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Abstract

Mathematics, via model theory, gives us the possibility that natural

numbers could be understood as varying objects. We analyze this from

the point of view of physics were standard models of natural and real num-

bers are not always absolute or �xed. The extended equivalence principle

appears covering the changes of the numbers. As the consequence strange

exotic geometry emerges with which a kind of gravity is assigned. Taking

such perspective, from the foundations of mathematics, sheds completely

new light on the nature and construction of a theory of quantum gravity.

1 Introduction

Modelling and explaining the world is one of the tasks of everyday practice of
theoretical physicists. Mathematics is a tool box one can always reach to, for
picking up a suitable tool. The tools are always unchanged and in the same place
in the box and we know well which should be used in what situation. Language in
which mathematical theories are formulated is irrelevant, but necessary, supply.
It is transparent from the point of view of practicing physicist. For example,
natural numbers are just mathematical 'bricks' or 'concrete blocks' which serve
as absolute measure for any construction. Real numbers are similarly �xed.
Every input of a physical experiment is represented by such understood numbers
in this or another way.

The above statements, even they are oversimpli�ed, seem to be accurate
generally. Even though there exist some mathematical subtleties regarding the
numbers and the language, these subtleties are �nally irrelevant to physics.
Physicists are looking for a simple and universal layer of the reality. But is such
simpli�cation always a reasonable rule? In fact, I show that owing many di�cul-
ties arising in mathematics and physics in particular dimension 4 the statements
we started with might be completely wrong (maybe, with the exception of the
�rst one). History of mathematics and physics teaches us constantly that even
most solid fundamentals can become one day just illusion or approximation at
best. Let me mention only relativization of absolute space and time in one
uni�ed and dynamical space-time entity, non-absoluteness of coincident events,
quantum phenomena etc., etc..
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My story begins with space-time. Thinking about models for space-time,
or our Universe, heavily relies on the concept of mathematical spaces - di�er-
entiable manifolds. Di�erential manifold in physical dimension 4 is the space
which locally looks like the simplest 4-d piece, i.e. R4. This last, however,
apparently is built of real numbers belonging to the real line R. We are so ac-
customed to using the reals in various physical theories modelling reality, that
almost nobody is cast to doubt in their uniqueness or the right to use them. In
fact, we do. It does not mean I am so brave to do so, it simply means that such
possibility is well founded in mathematics and has profound consequences for
physics. Yes, indeed, the approach is not popular. It is mainly because of the
very fundamental and constant meaning assigned to natural and real numbers
especially in physical theories. We discussed that point above and will come
back again to it later. The numbers are involved in the constructions as abso-
lute entities with well understood and constant meaning assigned. Similarly as
Newton's space was serving as the unchanged hence, absolute, box for appar-
ently external events and in external time. Perhaps now the time has come to
consider numbers in physics in a relativistic way.

This possibility would not be a big surprise, if one realizes that mathematics
involved in both, quantum gravity and classical physics, should be applicable
in all the scales of energy, from big bang, black holes to the everyday's scales.
The mathematical formalism seems to be extremely invariant �xing the absolute
point of view of the 'observer' with her/his absolute mathematical tools, like
classical logic and real or natural numbers, that have to maintain relevance in all
those extremely di�erent physical regimes. It would be quite a surprise if there
were no need, whatever, to modify those basic tools, and the absolute observer
point of view, when trying to describe such extremely di�erent limits properly.
And it would be surprising if mathematics itself had not supplied suitable tools.

However, many questions arise. What is the proper stage for observing
changes in natural or real numbers? What is the meaning of such changes?
One probably needs natural and real numbers again to grasp these changes. Or,
maybe, physical theories are built, such that, the e�ects due to the varying num-
bers are not physically observable, or even valid, in any sense. However, owing
the variations of the numbers in mathematics, they potantially could a�ect the
formalism of theories of physics. To make them irrelevant we need some action.
This would be similar to the e�ects of a free falling lift seen (locally) from the
point of view of observer in this lift. The observer can not decide which is true:
gravity is switched o� or the lift falling. However, locality is crucial here. From
the global point of view one can not switched o� gravity completely in entire
space-time by the choice of any suitable reference frame. More technically, we
say that general covariance is spoiled by the non-tensorial nature of Christo�el
symbols and gravity e�ects enter the stage. One can rephrase this by saying
that general covariance of some expressions in physical theories is broken and
thus, the e�ects of gravity can be included. If all the expressions (including
Christo�el symbols) in a theory were independent of the choice of reference
frame, gravity e�ects would not be seen in such a theory.

