large.

In Ref. [7] it has been argued that standard classical approximation does
not apply for macroscopic bodies in the Solar System and that the standard distance
operator should be modified. We have given a modification, such that the distance
operator has correct properties and classical approximation can be applied. As a
result, the classical nonrelativistic Hamiltonian is

H(r,q) =
q2

2m12

− const m1m2R

(m1 +m2)r
(

1

δ1
+

1

δ2
) (2)

where q is the relative momentum, m12 is the reduced mass, const is of order unity
and δi (i = 1, 2) is the width of the dS momentum distribution in the wave function of
body i. The second term in the right-hand-side of this equation is the dS correction
to the standard result in Galilei invariant theory. Therefore the Newton gravitational
law can be recovered if const · R/δi = Gmi where G is a quantity which should
be calculated (see below). It has also been shown that the proposed modification
naturally gives a correct value for the precession of Mercury’s perihelion. We have
also discussed gravitational experiments with light but in view of the effect of the
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wave-packet spreading of the photon wave function (see Ref. [13]) this discussion
needs to be revisited.

It is seen from Eq. (2) that the dS correction to standard Hamiltonian
disappears if the width of the dS momentum distribution for each body becomes very
large. In standard theory there is no strong limitation on the width of distribution;
the only limitation in classical approximation is that the width of the dS momentum
distribution should be much less than the mean value of this momentum. Therefore
in standard theory the quantities δi can be very large and then the dS correction
practically disappears. However, as shown in Ref. [7], in a quantum theory over
a Galois field (GFQT) discussed in our previous publications, this is not the case.
GFQT is an approach to quantum theory where wave functions and operators are
considered in spaces not over complex numbers but over a Galois field. Each Galois
field is defined by a prime number p and in GFQT this number can be treated such
that no physical quantity can be greater than p. In other words, p is the greatest
possible number in nature. Hence in GFQT there are no infinitely small and infinitely
large numbers and divergences cannot exist in principle. In our papers (see e.g. Refs.
[12] and references therein) we argue that GFQT is more physical than standard
theory and sooner or later quantum theory will be discrete and finite.

As shown in Ref. [7], for the validity of the probabilistic interpretation
of a wave function in GFQT, the width of the dS momentum distribution should
be not only much less than p but even much less than lnp. Since p is expected to
be a huge number, this should not be a serious restriction for elementary particles.
However, when a macroscopic body consists of many smaller components and each of
them is almost classical, a restriction on the width of the momentum distribution is
stronger when the number of components is greater. This qualitatively explains that
the width of the momentum distribution in the wave function describing a motion of
a macroscopic body as a whole is inversely proportional to the mass of the body. As
a consequence, Eq. (2) becomes the Newton law of gravity. In contrast to standard
approach to gravity where the gravitational constant is taken from the outside, in
GFQT it should be calculated. A very rough estimation [7] gives

G ≈ R

mN lnp
(3)

where mN is the nucleon mass. If R is of the order of 1026m then lnp is of the order
of 1080 and therefore p is of the order of exp(1080). In the formal limit p→∞ gravity
disappears, i.e. in our approach gravity is a consequence of finiteness of nature.

In the mainstream approach, gravity is treated as the fourth interaction
which should be combined with the electromagnetic, weak and strong interactions.
However, in our approach gravity is not an interaction but simply a kinematical effect
in dS theory over a Galois field when at least one body is macroscopic and can be
considered in classical approximation to quantum theory. In particular, the notion of
gravitational interaction between two elementary particles has no physical meaning.
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The above examples with the cosmological constant problem and gravity
give strong arguments that the space-time description has a physical meaning only
for describing real classical bodies while the construction of fundamental quantum
theories should not involve space-time at all.
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