By the analogy, we will argue in this essay that the incomplete invariance of
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a theory with respect to the di�erent representations (models) of the systems of
numbers, is the mechanism for the inclusion of important mathematical e�ects.
As we will see they are highly relevant to physics and have especially dramatic
consequences in dimension 4.

2 Model theory and varying numbers

First, let us approach the changes of numbers from suitable mathematical per-
spective. To grasp what the changes are we need to have clear meaning what
the numbers are. To this end one formulates the theory of natural and real
numbers. To formulate a theory we need a formal language with its alphabet
of symbols. Without diving into too much details let us assume that a theory
of natural numbers is formalized as the Peano arithmetic (PA) with its, say, 10
axioms expressing the fundamental properties of natural numbers. Some prop-
erties of natural numbers require reference to sets. That is why, again following
the historical development of the subject, let us assume that a theory of all
sets is formalized as the Zermelo-Frankel set theory (ZF). It is axiomatic formal
system. However, the crucial property of the both axiomatizations, PA and ZF,
is the language. The language in which both theories are axiomatized is the
�rst-order language, which roughly means that one does not refer to the subsets
of the �xed 'universe of discourse', or does not quantify over predicates. Only
quanti�cation over individual points of that universe are allowed. This has,
however, profound consequences. Suppose that a theory T (a set of sentences
in the �rst-order language L) is not contradictory (is consistent). Then, as was
shown by Gödel, T has a model M . By model we mean a relational system, or
the carefully constructed universe for the theory T , where every sentence from
T is valid. Let |L| be the cardinality (the number of sentences and formulas,
usually in�nite) of the language L.

Theorem 1 (Löwenheim-Skolem, 1920). If a set T of sentences in the �rst-
order language L has an in�nite model, then it has a model of arbitrary cardi-
nality ≥ |L| .

Both theories, PA and ZF, are formulated in the countable language, which
means they have countable models. For PA it is not very peculiar since we know
that standard natural numbers N = {0, 1, 2, 3, 4, ...} constitute the countable set
which is a model for PA (with the suitable relations between the numbers). But
Th. 1 states that there are also universa of 'natural numbers' which are not
countable. In fact there is plenty of such universa and together with countable
non-isomorphic models, we call them non-standard models of PA. The case of ZF
is even more surprising: all properties which one can prove in ZF about arbitrar-
ily high cardinality sets are ful�lled in a countable model. This is more-or-less
what is called Skolem paradox. Regarding real numbers their full topological
structure is not expressible in the �rst order language, though all their 1-st order
properties are also expressible in some non-standard models. The non-standard
models have to exist and can not be just removed from 1-st order theories. So,
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even the theory of natural numbers, PA, in mathematics is ambiguous in the
sense that it can not refer uniquely to the standard model. For the nonstandard
models of natural and real numbers we use ?N and ?R symbols, respectively.

Even though there are non-standard models of PA, one can show that all are
conservative extensions of the standard numbers. This means that �nite initial
segments of N are preserved in every ?N. However, taking into account also
informal ingredients ever-present in every formal construction, it was proposed
that the following hypothesis (main hypo) should be considered as a low level
assumption [2]:

For any formal theory there exists a pair of non-isomorphic models (N, ?N) of
PA which are indistinguishable, meaning in any formal extension of the theory
of any order there does not exist any formula in this extension which would
express any di�erence or non-isomorphism of the models.

We use N ' ?N to denote this relation. Now, starting from such background
assumption one could try to give a formal meaning to it. One consequence is
that the initial segments of naturals should be somehow modi�ed... On such
modi�ed natural numbers there are spanned corresponding reals. The point is
that there should exist a 'limit' where the above indistinguishability takes place
and one where it does not. Some mathematical objects require both limits to
be properly described.

3 Consequences: geometry, gravity and quantum

physics

Now, we can come back to the discussion of invariance of mathematics with
respect to the choice of (non-standard) model of arithmetics. That would mean,
in particular, that given a local coordinate atlas {Rnα}α∈I for a manifold Mn

with the transition functions φαβ : Rnα → Rnβ , allows now for the non-standard
extension: φ?αβ : Rnα → ?Rnβ , and the resulting structure of Mn is still the
standard smoothness structure. The description of Mn by such non-standard
patches might be seen as redundant or even irrelevant extension of the standard
smooth Mn. However, let us allow for the possibility that the formalism used
to describe smooth manifolds is not completely invariant with respect to the
choice of varying numbers. Extra e�ects, comparing with the standard case,
can appear and the resulting structure becomes di�erent, in some non-redundant
sense. First, it can happen that the resulting structure is still smooth. In fact we
are assuming this. Next, the structure appears as 'classical' in a sense that it is
not just an artifact or remnant of the non-standard constructions involved, but
rather the structure can be understood purely in standard terms and it exists
as classical object, though di�erent from the initial one. The resulting smooth
structure is equivalent to a smooth structure described without any reference to
non-standard ?N or ?R. However, what does di�erent smooth structure, which
would be non-equivalent to the initial one, mean in this context, and is it real
at all? Let us be more systematic. Based on the indistinguishability rule from
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the previous section we can de�ne:

i. We say that some mathematical object (construction) survives in the limit
where the indistinguishability R ' ?R holds, provided the object has
descriptions both in the theory where R ' ?R and in the limit where R 6=
?R. The object surviving the limit, can be considered in both situations.

ii. We say that an object survives in the above limits as the same object if it
survives the limit, and if it is the same object, up to a natural equivalence
of the structures, before and after taking the limit. In the case of smooth
structures the natural equivalence is given by di�eomorphisms.

iii. The object surviving the duality as the same object will be called model-
theoretically self-dual one (MTSD).

The following, quite obvious, theorem explains the role of the model-theoretic
duality

Theorem 2 (Th. 4, [2]). Let us suppose that a smooth di�erential structure
on R4 is the object surviving in the R ' ?R limit as the smooth di�erential
structure on R4 (it is model-theoretically self-dual). Then this structure cannot
be standard one.

Now, we conjecture that MTSD smooth R4 does not refer to any non-
standard constructions and it is di�erent 'real' smooth R4. Here mathemat-
ics, or Nature, comes with help: mathematicians were able to prove in 1980's,
that indeed there exists exotic R4 which is non-di�eomorphic to the standard
smooth R4, though, still it is the same topological R4. The history of the proof
of its existence is a fascinating story in itself and �nally it appeared that there
are in�nite continuum many (more than just in�nite countably many) di�erent
smooth structures on R4. And only for R4 this is true - any other Rn, n 6= 4
is smooth in exactly unique way. Let us note the important thing � all exotic
R4s are smooth Riemannian 4-manifolds, hence plenty of smooth metrics should
exist on each of them. However, none of these metrics is known explicitly today.
Mathematics suitable for this purpose is partly unknown.

In our model-theoretic approach, we arrive at the point where the exten-
sion (?EP) of the relativistic equivalence principle (EP) emerges such that the
choice of non-standard coordinate frames is now allowed. One mathematical
consequence of such ?EP is the possible inclusion of the e�ects due to exotic
smooth geometries on R4 as the result of the non-complete invariance of a for-
malism of a theory with respect to the choice of di�erent model of natural
numbers. From the point of view of physics we would be including gravitation
to a theory due to the fact that exotic R4s are non-�at 4-dimensional smooth
manifolds.

One would wonder why we are using yet another relativistic principle to
generate Einstein gravity which is already successfully generated and described
by the usual EP of general relativity (GR). The answer seems to be surprisingly
essential: Einstein GR is inherently classical theory. The extension of the EP
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such that it generates exotic smoothness on R4, allows for crossing the border
line between classical and quantum gravity in dimension 4. This is due to the
remarkable connection of exotic 4-geometries on R4 with quantum theories. Let
me mention here just some results without presenting details.

a. The quantization of electric charge can be explained by allowing for ex-
istence a region R4 in 4-space-time which would be exotic smooth rather
than standard smooth. The e�ect is the same as if there exists a magnetic
monopole [7, 10].

b. The gravitational corrections to (quantum) Seiberg-Witten theory (SW)
on �at R4 are generated by formulation of SW on exotic R4 [15].

c. Superstring theory (ST) is a theory of quantum gravity (QG) in 10 di-
mensions. Some con�gurations of D-branes and NS-branes correspond
to exotic R4 appearing in well-de�ned regions of the string background
[12]. Also �ux on S3-part of some string backgrounds can be generated
by exotic R4 where this S3 is suitably embedded.

d. Also in ST, some quantum branes correspond to exotic R4 [14]. Moreover,
a new class of quantum topological branes emerges and is connected with
the so called wild embeddings of spaces in topology [11].

e. Some states of e�ective quantum matter, as Kondo state, correspond to
exotic 4-geometry appearing in 4-space-time [13].

Now, let us turn to the EP of GR which roughly says:
The observer in 4-d space-time can locally cancel gravity e�ects by the choice

of special coordinate frame. In manifold's space-time language this means the
choice of the local patch in the atlas, i.e. the standard �at R4.

Owing the above connections with quantum gravity and quantum �eld the-
ory the extended version of EP, ?EP, could read:

In 4-d space-time a (mathematical) observer, facing some quantum or QG
e�ects, can locally replace some of these e�ects by the choice of non-�at exotic
4-geometry on R4.

Whether this mathematical observer can become physical one, or whether
the exotic 4-geometry patch becomes valid physical coordinate frame, we leave
as open possibility here. In principle, however, it is possible. Anyway, dual
descriptions in terms of exotic geometry or quantum (gravity) e�ects can be
always applied leading to new insights.

Such extended ?EP formulation works in analogy with ordinary EP in GR
where non-tensorial nature of Christo�el symbols includes/excludes gravity ef-
fects into a theory. Here, we have rather non-invariance of mathematical struc-
tures of a theory with respect to the limits where some models of Peano arith-
metics are di�erent or are indistinguishable. This means that we extend the
allowed local patches over non-standard ?R4. The mathematical consequence
is the appearance of MTSD smoothness on R4 which is conjectured to be ex-
otic smooth R4. Physically, it can generates/cancells some quantum, also QG,
e�ects in a theory.
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Let us try to grasp more clearly what this all means for our current un-
derstanding of the subjects involved. First, we do not have yet satisfactory
and e�ective constructions of exotic smooth structures on open 4-manifolds like
R4, nor we know the mathematics suitable for. The model-theory gives some
impact.

Second, exotic R4s exist only in dimension 4, i.e. none Rn for n 6= 4 is exotic.
4 is the physical dimension where in particular standard model of particles and
GR - a classical theory of gravity, are formulated. So, maybe partially, the
problems with exotic R4 are physically valid. The extended EP gives a method,
inspired by GR and model theory, to include e�ects of exotic R4s into a theory.

Third, exotic smooth R4s are all topologically the simplest Euclidean 4-
space, R4, and all have to be non-�at smooth Riemannian 4-manifold, hence a
kind of gravity could be, and, in fact, is present on such spaces.

Fourth, we do not have any satisfactory theory of QG in dimension 4. Even
worse, we know that something fundamental is missing in our present under-
standing of the subject. But QG in 4-d should also deal with exotic R4s and
their e�ects have been mostly ignored by existing theories of QG. The extended
EP is a way, following GR, for inclusion certain quantum e�ects to a theory.

Fifth, the connection of exotic 4-geometries with quantum physics and string
theory serves as a new aspect of the quantum theories applicable exclusively in
dimension 4.

We see that very profound problems of physics and also purely mathematical
are gathered in dimension 4. Possibly, building the successful theory of QG in
dimension 4 requires a ground level rethinking of the nature of natural numbers.
Here we have a direct indication and explanation of how it could be. The
presented approach is not very technical at every part, but rather conceptual in
many aspects. However, based on deep and rigorous mathematics, it questions
assumed basic a'priori absoluteness of numbers in physical theories. Moreover,
it is rather necessary step to be considered on the way to a �nal QG theory in
4-d. A fruitful and intriguing perspective for physics, thus, emerges.

We are just at the beginning of the programm of uncovering various rela-
tions of exotic R4s with quantum phenomena and foundations of mathematics.
Following this programm can shed light also on the foundations of mathematics.
This is not a big surprise at all that physics and mathematics could be connected
(again) also at this very basic level. The exceptional historical coincidences in
mathematics and physics, and the inherent nature of physical world itself, focus
the attention and e�ort of many researchers at di�culties emerging particularly
in dimension 4. The understanding of the interplay between physics and math-
ematics in this speci�c domain, serves as a way to uncover certain mysteries of
QG in 4-d.

4 Remarks

Let me close this short presentation with some remarks which are relevant here
but were not included in the main part of the essay.
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The presented approach is just scratching of the surface in some aspects.
Namely the model-theoretic arguments yield their di�erent mathematical per-
spective when turning to category theory, especially topos theory, see e.g. [5, 4].
However, I refrained using the categorical methods here, since the approach
is not reducible completely and the universality of category theory would hide
some ideas. On the other hand, I did not make any use of many other, at-
tractive from the point of view of model theory and exotic R4, constructions.
Let me mention just Isham and Doering or Landsman, and their co-workers,
approaches on the application of topos theory to theories of quantum physics,
or the Takeuti's Boolean-valued analysis, where real numbers are realized as
self-adjoint operators on a Hilbert space in a Boolean topos, or the Moerdijk-
Reyes smooth toposes. Moreover, there exist categorical versions of relativity
principle which are based rather on the invariance of mathematics with respect
to the choice of a topos with natural numbers object (tovariance principle by
Landsman, Heunen and Spitters [6], or Bell invariance [1]). Though, they should
be again somehow broken to include special geometry e�ects into a theory.

There is the substantial recent activity on relating string theory with exotic
4-geometries. The reason is the following di�culty. Superstring theory is the
best, by now, candidate for the theory of QG. However, ST is formulated in
10 or 11 dimensions and the intensive attempts to bridge it with 4-dimensional
world of our physics seems to be problematic. In fact, the ambiguity with
obtaining the 4-d worlds is estimated, by some researchers, to be of the order of
10500. For the fundamental theory of our physical world it is too many. Even
2 di�erent possibilities would be a problem. This is the place where new 4-d
connection can help. Superstring theory serves as very rich mathematics by
itself, so, maybe it can describe also exotic R4s. Moreover, ST is a theory of
QG and exotic R4s are non-�at, gravitational, 4-spaces. Thus, expecting some
relation of exotic R4s with QG (see, e.g. [9]) it is natural to look for this from ST
where exotic R4 could be a part of string backgrounds. Some interesting results
were thus obtained. Conversely, exotic R4s can presumably say something new
and interesting about ST itself. Such programm has indeed been proposed [8]
and then developed [12, 10, 14]. In the essay I related these attempts with
model-theoretic origins of 4-exoticness.

One could wonder whether there are inherent reasons for model-theoretic
constructions in particular dimension 4 generating exoticness. Partial answer
is given by the classic, set-theoretic, forcing which was used originally by Paul
Cohen in 1963 to prove independence of the Axiom of Choice and the Continuum
Hypothesis from other ZF axioms of set theory. In our case we can develop
forcing adding Casson handless which is non-trivial in dim 4 due to the in�nite
layer structure of topological Casson handless.

There is also an interesting possibility to look at string theory at the set-
theoretic level directly, however respecting 1-st order model-theory properties.
Let us call it set string theory. This is yet another level of string theory which
complements ordinary, geometric or di�erential strings and their topological
twist, i.e. topological string theory. In set-theoretic strings each string cor-
responds to real numbers in some countable transitive model of ZFC. Then,
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a natural relation between strings at this level is, again, the forcing relation,
adding some reals to the models. One can show that such structure interprets
quantum mechanics. So, starting from classical strings in 10-d space-time, we
arrive at gravitons in the spectrum, but also, at the set-theory level of the string
theory, QM is being already present.

I would not have been able to write this essay if it were not for the numerous
discussions and creative cooperation with Torsten Asselmeyer-Maluga. Also, I
appreciate help of Jan Sªadkowski with completing by me some of the early
stages of the presented approach.
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